

Scheme and Syllabi of Courses B.Tech. Third & Fourth Year 2019 batch

National Institute Of Technology Srinagar

Scheme of Courses for B.Tech. Chemical Engineering (3rd to 8th Semester) [2019 Batch onwards]

		3 rd Semester				
S. No.	Course No.	Subjects	L	Т	Р	Credits
1.	CET-201	Introduction to Chemical Engineering		1	0	4
2.	CET-202	Material and Energy Balance		1	0	4
3.	CET-203	Process Fluid Mechanics	3	1	0	4
4.	CET-204	Thermodynamics and Chemical Kinetics	3	1	0	4
5.	ECT-205	Basic Electronics Engineering	2	1	0	3
6.	HST-201	Ethics & Self Awareness	2	0	0	2
7	MAT-201	Chemical Engineering Mathematics-I	3	1	0	4
		TOTAL = 19 + 6 + 0 = 25	19	6	0	25
		4 th Semester				
S. No.	Course No.	Subjects	L	Т	Р	Credits
1.	CET-250	Chemical Engineering Thermodynamics	2	1	0	3
2.	CET-251	Heat Transfer	3	1	0	4
3.	CET-252	Mechanical Operations	3	1	0	4
4.	CET-253	Material Science & Technology	3	1	0	4
5.	CET-254	Process Instrumentation	3	0	0	3
6.	MAT-250	Chemical Engineering Mathematics –II	3	1	0	4
7.	CEL-255	Fluid Mechanics & Mechanical Operations Lab.	0	0	4	2
8.	ECL-256	Basic Electronics Engineering Lab.	0	0	2	1
		TOTAL = 17 + 5 + 6 = 28	17	5	6	25
	•	5 th Semester				
S. No.	Course No.	Subjects	L	Т	Р	Credits
1.	CET-305	Process Equipment Design-I	3	1	0	4
2.	CET-306	Chemical Reaction Engineering	3	2	0	5
3.	CET-307	Mass Transfer-I	3	1	0	4
4.	CET-308	Chemical Technology – I	3	0	0	3
5.	HST-309	Basic Management Principles	3	0	0	3
6.	MAT-310	Numerical Methods	3	1	0	4
7.	CEL-311	Heat Transfer Lab	0	0	2	<mark>1</mark>
8.	CEL-312	Computer Simulation Lab	<mark>0</mark>	<mark>0</mark>	<mark>2</mark>	<mark>1</mark>
		TOTAL = 18 + 5 + 4 = 27	18	5	4	25
		6 th Semester				
S. No.	Course No.	Subjects	L	Т	Р	Credits
1.	CET-355	Process Equipment Design -II	3	1	0	4
2.	CET-356	Mass Transfer – II	3	1	0	4
3.	CET-357	Chemical Technology – II	3	0	0	3
4.	CET-358	Energy Technology	3	0	0	4
5.	CET-359	Chemical Process Safety	3	0	0	3
6.	CET-360	Transport Phenomena	3	1	0	4
7.	CEL-361	Energy Technology Lab	0	0	2	1
8.	CEL-362	Thermodynamics & Reaction Engineering Lab	0	0	2	1
9.	CEI-363	Industrial Training & Presentation	0	0	2	1

		7 th Semester				
S. No.	Course No.	Subjects	L	Т	Р	Credits
1.	CEP-413	Pre-project work	0	0	4	2
2.	CES-414	Seminar	0	0	2	1
3.	CET-415	Process Dynamics & Control	3	1	0	4
4.	CET-416	Process Economics & Plant Design	3	1	0	4
5.	CET-417	Biochemical Engineering	3	1	0	4
6.	CEL-418	Process Dynamics & Control Lab	0	0	2	1
7.	CEL-419	Mass Transfer Lab	0	0	4	2
8.	CET-020-24	Elective – I (Departmental Elective/Swayam)	3	0	0	3
9.	CET-025-29	Elective – II (Departmental Elective/Swayam)	3	0	0	3
		TOTAL = 15 + 3 + 14 = 32	15	3	14	25
		8 th Semester				
S. No.	Course No.	8 th Semester Subjects	L	Т	Р	Credits
S. No. 1.	Course No. CEP-464	8th Semester Subjects Project Work	L 0	T 0	P 16	Credits 8
S. No. 1. 2.	Course No. CEP-464 CET-465	8th Semester Subjects Project Work Bioresource Technology	L 0 3	T 0 0	P 16 0	Credits 8 3
S. No. 1. 2. 3.	Course No. CEP-464 CET-465 CEL-466	8th Semester Subjects Project Work Bioresource Technology Biochemical Engineering Lab	L 0 3 0	T 0 0	P 16 0 4	Credits 8 3 2
S. No. 1. 2. 3. 4.	Course No. CEP-464 CET-465 CEL-466 CET-467	8th Semester Subjects Project Work Bioresource Technology Biochemical Engineering Lab Modeling & Simulation of Chemical Process	L 0 3 0 3	T 0 0 0	P 16 0 4 0	Credits 8 3 2 3
S. No. 1. 2. 3. 4.	Course No. CEP-464 CET-465 CEL-466 CET-467	8th Semester Subjects Project Work Bioresource Technology Biochemical Engineering Lab Modeling & Simulation of Chemical Process Systems	L 0 3 0 3	T 0 0 0 0	P 16 0 4 0	Credits 8 3 2 3
S. No. 1. 2. 3. 4. 5.	Course No. CEP-464 CET-465 CEL-466 CET-467 CET-468	8th Semester Subjects Project Work Bioresource Technology Biochemical Engineering Lab Modeling & Simulation of Chemical Process Systems Industrial Pollution Abatement	L 0 3 0 3 3 3	T 0 0 0 0	P 16 0 4 0 0	Credits 8 3 2 3 3 3
S. No. 1. 2. 3. 4. 5. 7.	Course No. CEP-464 CET-465 CEL-466 CET-467 CET-468 CET-069-72	8th Semester Subjects Project Work Bioresource Technology Biochemical Engineering Lab Modeling & Simulation of Chemical Process Systems Industrial Pollution Abatement Elective – III (Departmental Elective/Swayam)	L 0 3 0 3 3 3 3	T 0 0 0 0 0 0	P 16 0 4 0 0 0 0 0	Credits 8 3 2 3 3 3 3 3
S. No. 1. 2. 3. 4. 5. 7. 8.	Course No. CEP-464 CET-465 CEL-466 CET-467 CET-468 CET-069-72 CET-073-76	8th Semester Subjects Project Work Bioresource Technology Biochemical Engineering Lab Modeling & Simulation of Chemical Process Systems Industrial Pollution Abatement Elective – III (Departmental Elective/Swayam) Elective – IV (Departmental Elective/Swayam)	L 0 3 0 3 3 3 3 3 3	T 0 0 0 0 0 0 0 0	P 16 0 4 0 0 0 0 0 0	Credits 8 3 2 3 3 3 3 3 3
S. No. 1. 2. 3. 4. 5. 7. 8.	Course No. CEP-464 CET-465 CEL-466 CET-467 CET-468 CET-069-72 CET-073-76	8th Semester Subjects Project Work Bioresource Technology Biochemical Engineering Lab Modeling & Simulation of Chemical Process Systems Industrial Pollution Abatement Elective – III (Departmental Elective/Swayam) Elective – IV (Departmental Elective/Swayam) TOTAL = 15 + 0 + 20 = 35	L 0 3 0 3 3 3 3 3 15	T 0 0 0 0 0 0 0 0 0 0 0 0	P 16 0 4 0 0 0 0 0 0 0 0 0 0 0	Credits 8 3 2 3 3 3 3 2

E-I: Any one of the following electives

S. No.	E-1	Elective courses	L	Т	Р	Credit
1.	CET-020	Polymer Science and Engineering	3	0	0	3
2.	HST-021	Managerial Economics for Engineers	3	0	0	3
3.	CET-022	Advanced Separation Processes	3	0	0	3
4.	MAT-023	Operations Research	3	0	0	3
5.	CET-024	Process Heat Integration	3	0	0	3
E-II: A	ny one of th	e following electives				
S.No.	Ĕ-II	Elective courses	L	Т	Р	Credit
1.	CET-025	Cement Technology	3	0	0	3
2.	CET-026	Computational Fluid Dynamics	3	0	0	3
3.	CET-027	Multi-component Distillation	3	0	0	3
4.	CET-028	Optimization Techniques in Chemical	3	0	0	3
		Engineering				
5.	CET-029	Heterogeneous Catalysis & Catalytic Processes	3	0	0	3
E-III: A	Any one of t	he following online electives				
S. No.	E-III	Elective courses	L	Т	Р	Credit
1.	CET-069	SWAYAM Online course	3	0	0	3
2.	CET-070	SWAYAM Online course	3	0	0	3
3.	CET-071	SWAYAM Online course	3	0	0	3
4.	CET-072	SWAYAM Online course	3	0	0	3
E-IV: A	Any one of t	he following online electives				
S. No.	E-IV	Elective Courses	L	Т	Р	Credit

1.	CET-073	SWAYAM Online course	3	0	0	3
2.	CET-074	SWAYAM Online course	3	0	0	3
3.	CET-075	SWAYAM Online course	3	0	0	3
4.	CET-076	SWAYAM Online course	3	0	0	3

Nomenclature

CE Chemi	cal Engineering
----------	-----------------

- MT Mathematics Department subject
- HS Humanities and Social Sciences Department subject
- EC Electronics and Communication Engineering Department subject
- T Theory
- L Lab. course
- P Project/Dissertation
- S Seminar
- I Industrial Training & Presentation

First Numeral Year of course, Except for Elective courses assigned as "0".

2nd& 3rd Num. Unique Course Number

*SWAYAM online courses will be floated before the start of semester to be managed by a faculty mentor.

5th Semester Process Equipment Design-I (CET-305)

Subject: Process Equipment	Year & Semes	ster: B.Tech. Chemical	Total C	Course Cr	edit: 4
Design-I	Engineering 3 rd year & 5 th Semester		L	Т	Р
(CET-305)			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Tern	n
Evaluation Toney	(30 Marks)	(10 Marks)	((50 Marks)

Course Objective:

The objective of the course is to provide basic knowledge of design parameters and their applications in the design of the equipments such as pressure vessels, storage tanks and tall towers used in the process industries along with the flanges and supports.

Course Outcomes (COs)

CO1.	Getting basic idea about the mechanics of materials.
CO2.	Understanding of mechanical design of storage tank, pressure vessel and tall tower.
CO3.	Acquiring knowledge of flanges and supports with respect to design and applications.

Unit-I	Mechanics of Materials: Stress, strain, biaxial stress, stress-strain relationship for elastic bodies, theories of failure, thermal stresses, membrane stresses in shells of revolution, thin and thick cylinder.
Unit-II	Pressure Vessel: Selection of type of vessels, material of construction selection and design considerations. Introduction of codes for pressure vessel design, classification of pressure vessels as per codes. Design of cylindrical and spherical shells under internal and external pressure; Pipe thickness calculation under internal and external pressure; Selection and design of closures and heads, design of jacketed portion of vessels. Compensation of openings. Design of high pressure monoblock and multilayer vessels. Inspection and testing of pressure vessels
Unit-III	Flanges: Selection of gaskets, selection of standard flanges, optimum selection of bolts for flanges, design of flanges.
Unit-IV	Tall Tower Design: Design of shell, skirt, bearing-plate and anchor bolts for tall tower used at high wind and seismic conditions.
Unit-V	Supports: Design of lug and leg supports. Design of saddle supports including bearing plates and anchor bolts.
Unit-VI	Storage Tanks: Introduction to Indian standards codes, filling and breathing losses; classification of storage tanks; optimum length to diameter ratio, design of liquid and gas storage tanks with and without floating roof

	1.	Brownell, L. E., Young, H. E., "Process Equipment Design", John Wiley
		(2004). 4. 6.
	2.	Bhattacharya, B. C., "Introduction of Chemical Equipment Design", CBS
Text Books		Publisher (2003).
	3.	I.S.:2825-1969, "Code for Unfired Pressure Vessels", (1969).
	4.	I.S.:803-1974, "Code of Practice for Design, Fabrication and Erection of
		Vertical Mild Steel Cylindrical Welded Oil Storage Tanks", (1984).
D	1.	Moss, D. R., "Pressure Vessel Design Manual", 3rd Edn., Gulf (2004).
Reference	2	Megyesy F F "Pressure Vessel Handbook" 12th Edn Pressure Vessel
DOOKS	2.	Publishing (2001

MAGAR KASHMUN Chemical Reaction Lingheeting (CLI 2000)							
Subject: Chemical Reaction	et: Chemical Reaction Year & Semester: B. Tech		Total Course Credit: 5				
Engineering (CET-306)	Chemical Engineering		L	Т	Р		
	3 nd Year &	5 th Semester	3	2	0		
Evaluation Policy	Mid-Term (30 Marks)	Continuous Assessment (10 Marks)	Final-Term (60 Marks)		1)		

Chemical Reaction Engineering (CET-306)

Course Objectives

The aim of the course is to impart basic knowledge of ideal reactor design for single and multiple reactions, the non-ideal flow, non-isothermal operations and stability of reactors, and understanding about the solid catalyzed and non-catalytic systems.

Course outcomes (COs): Upon successful completion of the course, students will be able to:

CO1	Explain the different types of reactors, their behaviour and performance for single reaction.
CO2	Design of batch, plug-flow and mixed flow reactors for multiple reactions
CO3	Analyze and size the reactors while accounting the non-isothermal conditions and non-ideal
	flow patterns.
CO4	Design reactors for the homogenous and heterogeneous catalyzed reactions, and understand
	their effect on performance equations of catalytic reactors.

Unit-I	Introduction to Reactor Design: Classification of rector types, material and energy
	balance for an element of volume of the reactor, basic performance equation, symbols
	and relationship between concentration and conversion.
	Ideal Reactors: Design equations for ideal reactors-batch, CSTR and plug Flow
	Design for Single Reaction: Design equation for single reaction systems – batch
Unit-II	reactor, CSTR, PFR and recycle reactor, auto catalytic reactions, reactor choice for
	single reaction - size comparison of single reactors and multiple-reactor systems.
	Design for Multiple Reactions: Parallel and series reactions, quantitative treatment of
Unit III	product distribution and of reactor size for different types of ideal reactors, selectivity
01111-111	and yield factors, potpourri of multiple reactions, reactor choice for multiple reactions,
	Denbigh reactions.
	Non-isothermal Operation and Stability of Reactors: Non-isothermal design of
Unit-IV	ideal reactors, hot spot in tubular reactor, auto-thermal process, steady state
	multiplicity optimal temperature progression for first order reversible reaction.

	Non-ideal Flow: Residence time distribution (RTD) theory, role of RTD in
	determining reactor behavior, age distribution (E) of fluid, experimental methods for
Unit-V	finding E, relationship between E and F curve, models for non-ideal flow – single
	parameter and multi parameter models (axial dispersion, tanks in series), performance
	estimation of reactor using reactor models.
	Solid-Catalyzed and Non-catalytic Reactions: Catalytic reactions - homogeneous
	and heterogeneous, steps in solid catalyzed reaction, rate limiting steps, effect of
Unit VI	external resistance and diffusion on reaction, Thiele modulus and effectiveness factor,
Unit-VI	performance equations for catalytic reactors (packed bed, fluidized bed), basic
	equations for trickle bed and moving bed reactors, fluid-particle reactions-shrinking
	core model.

	1.	Levenspiel, O., "Chemical Reaction Engineering", 3rdEdn., John Wiley &
Toyt Books		Sons, New York (1998).
I EXT DOOKS	2.	Fogler, H.S., "Elements of Chemical Reaction Engineering", 4thEdn.,
		Prentice-Hall of India Pvt. Ltd. (1995).
	1.	Smith, J.M., "Chemical Engineering Kinetics", 2 nd Edn., McGraw-Hill Book
		Company, New York (1981).
Reference	2.	Doraiswamy, L.K., Uner, D., "Chemical Reaction Engineering: Beyond the
Books		Fundamentals", CRC Press (2013)
	3.	Froment, G.F., Bischoff, K.B., De Wilde, J.D., "Chemical Reactor Analysis
		and Design", 3 rd Edn., John Wiley & Sons, Inc. (2011).

RINAGAR KASHMIBU		1 alister -1(CE1-3)	,,,				
Subject: Mass Transfer-I	B. Tech Che	B. Tech Chemical Engineering 5 th Semester		Total Course Credit: 4			
(CET-307)	5 th			Т	Р		
			3	1	0		
Evolution Dolioy	Mid-Term	Class Assessment	Final-Term				
Evaluation Folicy	(30 Marks)	(10 Marks)	()			

Mass Transfer-I(CET-307)

Course Objective:

The main purpose of the course is to provide fundamental understanding of basic principles of mass transfer in gases and in liquids and their applications in various mass transfer systems used in process and allied industries.

Course Outcomes (COs):

CO1	Fundamental understanding of mass transfer operations.
CO2	Acquiring knowledge of inter phase mass transfer, and their coefficients.
CO3	Exhibiting basic understanding and analysis of gas absorption, humidification, drying and
	crystallization.
CO4	Understanding and analysis of the equipments used for the mass transfer operations.

	Principles of Mass Transfer, Steady and Unsteady States
Unit-I	Molecular diffusion in fluids, diffusivities of fluids, applications of moleculardiffusion-analogies and mass transfer coefficients in laminar flow, concepts of effective diffusivity. Eddy diffusion, mass transfer in turbulent flow, models of mass transfer operations.
Unit-II	Interphase Mass Transfer Interphase mass transfer-diffusion between phases, two phases mass transfer coefficients, individual and overall coefficients, stage wise process. Concurrent and counter current processes.
Unit-III	Gas Absorption Equilibrium relationships. Material balances for co-current and counter current multistage equipment. Dilute system. HETP, HTU and NTU individual and overallcoefficients. Equipment: General characteristics of tray towers, efficiencies, wetted wall towers, packedtowers, characteristics of packed towers, mass transfer coefficients in packed towers.
Unit-IV	Humidification General theory, psychometric chart, fundamental concepts in humidification and dehumidification. Cooling towers and related equipment.

-	NAGAR KASHMICO	
		Crystallization
		Principles, yield calculation, heat effects and equipment.
		Drying
	Unit-V	Equilibria, drying rate curve definitions. Batch and continues drying. Mechanism of
		drying. Calculation of batch and continuous drying.

	1.	McCabe, W.L., Smith, J.C., "Unit Operation of Chemical Engineering",7th
		Edn., McGraw-Hill (2011).
	2.	Treybal, R.E., "Mass Transfer Operations" 3rd Edn., McGraw-Hill Book
Text Books		Company (1980).
&	3.	Basmadjian, D., "Mass Transfer and Separation Processes: Principles and
Reference		Applications", CRC Press (2007).
Books	4.	Foust, A. S., Wenzel, L. A., Clump, C. W., Maus, L., Andersen, L. B.,
		"Principles of Unit Operations", 2 nd Ed., Wiley-India (2008).
	5. Seader J DErnest J. Henley, D. Keith Roper, Separation Process Prince Process Pr	
		, with application using process simulators. 4rth edition John Wiley.

CA	NA NA	NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR						
思い	Subject: Chemical Technolog	y-Year & Semes	Year & Semester: B.Tech. Chemical		Total Course Credit: 3			
(1)(1)		Engineering 3	Engineering 3rd year &5 th Semester		Т	Р		
Ísr	NAGAR KASHMUB (CET-308)				0	0		
	Evaluation Policy	Mid-Term	Class Assessment	Final-Term				
	Evaluation Foncy	(30 Marks)	(10 Marks)	(60 Marks)		

Chemical Technology-I (CET-308)

Course Objective

To study process technology, availability of raw materials, production trends, preparation of flow sheets, engineering and environmental problems of various chemical industries and manufacturing technologies.

Course Outcomes (COs)

CO1	Understanding of processes used by chemical process industries for production of various
	chemical products.
CO2	Application of process flow diagram for the chemical process industries.
CO3	Ability to deal with apparatus, unit operations, and chemical economics.

Unit_I	Technology of Water: Classification of water, industrial and municipal purposes,
Unit-1	methods for obtaining fresh water from sea water.
	Basic Chemical Industries: Common salt, its uses, economics and manufacture. Soda
Unit-II	ash, its uses, raw materials, manufacture by Solvay process and its modification.
	Caustic soda-chlorine types of cells, raw materials, reactions, uses and manufacture.
	Bleaching Powder and Hypochlorites: The methods of production. Sulphuric acid:
Unit-III	Raw materials, method of manufacture by contact process. Synthetic ammonia: Uses,
	reactions, manufacturing process, concentration of nitric acid.
	Nitrogenous Fertilizers: Ammonium sulphate, ammonium nitrate and urea, their
	methods of production. Phosphate Industries: Phosphorous, uses and manufacture;
Unit-IV	phosphoric acid, uses and types of manufacturing procedures; phosphate fertilizers,
	raw materials and uses. Manufacture of super-phosphates, granular super phosphate
	and triple super-phosphate
	Cement: History, various types of cements, raw materials, manufacture of Portland
	cement. Glass: history, uses and composition of glass; different types of glasses, unit
TT:4 X7	operation and processes in the glass manufacture. Ceramics: Uses, basic raw materials,
Unit-v	unit processes in ceramic industry. Porcelain: Manufacturing procedure. Enamels:
	Raw metals, preparation of metal paint, application of enamel and firing.

	1.	Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology for the 21 st Century", East-West Press, New Delhi (2002).
Text Books	2.	Austin, G.T., "Shreve's Chemical Process Industries", 5 th Edn., McGraw Hill Book Company (1984).
	3.	Kent, J.A., " <i>Riegel's Handbook of Industrial Chemistry</i> ," <i>CBS</i> Publishers (1997).
Reference	1.	Mall I. D., "Petrochemical Process Technology", Macmillan India Ltd., New Delhi (2007).
Books	2.	Moulijn, J. K., Makkee, M., Van Diepen, A., "Chemical Process Technology", Wiley (2001).

Basic Management Principles (HST-309)

Subject: Basic Management	t Year & Semester: B.Tech		Total Course Credit: 3			
Principles	Chemical Engineering 3 rd Year & 5 th Semester		L	Т	Р	
(HST-309)			3	0	0	
Evoluation Policy	Mid-Term	Class Assessment	Final-Term		1	
Evaluation Foncy	(30 Marks) (10 Marks) (60 Ma		50 Marks)		

Course Objective

The main objective of the course is to make the students aware of the fundamental understanding of the management principles which could be useful for them in the process, bioprocess industries or in any organization with respect to management.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1	Acquiring basic knowledge of management and function of the managers.
CO2	Exhibiting understanding about planning, organizing, decision making and objectives.
CO3	Fundamental knowledge with respect to delegation and decentralization of authority.
CO4	Enabling with the importance of human resource development, motivation, communication
	skill and management information systems.

	Management: It's nature, purpose and definition, management as a pre-requisite for		
Unit-I	any organization, aims of management, management-art of science.		
	Functions of Managers: Planning, organizing, actuating and controlling.		
	Planning: Nature and purpose of planning, types of plans, steps in planning/planning		
IIn:t II	process.		
01111-11	Objectives: The nature and importance of objectives, types of objectives, primary,		
	secondary, individual and personal objectives. Guidelines for setting objectives.		
	Decision Making: Importance and limitations of rational decision making, types of		
	decisions, programmed and non-programmed decisions, process of decision making		
IIm:4 III	under certainty.		
01111-111	Organizing: Nature and process of organizing, steps in organizing/process of		
	organizing, formal and informal organization, span of control, and factors		
	determining effective span.		
	Decentralization of Authority: The nature of decentralization, degrees of		
IImit IN	decentralization, decentralization, philosophy and policy.		
Umt-1v	Delegation of Authority: Meaning of authority/delegation, steps in the process of		
	delegation, factors determining the degree of delegation, art of delegation.		

Unit-VLine/Staff Organization: Line organization, staff organization, line organization, functional and committee organization, the nature of line relationship.			
	Actuating: Nature and purpose of actuating, steps in actuating/actuating process.		
Unit-VI	recruitment, selection, training and development, performance appraisal, compensation, packages, promotions, transfers, demotion and separation etc.		
	Leadership: Meaning and importance leadership qualities, effective and ineffective leaders, leadership styles.		
	Motivation: Need, want and satisfaction chain. Need hierarchy. Improving employee motivation.		
Unit-VII	communication. Weaking and importance of critective communication, communication process, formal and informal communication. Controlling: Nature and purpose of controlling, steps in controlling/process of controlling, types of controls, requirement of effective controls.		
Unit-VIII	Management Information System (MIS): Definition, elements and importance of MIS, manager, management and information, changing MIS environment, managing and controlling the MIS function. New Trends in Management.		

	1. George, R., Terry, Irwin, "Principles of Management", (1974).	
	2. Tara Chand, "Industrial Organization and Management", Nem Chand	
Text Brothers, (1973).		Brothers, (1973).
Books&	3. Shukla, M.C., "Business Organization Management 3rd Edition", S.	
Reference	Reference BooksChand(1967).4.Dean, J. "Management Economics" Prentice-Hall of India Pvt. Ltd., Net	
Books		
		Delhi (1976).
	5.	"Principles of Management (Ascent Series)" Tata McGraw-Hill (2004).

AGAR KASHMIDU	1 (unit) it		010)		
Subject: Numerical	Year & Semes	ter: B.Tech Chemical	I Total Course Credi		
Methods	Engineering		L	Т	Р
(MAT-310)	3 rd Year	& 5 th Semester	4	0	0
Evaluation Dolioy	Mid-Term	Class Assessment	F	inal-Tern	1
Evaluation 1 oncy	(30 Marks)	(10 Marks)	(60 Marks))

Numerical Methods (MAT-310)

Course Objective: The objective is to make the students aware of the numerical methods for the solution of scienceand engineering related problems which cannot be solved analytically.

Course outcomes (COs)

CO1	Acquire fundamental understanding with respect to error estimation and solving algebraic and transcendental equations, and ordinary differential equations with the help of numerical
	techniques.
CO2	Exhibiting knowledge for solution of simultaneous linear algebraic equations.
CO3	Fundamental knowledge for construction of interpolating polynomial and finding
	intermediate values.
CO4	Applying the knowledge of numerical methods for solution of chemical engineering based
	problems

	Errors in Numerical Calculations
Tinit T	Floating- point form of numbers, Round-off, Algorithm, Stability, Programming
Unit-1	errors, Errors of Numerical Results, Error propagation, Basic error principle, Loss of
	significant digits.
	Numerical Solution of Algebraic and Transcendental Equations
Unit-II	Bolzano's bisection method, iteration method, Regula-Falsi method, Newton-
	Raphson method, Numerical Solution for system of equations.
	Solution of Simultaneous Linear Algebraic Equations
IIn:4 III	Gauss elimination method, Gauss-Jordan method, Computation of Inverse by Gauss's
01111-111	Method, LU decomposition, Gauss-Siedel iteration method, Jacobi method, The
	Eigen value problem.
	Finite Differences and Interpolation
Tin:4 TV	interpolation Forward, Backward and Shift operators, Central differences, their
Umt-1v	relations . Existence, Uniqueness of interpolating polynomial, error of interpolation
	- unequally spaced data; Lagrange's formula, Newton's divided difference formula.

Equally spaced data : finite difference operators and their properties, , Newto forward and backward interpolation formulae, Gauss's forward and backward. Numerical Differentiation and Integration
forward and backward interpolation formulae, Gauss's forward and backward. Numerical Differentiation and Integration
Numerical Differentiation and Integration
Numerical differentiation using difference techniques, Trapezoidal, Simpson's
and Simpson's 3/8 rule, Truncation error, Romberg's method.
Numerical Solution of Ordinary Differential Equations
Unit VI Picard's method, Taylor series method, Euler and modified Euler method, Rur
Kutta method of 4th order, Predictor-Corrector methods (Adam's-Moulton met
& Milne's method.
Application of Numerical Methods in Chemical Engineering
Unit-VII Numerical treatment of chemical reaction kinetics, Transport processes, Numer
methods for solving problems arising in heat and mass transfer.

	1.	Numerical Methods for Scientists and Engineering M.K. Jain, S. R. Iyengar& R.K. Jain, Wiley Eastern Ltd New age international publishers, 7 th Edition, 2019, ISBN: 9789387477254, 9387477258
Text Books	2.	Introductory methods in Numerical Analysis, S.S. Sastry, 5 th Edition, Prentice Hall India learning Pvt Ltd, ISBN: 9788120345928, 9788120345928.
	3.	Elementary Numerical Analysis, <u>Kendall E. Atkinson</u> , Han, 3 rd Edition, 2006, Wiley India Pvt Ltd, ISBN-13: 978-9754142747
Reference	1. 2.	S. D. Conte and C. de Boor, Elementary Numerical Analysis An algorithmic approach, McGraw-Hill, 1980, ISBN-13: 978-0070124479. Mathematical Numerical Analysis J.B. Scarborough, Oxford and IBH Publishers, 6 th Edition, 2020, ISBN: 9788120417595, 9788120417595
DUOKS	3.	Numerical Methods for Mathematics, Sciences and Engg. J. H. Mathews, Publishers: Prentice hall college division, 2 nd Edition, 1992, ISBN: 9789387477254, 9387477258.

No.	NATI	NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR						
AND A	Subject: Heat Transfer Lab.	Year & Semester: B.Tech	Total C	Course Ci	redit: <mark>1</mark>			
2012	(CEL-311)	Chemical Engineering	L	Т	P P			
		3 rd Year & 5 th Semester	0	0	<mark>2</mark>			
	Evoluction Policy*	Total Marks						
	Evaluation 1 oncy	(100)						

Heat Transfer Lab (CEL-311)

*Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Course Objective: Purpose of the course is to provide basic understanding of various modes of heat transfer operations, the equipments used for, and their applications.

Course outcomes (COs)

CO1	Acquiring knowledge about estimation and measurement of physical parameters, such as
	thermal conductivity, heat transfer coefficients and emissivity in various heat transfer
	systems.
CO2	Generation and analysis of the data with respect to the physical parameters and their
	applications in design.

List	of Exp	oeriments
------	--------	-----------

S.No	Experiment
1.	Study of heat transfer by natural convection.
2.	Study of heat transfer by forced convection.
3.	Study of heat transfer in filmwise and dropwise condensation.
4.	Study of heat transfer through a multiple composite wall.
5.	Emissivity measurement of a gray body.
6.	Study of finned tube heat exchanger.
7.	Study of shell and tube heat exchanger.

Books Recommended

1.	McCabe, W.L., Smith, J.C., "Unit Operation of Chemical Engineering", 7thEdn., McGraw-
	Hill (2011).
2.	Holman, J.P., "Heat Transfer", 10 th Edn., McGraw-Hill (2009)
3.	Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P., "Introduction to Heat
	Transfer", 6 th Edn., Wiley (2011).
4.	Kreith, F., Manglik, R.M., Bohn, M., "Principles of Heat Transfer", 7thEdn., Cengage
	Learning (2010).
5.	Hewitt, G.F., Shires, G.L., Bott, T.R., "Process Heat Transfer", Begell House (1995).

Computer Simulation Lab (CEL-312)

Subject: Computer	Year & Semester: B.Tech	Total Course Credit: 1		
Simulation Lab	Chemical Engineering 3 rd Year	L	Т	Р
(Code: CEL312)	& 5 th Semester	0	0	2
Evaluation Policy*	Total (100 Marks	s)		

*Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Course Objective: The objective of the laboratory is to encourage the students to use **Software's** pertaining to Chemical Engineering stream.

CO1.	Understand the basics of some software/s.
CO2.	Model development of the chemical engineering process systems.
CO3.	Perform the simulation of individual equipments.
CO4.	Simulation of Flow Sheets

Course outcomes (COs): At the end of the course, student will be able to:

Details of the Syllabus

A basic background in Numerical Methods and Chemical Engineering is expected, though all the key concepts required for the lab will be reviewed during the course of the semester. Basics of software, key computational techniques relevant to software and use them for simulation and analysis, Simulation of

individual equipments and Simulation of flow sheets, Simulation of case studies related to chemical engineering applications.

1.	Nayef Ghasem, "Modeling and Simulation of Chemical Process Systems", CRC Press,
	Taylor & Francis Group (2019).
2.	Amiya K Jana, "Chemical Process Modelling and Computer Simulation", 2 nd Edition, PHI
	Learning Private Limited, (2011).
3.	http://courses.washington.edu/overney/ChemE435.html.

Subject: Process Equipment	Year & Semester: B.Tech. Chemical		Total Course Credit: 4		
Design-II Engineering 3rd year &6 th Semester		L	Т	Р	
(CET-355)			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		n
	(30 Marks)	(10 Marks)	(6	50 Marks)

Process Equipment Design-II (CET-355)

Course Objective

The main purpose of the course is to enable the students to acquire fundamental knowledge with respect to the design and selection of process equipments.

Course Outcomes (COs)

CO1	Acquire basic understanding about the process equipments based on heat and mass transfer
	operations.
CO2	Exhibit knowledge with respect to design of Process equipments.
CO3	Selection of equipments for various applications.

	Shell-Tube Heat Exchangers: Basic design procedure of heat transfer equipment,
	overall heat transfer coefficient and fouling factors, shell & tube heat exchangers -
	construction details, selection algorithm, design codes, mean temperature difference,
Unit-I	general design considerations, tube-side heat transfer coefficient and pressure drop,
	shell-side heat transfer coefficient and pressure drop, various design methods, CAD of
	shell & tube heat exchangers, mechanical and fabricational aspects. Drawing of heat
	exchangers.
	Condensers: Design of condensers for single vapors, heat transfer coefficient
Unit II	correlations for condensation inside and outside of tubes of the vertical and horizontal
Unit-11	condensers, design of desuperheater-cum-condenser and condenser-cum-sub-cooler,
	condensation of mixtures, pressure drop in condensers.
	Reboilers, Vaporizers and Evaporators: Pool boiling, convective boiling, selection of
Unit-III	reboilers, & vaporizers, design of reboilers, vaporizers and evaporators, drawing of
	evaporators

	Distillation Column: Basic design consideration of distillation column, degree of
T T '4 TT 7	freedom analysis, various design methods of distillation column, general design
Unit-1V	consideration of multicomponent distillation, plate efficiency, tray hydraulics of sieve
	and valve – trays. Drawing of distillation column
II:4 X7	Packed Columns: Type of packing, packed bed height, column diameter, column
Unit-V	internals, design methods, Design of liquid-liquid extraction equipment.
Unit-VI	Miscellaneous Equipment: Design of Crystalizers, Agitated vessels and selection of
	agitators, design of gas-liquid separators and mixing equipment.

	1.	Brownell, L. E., Young, H. E., "Process Equipment Design", John Wiley (2004). 4. 6.
Text Books	2.	Bhattacharya, B. C., "Introduction of Chemical Equipment Design", CBS Publisher (2003).
	3.	I.S.:2825-1969, "Code for Unfired Pressure Vessels", (1969).
	4.	I.S.:803-1974, "Code of Practice for Design, Fabrication and Erection of Vertical Mild Steel Cylindrical Welded Oil Storage Tanks", (1984).
Reference	1.	Moss, D. R., "Pressure Vessel Design Manual", 3rd Edn., Gulf (2004).
Books	2.	Megyesy, E. F., "Pressure Vessel Handbook", 12th Edn., Pressure Vessel Publishing (2001

RINAGAR KASHMIB	RABHUEU IVIASS ITAIISICI-III (CE1-550)				
Subject: Mass Transfer-II	Year & Semester: B.Tech Chemical		Total C	Course Ci	redit: 4
(CET-356)	Engineering		L	Т	Р
	3rd Year & 6 th Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
Evaluation Toney	(30 Marks)	(10 Marks)	(60 Marks))

Mass Transfer-II (CET-356)

Course Objective

The aim of the course is toenable the students to understand the fundamentals of mass transfer operations, such as distillation, extraction, adsorption and leaching along with their commercial significance and applications.

Course Outcomes (COs)

CO1	Exhibit knowledge about various types and aspects of distillation operations which are
	commercially important.
CO2	Acquiring basic understanding with respect to extraction, adsorption and leaching operations
	and their applications.

Details of the Syllabus

	Distillation: Vapour-liquid equilibria for ideal and non-ideal systems. Relative				
	volatility. Azeotropes, enthalpy-concentration diagrams. Single stage flash				
Unit I	vaporisation. Partial condensation. Differential distillation for binary systems.				
Unit-1	Fractionation, McCabe-Thiele and Ponchen-Savarit methods for multistage operations.				
	Reflux, reflux ratio and optimum reflux ratio. Reboilers. Total and partial condensers.				
	Tray efficiencies. Azeotropic, extractive and steam distillations.				
Unit II	Extraction: Ternary liquid equilibria, calculation of single stage, multistage				
01111-11	cocurrent and multistage counter current operations.				
	Adsorption: Adsorption equilibria, calculations for vapour, gas and liquid adsorptions.				
Unit-III	Adsorption operations such as single stage, multi stage, cocurrent and multistage				
	counter current operations. Equipments.				
	Leaching: Principles. Equilibria, Calculations of single stage and multistage leaching				
Unit-IV	processes equipment.				

1.	Treybal, R.E., "Mass Transfer Operations" 3rd Edn., McGraw-Hill
	Book Company (1980).

AGAR KASH									
	2.	McCa	be, W.L., Smith, J.C., Harriott, P., "Unit Operations of Chemical						
Text Books Engineering",									
&									
B oforonco 3. Basmadjian, D., "Mass Transfer and Separation Processes: Princip							ples		
Books		and A	pplications", CR	C Press (2007).					
DUUKS	ndersen, l	L. B.,							
	"Principles of Unit Operations", 2nd Edn., Wiley-India (2008).								
	Chemical Technology-II (CET-357)								
Chemical Techr	Chemical Technology-II Year & Semester: B.Tech. Chemical Total Course Credit: 3								
(CET-35	7)		Engineering 3rd	d year & 6 th Semester	L	Т	Р		
					3	0	0		
Evaluation F	olicy	/	Mid-Term	Class Assessment	Final-Term				
	(30 Marks) (10 Marks) (60 Marks)								

Course Objective

To study process technology, availability of raw materials, production trends, preparation of flow sheets, engineering and environmental problems of various chemical industries.

Course Outcomes (COs)

CO1	Understanding of processes used by chemical process industries for production of various
	products.
CO2	Application of process flow diagram by the chemical process industries.
CO3	Ability to deal with apparatus, unit operations, and chemical economics.

In:4 I	Coal and Coal Tars: Cola chemicals, law temperature and high temperature
Unit-1	carbonization, chemicals from coal tar.
	Sugar and Starch: Manufacture of raw sugar crystals from sugar cane, refining
	operations, manufacture of starch from various materials, starch derivatives,
Unit-II	manufacture of glucose. Leather and Gelatin: Preparation of hides, vegetable and
	chrome tanning, finishing operations, manufacture of gelatin from its raw materials,
	uses. Glues and adhesives-types and their manufacture.
Unit-III	Pulp & Paper: Sulphite and Kraft processes for manufacture of paper.
	Oils, fats, soaps and detergents: Classification of vegetable oils and fats, production
Unit-IV	of edible oil and fats, purification, hydrogenation of oils, classification of cleaning
	compounds and their uses, methods for the production of soaps and detergents.

	Man Made Fibres: Classification, cellulosic products. Viscose Rayons, their uses and
	manufacture. Polyamides-66-nylon, chemical process and method of production.
	Polyester (Dacron miller), its manufacturing process. Synthetic Plastics: Methods of
Unit-V	polymerization, phenol formaldehyde, urea formaldehyde, polyethylene and
	polyvinylchloride their uses and methods of production. Natural and Synthetic
	Rubbers: Natural rubber and its processing. Butadiene-styrene polymer, its methods
	of production. Polychloroprene and its manufacture.
Init VI	Dyestuffs: A general study of dye stuffs with reference to their classification based
Umt-vi	on chemical structure & on its application, azo and vat dyes.
Unit VII	Petroleum and Petrochemicals: Occurrence, refinery, practice, chemical refining,
	ethylene, acetylene, synthesis gas, butadiene, their uses and methods of production.

	1.	Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology- for the 21stCentury East-West Press (1997).
Text Books	2.	Austin, G.T., "Shreve's Chemical Process Industries", McGraw-Hill Book Company (1984).
	3.	Kent, J.A., "Riegel's Handbook of Industrial Chemistry," CBS Publishers (1997).
	1.	Pandey, A., "Concise Encyclopaedia of Bioresource Technology", CRC Press (2004).
Reference Books	2.	Mall I. D., "Petrochemical Process Technology", Macmillan India Ltd., New Delhi (2007).
	3.	Moulijn, J. K., Makkee, M., Van Diepen, A., "Chemical Process Technology", Wiley (2001).

Č	23 A 10 33	NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR								
N. A.	Subject:	Energy Technology	Total Course Credit: 3							
(12) E		(CET-358)	Engineering 3 rd year &6 th Semester		L	Т	Р			
le Isr	NAGAR KASHMIB				3	0	0			
	Ev	alustion Policy	Mid-Term	Class Assessment	Final-Term		n			
		andation rolley	(30 Marks)	(60 Marks)						

Energy Technology (CET-358)

Course Objective:

The aim of this course is to provide the fundamental knowledge regarding the utilization and characteristics of various energy resources available (natural or transformed) which usually pertain to Chemical Engineering field.

Course Outcomes (COs):

CO1	Exposure todifferent types of energy resources available.
CO2	Acquire knowledge of different types of nonconventional sources of energy.
CO3	Learn the fuel and flue gas calculations.
CO4	Exposure to design of combustion equipment and energy audit.

Details of the Syllabus:

Unit-I	Survey of different sources of energy and their utilization. Natural fuels-coal, petroleum, processed fuels, coke, water gas, producer gas, refinery gas- LPG,
Unit-II	Non-conventional sources of energy: Introduction to geothermal energy, wind energy, solar energy,nuclear energy, Biogas/Gobar Gas. Harnessing of energy from biomass and its transformed forms.
Unit-III	Combustion calculation of coal and petroleum fractions.
Unit-IV	Design of burner, stackers and furnaces. Recovery of waste heat from chemical and metallurgical processes, selection of suitable energy sources.
Unit-V	Energy audit and management- Role of Energy Managers in Industries – Energy monitoring, auditing & targeting – Economics of various Energy Conservation schemes.

MOAR RASI		
	1.	Sarkar, S. "Fuel and Combustion" (2000).
Text Books	2.	Griswold, J., "Fuels, Combustion and Furnaces"
I CAL DOOKS	3.	Larry C Whitetal, "Industrial Energy Management & Utilization".
	4.	Himus, G.W., "The Elements of Fuel Technology"
	1.	Duffia, Beckman "Solar Energy-Thermal Processes".
Doforonao	2.	Beredict, M., Pigford, T.M., "Nuclear Chemical Engineering".
Books	3.	KhadiGrammodyog Commission Report on "Gobar Gas Plant".
DUUKS	4.	S. Van Loo, "Handbook of Biomass Combustion and Co-Firing", Twente
		University Press, 2002.

Chemical Process Safety (CET-359)

Subject: Chemical Process	rocess Year & Semester: B.Tech			Total Course Credit: 3		
Safety (CET-359)	Chemical	L	Т	Р		
	3 nd Year &	3	0	0		
Evaluation Policy	Mid-Term (30 Marks)	Continuous Assessment (10 Marks)	Final-Term (60 Marks)			

Course Objectives

The objective is to impart knowledge about the importance of safety and evaluate suitable strategies for risk mitigation with the help of basic understanding of physical, chemical and physico-chemical transformations of the materials in process industries with respect to safety.

Course Outcomes (COs): Upon successful completion of the course, students must be able to:

CO1	Exhibit understanding about anticipation, recognition, investigation and evaluation of
	thehazardous conditions and practices which affect the masses, their properties and the
	environment.
CO2	Develop and evaluate appropriate strategies designed to mitigate risk by understanding the
	importance of plant safety and safety regulations, different types of plant hazards and their
	measurement, control, principles and procedures of safety audit.
CO3	Appreciate the importance of physical, chemical and physico-chemical transformations of
	the material in process industries with respect to safety.
CO4	Analyze the hazards and assess therisk and undertake appropriate preventive steps to
	address the need of safety.

	Details	of the Syllabus		
	Introd	luction:Introduction, safety program, engineering ethics, concept of loss		
Unit-I	prevention, acceptable risks, accident and loss statistics, nature of accident process,			
	inhere	nt safety, accident investigations-case histories.		
	Toxic	blogy:UN and other classification of chemicals, toxicants entry route, acute and		
	chronic exposure effects, Dose versus response, models for dose and response curves,			
Unit-II	TLV a	nd PEL.		
	Indus	trial Hygiene: Identification, Material safety data sheets, Industrial hygiene		
	evalua	tion and control		
	Basics	of Fires and Explosion: Fire triangle, definitions, flammability characteristics		
Unit-III	of liqu	uid and vapours, LOC and inerting, types of explosions, Designs for fire		
	preven	tion.		
TT	Hazar	Hazard Identification: Work permit systems, color coding of chemical pipe lines,		
Unit-1V	HAZCHEM Code, Hazard survey, checklist, HAZOP, safety reviews, what if analysis			
TI	Risk A	Risk Assessment: Probability theory, event tree, fault tree, QRA and LOPA, Dow's		
Unit-v	fire an	fire and explosion index, Mond's index, Dow's Chemical release model.		
Books Recommended				
Toyt Bo	ak 1	. Crowl, D.A., Louvar, J.F., "Chemical Process Safety: Fundamentals with		
Text Do	UK	Applications", Prentice Hall (2011).		
	1	. Coulson, Richardson & Sinnott R.K., "Chemical Engineering Volume-6,		
		An Introduction to Chemical Engineering Design", Elsevier Butterworth		
		Heinemann (2005).		
Referen	ce 2	. Dow Chemical Company, Dow's Chemical Exposure Index Guide (1993).		
Books	3	. Lees, F. P., "Loss Prevention in Process Industries", Butterworth, London		
		(1996).		
	4	. Wells, G. L., "Safety in Process Plant Design", George Godwin Ltd., New		
		York (1980).		

Transport Phenomena (CET-360)

Subject: Transport	Year & Semester: B.Tech Chemical Engineering 3 rd Year & 5 th Semester		Total Course Credit: 4		
Phenomena			L	Т	Р
(CET-360)			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Tern	1
Evaluation Toney	(30 Marks)	(10 Marks)	((60 Marks)

Course Objective:

The aim of this course is to provide the basic understanding of various Transport Processes, Momentum, Mass and Heat.

Course Outcomes (COs):

CO1	To understand Newton's Law of Viscosity (Molecular Momentum) and use vectors /tensors for analysis of same.
CO2	To study the Momentum Transport.
CO3	To study the Energy Transport.
CO4	To study the Mass Transport.

	Introduction of Transport phenomena. Newton's Law of Viscosity (Molecular Momentum)
Unit-I	Transport) Momentum Flux. Generalization of Newton's Law of Viscosity.
	Vector and Tensor calculations.
	Shell Momentum Balances and VelocityDistributions in Laminar Flow
	The Equations of Change for Isothermal Systems
	The Equation of Continuity
Unit-II	Normal Stresses at Solid Surfaces forIncompressible Newtonian Fluids
	The Equation of Motion
	The Bernoulli Equation for the Steady sate case
	Use of the Equations of Change to Solve Flow of Various typical cases.
	Shell Energy Balances and Temperature Distributions.
Unit-III	Heat Conduction in various typical cases like a Nuclear HeatSource, Viscous HeatSource,
	Chemical Heat source and through CompositeWalls etc.
	Mass Transport
	Diffusivity and the Mechanisms of Mass Transport
Unit IV	Molecular Mass Transport
	Temperature and Pressure Dependence of Diffusivities
	Mass and Molar Transport by Convection
	Mass and Molar Fluxes

Subject: Energy TechnologyLab.	Year & Semester: B.Tech. Chemical	Total Course Credit: 1		edit: 1
CEL-361)	Engineering 3 rd year &6 th Semester	L	Т	Р
		0	0	2
Evaluation Policy*	Total Marks (100)			
Concentration Distribution Shell Mass Balances of	utions in Solids and Laminar Flow of some selected cases.			

Books Recommended

M. D

Text Books	1.	Bi Bird, R.B., Stewart, W.D., Lightfoot, E.W., " <i>Transport Phenomena</i> ", 2nd Edn., JohnWiley & Sons (2002).		
Reference	1.	Deen, W. M., "Analysis of Transport Phenomena", Oxford University Press (1998).		
Books	2.	Brodkey R. S. and Hershey H. C., "Basic Concepts of Transport Phenomena", Vol. 1 and 2, Brodkey Publishing (2001).		

Energy Technology Lab. (CEL-361)

*Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Objective:

The aim of this laboratory is to perform various experiments pertaining to solid and liquid fuels and their characteristics.

Outcomes (COs):

CO1	Exposure todifferent types of energy resources.
CO2	Analyze the Proximate analyses parameters of fuels.
CO3	Characterize the various liquid and solid fuels.

Details of the Experiments:

	1: To determine the Proximate analysis Parameters of coal and other solid fuels.
	2. Determination of calorific value of solid fuels.
Exporimonto	3. Test for cloud and pour point of petroleum products.
Experiments	4. Determination of flash point, fire point and specific gravity of petroleum products.
	5. To find the Smoke point of a liquid fuel.
	6. To study the briquetting/pelletization of biomass.

WAGAR KASHMIDU		
	1.	Sarkar, S. "Fuel and Combustion" (2000).
Text Books	2.	Griswold, J., "Fuels, Combustion and Furnaces"
	3.	S. Van Loo, "Handbook of Biomass Combustion and Co-Firing", Twente
		University Press, 2002.

Thermodynamics and Reaction Engineering Lab (CEL-362)

Subject: Thermodynamics	Year & Semester: B.Tech Chemical	Total Course Credit: 1		dit: 1
and Reaction Eng. Lab.	Engineering	L	Т	Р
(CEL-362)	3 rd Year & 6 th Semester	0	0	2
Evaluation Policy*	Total Marks	s		
Evaluation 1 oney	(100)			

*Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Course Objective

To provide experience on analysis of reaction engineering

Course Outcomes (COs): At the end of the laboratory course, student will be able to:

CO1	The students could independently calculate the reaction kinetics of various reactors used
	for manufacturing of chemicals in industries.
CO2	Characterize laboratory reactors through residence time distributions.

List of Experiments

Experiment No. 1: Standardization of the given solution of NaOH.

Aim: To determine the normality of NaOH solution

Experiment No. 2: Plug flow reactor

Aim: To determine the second order reaction rate constant for saponification reaction between NaOH and ethyl acetate in a plug flow reactor

Experiment No. 3: RTD study in CSTR

Aim: (a) To plot the RTD curve for a CSTR using a pulse input as a tracer (b) To determine the dispersion number

(b) To determine the dispersion number Experiment No. 4: Isothermal batch reactor

Aim: To determine the pseudo first order reaction rate constant for the saponification reaction between NaOH and $CH_3COOC_2H_5$ in a constant volume adiabatic batch reactor

Experiment No. 5: Adiabatic batch reactor

Aim: To determine the pseudo first order reaction rate constant for the saponification reaction between NaOH and CH₃COOC₂H₅ in a constant volume adiabatic batch reactor

Experiment No. 6: Continuous Stirred Tank Reactor (CSTR)

Aim: To study of a non-catalytic homogeneous second order liquid phase reaction in a CSTR under ambient conditions.

Experiment No. 7: RTD study in Packed Bed Reactor (PBR)

Aim: (a) To plot the RTD curve for a PBR, using a pulse input as a tracer(b) To determine the dispersion number

Text Books	1.	Levenspiel, O., "Chemical Reaction Engineering", 3 rdEdn., John Wiley & Amp;Sons, New York (1998).
	2.	Fogler, H.S., "Elements of Chemical Reaction Engineering", 4 thEdn. Prentice-Hall of India Pvt. Ltd. (1995).
	3.	Smith, J.M., "Chemical Engineering Kinetics", 2 ndEdn., McGraw-Hill Book Company, New York (1981).

Industrial Training & Presentation (Code: CEI-363)

Subject: Industrial	Year & Semester: B.Tech	Total Course Credit: 2			
Training & Presentation	Chemical Engineering 3 rd Year &	L	Т	Р	
(Code: CEI-363)	6 th Semester	0	0	4	
Evaluation Policy*	Total Marks				
Evaluation Foncy	(100 Marks))			

*Based on presentations by each of the student before a panel of examiners nominated by H.O.D with due weightage to report submitted.

Course Objective:

To gain practical experience in Industry or research organization.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1	Correlate class room learning to real industrial applications.
CO2	Development of written and oral communication skills.
CO3	Ability to be a multi-skilled engineer with good practical knowledge.
CO4	Development of management, leadership and entrepreneurship skill.

7th Semester Pre-Project work (CEP-413)

Subject: Pre-Project work	Year & Semester: B.Tech. Chemical	Total Course Credit: 2		it: 2
(CEP-413)	Engineering	L	Т	Р
	4 th Year &7 th Semester	0	0	4
Evaluation Policy*	Total Marks	8		
Evaluation Foncy	(100)			

*Based on presentations by each of the student before a panel of examiners nominated by H.O.D with due weightage to Supervisor evaluation and final report submitted.

Course Objective

This course enables the students to get first-hand experience acquainting with principles and applications of chemical engineering by analysing as well as solving problems concerning industries, research etc.

Course outcomes (COs):

CO1	Acquaint students with research methodology.
CO2	Enable students to correlate class mode learning to real industrial as well as research applications
CO3	Understand the literature and previous studies concerning the problem
CO4	Learn technical report writing and enhance the communications skills.

Note: This is prerequisite for completion of the seventh semester along with other subjects. There is no course content fixed. Collection of information, survey of literature and procurement of materials including chemicals are in scope. Objective of the pre-project work is decided, how the project work would be carried out in the eighth semester, same is finalized at this stage. The same project may be continued for the eighth semester. This includes report writing for pre-project work, presentation of the work done followed by viva-voce examination by the examiner (preferably external).

Seminar (CES-414)

Subject: Seminar	Year & Semester: B.Tech. Chemical	Total Course Credit: 2		
(CES-414)	Engineering 4 th year & 7 th Semester	L	Т	Р
		0	0	4
Evolution Policy*	Total Marks	5		
Evaluation Foney	(100)			

*Based on presentations by each of the student before a panel of examiners nominated by H.O.D with due weightage to report submitted.

Course Objective

To nurture skills in writing and communication of technical papers amongst the students so as to become effective engineering professionals.

Course Outcomes (COs)

CO1	Carry out up to date and effective literature study upon a selected topic.
CO2	Report writing and submission under the guidance of a faculty member of the Department.
CO3	Enhancement in communication skills through seminar presentation.

Details of the Syllabus

Each student in batch will be assigned a topic pertaining to Chemical Engineering field. He /she will carry out up-to-date literature survey regarding the topic under guidance of a faculty member. Evaluation will be carried out towards end of semester by a committee of faculty members nominated by the HOD. The evaluation will be based on

i) Report writing (format and originality)

ii) Presentation skill

iii) Understanding and solution of problem/topic assigned.

WAGAR KASHMIR	Process Dyna	amics & Control (C	LI-415)	
Subject: Process Dynamics	Year & Semes	ter: B.Tech Chemical	Total C	Course Cr	edit: 4
& Control	En	gineering	L	Т	Р
(CET-415)	3 rd Year	& 5 th Semester	3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		n
	(30 Marks)	(10 Marks)	(50 Marks)

Process Dynamics & Control (CET-415)

Course Objective:

The aim of this course is to provide the basic understanding of process control; its elements, various order processes and their behaviour towards different inputs/disturbances.

Course Outcomes (COs):

CO1	To understand and introduce the control problem.
CO2	To study the dynamics of a First order system.
CO3	To study the dynamics of a Second order system.
CO4	To study the dynamics of various controllers.

Details of the Syllabus:

Unit-I	Introductory concepts of process control. The chemical process industrial perspective of a typical process control problem, variables of a process. Use of Laplace transformation in control systems.
Unit-II	Feed forward, feedback systems, block diagrams. Linear open loop system transfer function. Derivation of Transfer function and study of transient response of a <i>First Order</i> system towards different inputs.
Unit-III	Study of 1 st order systems in series. Transfer function and Study of transient response and of 2^{nd} order system. Study of parameters of 2^{nd} order under damped response.
Unit-IV	Components of control system. Negative versus positive feedback. Study and behavior of different controllers like Proportional controller, PD Controller, PID Controller.
Unit-V	Derivation of Closed loop transfer functions for physical systems. Transient response of simple control systems for Servo and Regulatory case. Stability criterion, Routh test.

Toyt Books	1.	Coughanowr, D.R., LeBlanc, S., "Process System Analysis and Control", 3rd Edn., McGraw-Hill (2017).	
I EXT DOOKS	2.	Stephanopoulos G. "Chemical Process Control – An Introduction to Theory and Practice", Prentice-Hall of India (2015)	
Reference Books	1.	Carlos A. Smith, Armando B. Corripio "Principles and Practices of Automatic Process Control (latest adition)	
Reference Books	1.	Theory and Practice", Prentice-Hall of India (2015) Carlos A. Smith, Armando B. Corripio "Principles and Practices of Automatic Process Control (latest edition).	

Trocess Economies & Franc Design (CE1-410)					
Subject: Process Economics	Year & Semes	Total Course Credit: 4			
& Plant Design	En	L	Т	Р	
(CET-416)	4 th Year & 7 th Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
Evaluation Foncy	(30 Marks)	(10 Marks)	(60 Marks)		

Process Economics & Plant Design (CET-416)

Course Objective

The objective of the course is to provide basic concepts in engineering economics, plant design, safety features and its importance for chemical engineering.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1	Understand the role of economics in process plant design.
CO2	Exhibit knowledge in design optimization, depreciation and cost estimation.
CO3	Understand the application of various project management techniques.
CO4	Know about the replacement and maintenance analysis.

Details of the Syllabus:

	Time Value of Money: Interest; Compounding and Discounting Factors; Loan
T T 1 / T	Payments; Cash Flow Pattern: Discrete Cash Flow, Continuous Cash Flow. Methods
	for Calculating Profitability: Methods that do not consider the time value of money;
Unit-1	Methods that consider the time value of money; Alternative Investments by Different
	Profitability Methods; Effect of Inflation on Profitability Analysis; Methods of
	Profitability Evaluation for Replacements.
	Depreciation: Straight Line, Declining Balance, Double Declining Balance, sum-of-
	the years-digit, Sinking Fund. Analysis of Cost Estimates: Factors Affecting
Unit II	Investment and Production Costs; Capital Investment; Types of Capital Cost
01111-11	Estimates; Methods for Estimating Capital Investment; Estimation of Revenue;
	Estimation of Total Product Cost; Gross Profit; Net Profit and Cash Flow;
	Contingencies.
	Optimum Design and Design Strategy: Procedure with one, two and more variables;
TT '4 TTT	Optimum Production Rates in Plant Operation; Case Studies; Linear Programming:
01111-111	Simplex Algorithm, Dynamic Programming for Optimization; Application of
	Lagrange Multipliers; Method of Steepest Ascent or Descent.

	Plant Location and Lavout: Eactors for Selection of Plant Location: Site Selection
	That Elocation and Eagout. Tactors for Selection of Than Elocation, Site Selection
	and Preparation; Plant Layout and Installation.
Unit-IV	Scale-Up: Pilot Plants and Models; Principle of Similarity; Dimensional Analysis;
	Empirical and Semi-empirical Model Building; Regime Concept: Static Regime,
	Dynamic Regime; Similarity Criteria and Scale Equations for Important Equipments.

1.	Peters, M. S., Timmerhaus, K. D. and West, R. E., "Plant Design and Economics for
	Chemical Engineers", McGraw Hill, (2002).
2.	Towler, G., Sinnott, R. K., "Chemical Engineering Design: Principles, Practice and
	Economics of Plant and Process Design", Butterworth-Heinemann, (2012).
3.	Couper, J. R., "Process Engineering Economics (Chemical Industries)", CRC Press, (2003).
4.	Zlokarnik, M., "Scale-up in Chemical Engineering", Wiley-VCH, (2006).
5.	Silla H., "Chemical Process Engineering: Design and Economics", Marcel Dekker (2003).

INAGAR KASHMIBU	Diochenni	ai Eigineering (CE	1-41/)		
Subject: Biochemical	Year & Semester: B.Tech. Chemical		Total Course Credit: 4		
Engineering	Engineering 4 th year & 7 th Semester		L	Т	Р
(CET-417)			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
Evaluation Foney	(30 Marks)	(10 Marks)	(60 Marks))

Biochemical Engineering (CET-417)

Course Objective: The objective of the course is to provide basic understanding of biochemistry and microbiology, and their applications to analysis and design of the biological systems with the help of chemical engineering principles.

Course Outcomes (COs)

CO1.	Fundamental understanding of the subject based on various conversion routes.
CO2.	Acquire basic knowledge of microbiology and biochemistry.
CO3.	Exhibit knowledge for analysis of the bioprocess and the unit operations used.
CO4.	Able to analyze the data and their application for bioprocess development.

Details of the Syllabus

	Evolution of modern biochemical processes. Role of biochemical engineer in the
Unit-I	development of modern fermentation processes. Status of biochem. eng. in the
	fermentation industry.
Unit II	Types of Microorganism: Bacteria, fungi, viruses, algae, protozoa. Cell types and
01111-11	structure (Eucaryotic and Procaryotic).
Unit-III	Chemicals of Life: Carbohydrates, fats, proteins, RNA and DNA (structure, uses and
	functions). Understanding Enzymes: Naming and classification, specificity of enzyme
	action, active cites, factors affecting enzyme-catalyzed reactions. Kinetics of enzyme-
	catalysed reactions (Michaelis-Menten equation and Lineweaver Burk Plot).
	Sterilization. Aerobic and anaerobic fermentation. Requirement for growth and media
TT . •4 TT7	formation. Growth cycle phases for batch cultivation. Parameters of growth and
Unit-1 v	analysis of growth data. Growth kinetics. Aeration and agitation. Scale-up. Bio-
	reactors. Bioseparation processes.

Toyt Books	1.	Shijie, L., "Bioprocess Engineering-Kinetics, Sustainability and Reacted Design", 2nd Edn., Elsevier (2017).		
T EXT DOOKS	2.	Shuler, M., Kargi, F., "Bioprocess Engineering, Basic Concep", 2nd Edn., Prentice Hall of India Pvt. Ltd. (2004).		

KASH				
	3.	Bailey, J. E., Ollis, D. F., "Biochemical Engg. Fundamentals", 2nd Edn.,		
		McGraw-Hill Book Company, New York (1985).		
	4.	Paul A. Belter, E.L. Cussler, Wei-Shou Hu, "Bioseparations, Downstream		
		Processing for Biotechnology", 2nd Edn., Wiley-India (1988).		
	1.	Pelczar, M.J., Chan, E.C.S., Krieg, N.R., "Microbiology", 5th Edn.		
		McGraw-Hill Book Company (1986).		
	2.	airley, J.L., Kilgour, G. L., "Essentials of Biological Chemistry", 2nd		
		dn., Van Nestrond Reinhold Publishing Corporation (1966).		
Reference	3.	Palmer, T., "Understanding Enzymes". Ellis Horwood Limited, Halsted		
Books		Press, a division of John Wiley & Sons (1985).		
	4.	Pirt, S.J., "Principles of Microbe and Cell Cultivation", 1stEdn., Blackwell		
		Scientific Publications, 1975		
	5.	McCabe, W., Smith, J. and Harriott, P., "Unit Operations of Chemical		
		Engineering", 7 th Edn.McGraw-Hill (2017).		

11	Trocess Dynamics & Control Lab (CLL-410)				
Subject: Process Dynamics	ect: Process Dynamics Year & Semester: B.Tech Chemical Total Course Credit			edit: 1	
& Control Laboratory	Engineering L		Т	Р	
(CEL-418)	4 th Year & 7 th Semester	0	0	2	
	Total Marks	5			
Evaluation Policy*	(100)				

Process Dynamics & Control Lab (CEL-418)

*Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Objective

The purpose of the course is to impart practical understanding about the dynamic behaviour of the control systems and evaluate the responses with respect to the first and higher order systems.

Outcomes (COs): At the end of the laboratory course, student will be able to:

CO1	Estimate the dynamic behavior of the control systems
CO2	Understand the controllability, speed of response of the control systems.
CO3	Tuning of a PID control via manual and automatic tuning.
CO4	Choose PID modes that effect controllability, speed of response the control systems.

List of Experiments:

1. Temperature Measurement

- a) Study the different types of temperature sensor for characteristics and time constants.
- b) Study the Seebeck effect

2. Temperature control Trainer

- a) Study of on-off controller
- b) Study of open loop response
- c) Study of proportional controller
- d) Study of proportional integral controller

3. Level control Trainer

- a) Study of on-off controller
- b) Study of open loop response
- c) Study of proportional controller
- d) Study of proportional integral controller

4. Multiprocess Control Trainer

a) To study the multi process control trainer for various control experiments simultaneous on a single setup.

5. Pressure control Trainer

- a) Study of on-off controller
- b) Study of open loop response
- c) Study of proportional integral controller
- d) Study of proportional integral controller

6. Two tank interacting liquid level system

e) To study the operation of the interacting system and find its Transfer Function

7. Two tank non interacting liquid level system

a) To study the operation of the non-interacting system and find its Transfer Function

8. First order and second order system

- a) Study of step response of thermometer
- b) Study of step response of mercury manometer

Mass Transfer Lab (CEL-419)

Subject: Mass Transfer	Year & Semester: B. Tech Chemical	Total Course Credit: 2		
Lab	Engineering	L	Т	Р
(CEL-419)	4 th year 7 th Semester	0	0	4
Evaluation Policy*	Total Marks	8		
L'undation i one y	(100)			

*Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Course Objective

The purpose of the course is to impart fundamental understanding with respect to the experimental determination of physical parameters, such as diffusivity, heat and mass transfer coefficients, and their significance in mass transfer operations, and in chemical reactions.

Course outcomes (COs): At the end of the course, student will be able to:

CO1	Acquire knowledge of basic techniques for determining gas and liquid diffusivities.
CO2	Exhibit fundamental understanding with respect to the experimental determination of heat and mass transfer coefficients using wetted wall column and cooling tower respectively
CO3.	Plot drying rate cure using wet solid.
CO4.	Determine gas absorption characteristics using packed tower.

Details of the Experiments:

Expt-I	To determine the mass transfer coefficient in wetted wall column
Event II	To determine effectiveness/efficiency and heat and mass transfer coefficient of
Ехрі-П	cooling tower
Expt-III	To determine the diffusion coefficient of organic vapor in air
Expt-IV	To produce drying rate curve for wet solid being dried with air of fixed temperature
	and humidity
Expt-V	To determine diffusivity of ionic salt in water at different temperature
Expt-VI	To study absorption with chemical reaction in packed bed

1.	Treybal, R.E., "Mass Transfer Operations" 3rd Edn., McGraw-Hill Book Company
	(1980).
2.	McCabe, W.L., Smith, J.C., Harriott, P., "Unit Operations of Chemical Engineering", 7
	thEdn., McGraw-Hill Book Company (2011).
3.	Basmadjian, D., "Mass Transfer and Separation Processes: Principles and Applications",
	CRC Press (2007).

4. Foust, A. S., Wenzel, L. A., Clump, C. W., Maus, L., Andersen, L. B., "Principles of Unit Operations", 2nd Edn., Wiley-India (2008).

Elective-I: Polymer Science and Engineering (CET-020)

Subject: Polymer Science	Year & Semester: B.Tech. Chemical		Total Course Credit: 4		
and Engineering	Engineering		L	Т	Р
(CET-020)	4 th Year &7 th Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
Evaluation Foney	(30 Marks)	(10 Marks)	(6	50 Marks)

Course Objective

To impart knowledge about polymers, polymerization reactions and their kinetics, polymerization processes, and the mathematical understanding with respect to the rheological behavior of polymers.

Course outcomes (COs): At the end of the course, student will be able to:

CO1	Acquire knowledge about polymerization reaction and its kinetics.
CO2	Exhibit understanding with respect to estimation of molecular weight.
CO3	Get knowledge of processes about polymerization.
CO4	Conceive understanding of mathematical expressions reflecting rheological behavior of
	polymers.

Details of the Syllabus

	Chemistry of Polymerisation Reaction: Functionality, polymerization reactions,
Unit-I	polycondensation, addition free radical and chain polymerization, copolymerization,
	block and graft polymerizations, stereo specific polymerization
Unit-II	Polymerisation Kinetics: Kinetics of radial, chain and ionic polymerization and co-
	polymerisation systems.
	Molecular Weight Estimation: Average molecular weight, number average and
Unit-III	weight average, theoretical distributions, methods for the estimation of molecular
	weight.
	Polymerisation Processes: Bulk, solution, emulsion and suspension polymerization.
Unit-IV	Thermoplastic composites, fibre reinforcement fillers, surface treatment, reinforced
	thermoset composites-resins, fibers additives, fabrication methods.
Unit-V	Rheology: Simple rheological equations, simple linear viscoelastic models-Maxwell,
	Voigt, materials response time, temperature dependence of viscosity.

1.	Kumar, A., Gupta, R., "Fundamentals of Polymer Engineering", CRC (2003).
2.	Fried, J., "Fundamentals of Polymer Science", Prentice Hall (2004).
3.	Williams, D.J., "Polymer Science & Engg." Prentice Hall (1971).
4.	Billmayer, Jr., W., "Textbook of Polymer Science" Wiley Tappers (1984).
5.	Rodriguez, F., "Principles of Polymer Systems", 5 th Edn., CRC Press (2003).

AGGAR KASHMIBI LIECLIVE-J	: Manageria	Economics for En	gineers	(151-0	41)
Subject: Managerial	Year & Semester: B. Tech Chemical		Total Course Credit: 3		
Economics for Engineers	Engineering		L	Т	Р
(HST-021)	4 th Year & 7 th Semester		3	0	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		
Evaluation Toney	(30 Marks)	(10 Marks)	(60 Marks)		

Elective-I: Managerial Economics for Engineers (HST-021)

Course Objective

The objective is to familiarize the students with the basic understanding of managerial economics essential for engineers.

Course Outcomes (COs): At the end of the course, students will be able to:

CO1	Exhibit fundamental understanding about business economics.
CO2	Acquire knowledge of demand and supply.
CO3	Get basic concept with respect to production and cost.
CO4	Understand the market structure and monopoly.

Details of the Syllabus

	Introduction to economics & business economics, definition of economics, branches
Unit-I	of economics , meaning of business economics, nature, scope & objective of business
	economics
	Theory of demand & supply, meaning of demand & supply, the demand & supply
	schedule, demand function & supply function, law of demand & supply, individual
Unit II	and market demand & supply, determinants of demand & supply, semand& supply
01111-11	curve, equilibrium with supply & demand curve, types of elasticity of demand &
	supply, calculating elasticity, measurement of elasticity, degree of elasticity, Consumer
	Equilibrium – utility analysis, consumer equilibrium – Indifference curve analysis
	Theory of production and cost, basic concept of production, the production function,
	factors of production, total average & marginal product, short & long run production
Unit-III	function, law of variable proportion, law of return to scale, law of diminishing marginal
	product, expansion path, concept of cost and total, marginal & average cost, short run
	&long run cost, relationship between marginal & average cost
	Market Structure: Meaning & characteristics of perfect competition, price & output
Unit-IV	determination under perfect competitive market, short run & long run equilibrium,
	monopoly, definition of imperfect competition , basic concept of monopoly, features

of monopoly equilibrium under monopoly short & long run, concept of monopolistic competition, features of monopolistic competition

	Paul,Koushil:"ManagerialEconomics", Cengage Learning, New Delhi,
Text Books	Vanita Agarwal: "Managerial Economics", Pearson, New Delhi, 2013.
	Dominick Salvatore: "Managerial Economics", Oxford University Press, New
	Delhi,2010.
	H.L. Ahuja: "Managerial Economics", S. Chand & Company Ltd, New Delhi-55.
	1. Managerial Economics, Geetika, Piyali Ghosh, Purba Roy Choudhury
Reference	2. Principle of Microeconomics, Gregory Mankiw, Cenagage Learning
Books	Publications
	Economics, Samuleson and Nordhaus, TMH Publishers Ltd. New Delhi

шеси	Licenve in fluvuneen Sepurunen i foeesses (eli 1 022)					
Subject: Advanced	Year & Semes	Total Course Credit: 0				
Separation Processes	Engineering		L	Т	Р	
(CET-022)	3 rd Year & 5 th Semester		3	0	0	
Evaluation Policy	Mid-Term Class Assessment		Final-Term			
Evaluation Foncy	(30 Marks)	(10 Marks)	(6	50 Marks)	

Elective-I: Advanced Separation Processes (CET-022)

Course Objective:

The aim of this course is to study the basic concepts of some separation processes usually not covered in other core subjects.

Course Outcomes (COs):

CO1	Introduce various traditional separation processes emphasizing the drying and crystallization
	processes.
CO2	To study the adsorption separation process.
CO3	To study the membrane separation processes.
CO4	To study the Ionic separations and some novel separation processes.

Details of the Syllabus:

	Introduction: Review of conventional concretion processes based on size and surface properties
Unit-I	(Theory and equipment used).
	Classification of Dryers, Dryer Selection and Design.
	Crystallization: Solid-Liquid Phase Equilibrium, Nucleation and Crystal Growth.
	Separations by adsorption techniques
Unit-II	Separation by adsorbents and foam separation.Hydro-cyclones, platecolumns, electro
	static precipitators.
	Membrane separations:
Unit-III	Types of membranes.
	Fundamentals of Dialysis, microfiltration, ultrafiltration, nanofiltration& reverse
	osmosis.
Unit-IV	Ionic separations:
	Electrophoresis, Dielectrophoresis, Electrodialysis.
Unit-V	Introduction to other novel techniques:
Unit-v	Pervaporation, crystallization, Supercritical extraction, Flash Vaporization etc.

KASHMUS		
Text Books	1.	R. E. Treybal, Mass Transfer Operations, 3rd Ed., McGraw Hill, 1983
	2.	Ernest J. Henley, J. D. Seader Separation Process Principles, 2 nd Edition" (2010)
TCAT DOOKS	3	Baker, R.W., <i>Membrane technology and applications</i> , 2nd ed., John Wiley 2004

GAR KASHMING				/	
Subject: Operations	Year & Semester: B. Tech.		Total Course Credit: 3		
Research	Chemical Engineering		L	Т	Р
(MAT-023)	7 th Sem. and 4 th year		3	0	0
Evaluation Policy	Mid-Term Class Assessment Final-Term		1		
Evaluation 1 oney	(30 Marks) (10 Marks)		(60 Marks)		

Elective-I: Operations Research (MAT-023)

Course Objective

This course enables the students to understand mathematical models used in Operations Research and to apply these techniques constructively to make effective business decisions.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1	Identify, formulate, and solve the practical Engineering design problems by applying the
	optimization techniques.
CO2	Determine the schedule for transporting goods from source to destination in a way that
	minimizes the shipping cost.
CO3	Figure out the optimal value of the objective function besides presenting an organized
	strategy for evaluating a feasible region's vertices.
CO4	Determine performance of queuing situation for deciding an appropriate level of service for
	the facility.
	Utilize concepts of game theory to tackle safety management in multi-plant Chemical
	Industrial settings.

Details of the Syllabus:

	Introduction to Operations Research
TT:*4 T	Concepts and utility of OR in Chemical Engineering, Formulation of Linear
	Programming Problems, General Statement of LPP, Assumptions Underlying LP,
Unit-1	Solution of Linear Programming Problems: Graphic Method. Some Special Cases of
	Graphic Method, Convex Set: Extreme points of Convex Set, Convex hull.
	Transportation Problem- Models & Solutions
	Mathematical Model of Transportation Problem, Methods of finding Initial basic
Unit II	feasible solution by NWC Rule, LCM, VAM, Test for optimality by Stepping Stone
Unit-II	and MODI method, Balanced and Unbalanced Transportation Problems, Degeneracy.
	Assignment Model: Mathematical Model of Assignment Problem, The Hungarian
	Method, Simplex Explanation of the Hungarian Method.
	Simplex Techniques: LP Model in Equation Form, Transition From Graphical To
Unit-III	Algebraic Solution, Simplex Algorithm, Artificial starting solution: Big M-Method,
	Two-phase Method, Special cases in Simplex Method: Degeneracy, Alternative
	Optima, Unbounded solution, infeasible solution.
Unit-IV	Engineering Applications:

Queuing Theory: General Structure of Queuing System, Operating Characteristics ofQueuing System, Queuing Models, Role of Poisson and Exponential Distributions,Pure Birth and Death Models, Generalized Poisson Queuing Model, SpecializedPoisson Queues: Single, Multiple and Machine Serving Models.Game Theory: Introduction to Game theory, Two-person, zero-sum games.Dominance.

Recommended	 Linear Programming by G. Hadlay, Addison Wasley. Operations Research – An Introductory by Hamidi A. Taha, Macmillan. Operations Research – Methods and problems by M. Sasieni, A.
Books:	Yaspam and L. Friedman, John Wily and Sons Inc. London.
References:	 Linear Programming by S.I. Gass, Mc-Graw Hill. Introduction to Operations Research. John Wiley and Sons, New York. Operations Research: An Introduction. Prentice Hall of India Private Limited, New Delhi Wagner.

Elective-1: Frocess Heat Integration (CE1-024)					
Subject: Process Heat	Year & Semester: B.Tech Chemical Total Course Cred			redit: 3	
Integration	Engineering 4 th	^h Year & 7 th Semester	L	Т	Р
(CET-024)			3	0	0
Evoluation Policy	Mid-Term	Class Assessment	F	inal-Tern	1
Evaluation Foncy	(30 Marks)	(10 Marks)	(60 Marks))

Elective-I: Process Heat Integration (CET-024)

Course Objective: Optimizing industrial processes by identifying the heat recovery potential and the optimal integration of energy conversion systems.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1.	Ability to understand the fundamentals of process integration
CO2.	Ability to determine the minimum heating and cooling requirements
CO3.	Ability to design minimum energy heat exchanger networks
CO4.	Ability to understand the composite and grand composite curves

Details of the Syllabus:

TT *4 T	Process Integration and its Building Blocks: Definition of Process Integration (PI),
Unit-1	School of thoughts, Areas of application and Techniques available for PI, Onion diagram.
TI	Pinch Technology – An Overview: Introduction, Basic concept, How it is different than
01111-11	energy auditing, Role of thermodynamic laws, Problem addressed by Pinch technology.
	Pinch Technology: Data extraction, Targeting, Designing, Optimization-Supertargteing.
TI	Grid diagram, Composite curve, Problem table algorithm, Grand composite curve.
Unit-III	Targeting of Heat Exchanger Network (HEN): Energy targeting, Area targeting,
	Number of units targeting, Shell targeting, cost targeting.
	Designing of HEN: Pinch design methods, Heuristic rules, Stream splitting, Design of
Unit-IV	maximum energy recovery (MER), Design of multiple utilities and pinches, Design for
	threshold problem, Loops and Paths.
	Heat Integration of Equipments: Heat engine, Heat pump, Distillation column, Reactor,
Unit-V	Evaporator, Drier, Refrigeration systems.
	Heat and Power Integration: Co-generation, Steam turbine, Gas turbine.

	1.	Kemp I. C., "Pinch Analysis and Process Integration: A user Guide on
		Process Integration for the Efficient Use of Energy", Butterworth-Heinemann.
Text and		(2007)
Reference	2.	Smith R.,, "Chemical Process Design and Integration", 2nd Ed., Wiley.
Books		(2005)
	3.	Shenoy U. V., "Heat Exchanger Network Synthesis", Gulf Publishing
		Company. (1995)

4. Halwagi, M. M., "Process Integration", 7th Ed., Academic Press. (2006)

Elective-II. Cement Technology (CE1-023)						
Subject: Cement	Year & Semester: B. Tech.		Total Course Credit: 3			
Technology	Chemical Engineering		L	Т	Р	
(CET-025)	7 th Sem. and 4 th year		3	0	0	
Evaluation Policy	Mid-Term	Iid-TermClass AssessmentFinal-Term		1		
	(30 Marks) (10 Marks)		(60 Marks)			

Elective-II: Cement Technology (CET-025)

Course Objective: To learn the fundamental concepts of the behavioral aspects of various materials in cement making and special concretes.

Course Outcomes (COs):

CO1	Describe the materials used to make cement and technology involved in manufacturing the
	cement
CO2	Identify, describe and carry out tests relevant to the use of cement and concrete on site
CO3	Explain how good cement is produced

Details of the Syllabus:

	Introduction to Cement and cement manufacturing process:
	Cement and its importance in construction, History of cement and Cement
Unit-I	manufacturing process, flow sheet & material composition of cement, various unit
	operation of cement manufacture, the present status and future of cement industry in
	India.
	Types of Cement and their brief description and application. Calcareous Raw
	Materials: Source of Lime, Limestone, Chalk, Marl, Industrial waste, geological
	distribution of limestone deposits in India, Argillaceous Raw Materials: Source of
Unit-II	Silica, Alumina, Iron Oxide, Shale and effect of coal ash and additives use as corrective
	materials, Fly ash , Slag, lime sludge as cement raw materials. Reactivity of Raw
	materials, Proportioning of Raw materials and preparation of kiln feed.
	Pyroprocessing and clinker formation. Characterization of Portland Cement Clinker.,
Unit-III	Mineralizer, Role of additive in clinker formation, various mineralizer and fluxes, their
	role in manufacture of clinker. Properties of Cement Paste.
Unit IV	Cement milling, Finess of cement, Setting times, workability, Compressive strength,
	Heat of hydration.
Unit-V	Environmental impact of Cement manufacture. Air and Water emissions,

	1.	Properties of concrete / A.M.Neville / Pearson 5th edition.
Text Books	2.	Concrete Technology,(4th edition) by Gambhir, M.L., Tata McGraw-Hill, New Delhi, 2009.
	3.	Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology- for the 21 st Century.East-West Press (1997).

Elective-II: Computational Fluid Dynamics (CET-026)

Subject: Computational	Year & Semester: B.Tech Chemical		Total Course Credit: 3			
Fluid Dynamics	Engineering		L	Т	Р	
(CET-026)	4 th Year & 7 th Semester		3	0	0	
Evaluation Boliev	Mid-Term Class Assessment		Final-Term			
Evaluation 1 oncy	(30 Marks) (10 Marks)) (60 Marks))	

Course Objective: To learn the fundamental concepts of computational fluid dynamics along with basic numerical techniques and discretization techniques using Finite difference method.

Course outcomes (COs):

CO1.	Fundamental understanding and interpretation of governing equations involved in heat and
	fluid flow problems
CO2.	Understanding of basic numerical technique's involved
CO3.	Understanding of Grid formation
CO4.	Understanding discretization technique's using FDM

Details of the Syllabus

	Basic Concepts of Fluid Flow: Philosophy of computational fluid dynamics (CFD),
Unit-I	review of equations governing fluid flow and heat transfer, simplified flow models
	such as incompressible, inviscid, potential and creeping flow.
Unit II	Overview of numerical methods: understanding of numerical methods involved like
Unit-11	Gauss-Seidel, Rungekutta and Crank Nicolson method.
Unit III	Grid Generation: Structured and unstructured grids, choice of suitable grid, grid
Unit-III	transformation of equations, Grid Independence test.
	Finite Difference Method (FDM): Discretization of ODE and PDE, approximation
Unit-IV	for first, second and mixed derivatives, implementation of boundary conditions,
	discretization errors, applications to the engineering problems.

KASHNILL	
Text and Reference Books	 Ghosh, P.S., "Computer Simulation of Flow and Heat Transfer", Tata McGraw-Hill (1998). Patankar, S.V., "Numerical Heat Transfer and Fluid Flow", Taylor and Francis (2004). Fletcher, C.A.J., "Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques", Springer-Verlag (1998). Fletcher, C.A.J., "Computational Techniques for Fluid Dynamics, Vol. 2: Specific Techniques for Different Flow Categories", Springer-Verlag (1998). Anderson, J.D., "Computational Fluid Dynamics", McGraw Hill (1995).

Elective-II: Multi-component Distillation (CET-027)

Subject: Multi-component	Year & Semester: B.Tech Chemical		Total Course Credit: 3			
Distillation	Engineering		L	Т	Р	
(CET-027)	4 th Year & 7 th Semester		3	0	0	
Evaluation Policy	Mid-Term Class Assessment Final-Term		1			
Evaluation Toney	(30 Marks) (10 Marks)		(60 Marks)			

Course Objective: The objective of the course is to understand the principles and operation of various distillation processes for Multi-component distillation systems.

Course outcomes (COs): At the end of the course, student will be able to:

CO1:VLE calculations like determination bubble point and dew point for multi-component systems using K-values and relative volatility.

CO2: They learn about various types of MCD column.

CO3:Students able to design multi-component distillation unit.

Details of the Syllabus:

Unit-I	Basic concepts of phase equilibria. Distribution co-efficient. Ideal and non-ideal
	systems. Design variables.
Unit-II	Equilibrium flash separation. Binary distillation, x-y diagrams. Enthalpyconcentration
	diagrams. Design calculations.
	Multi-component distillation. Design calculations. Theoretical analysis. Azeotropic
Unit-III	and extractive distillation. Distillation equipment. Plate and packed towers. Design
	procedures.

	1. Holland, C. D., "Fundamentals of Multi-component Distillation",
	McGraw-Hill (1981).
Recommended Books:	2.
	Sherwood, T.K., Pigford, R.L., Wilkes, C.R., "MassTransfer", McGraw-
	<i>Hill</i> (1975).
	3. Buford D. Smith, B.D., Brinkley, W. K., " General Short- cut
	Equation for Equilibrium stage Processes", AIChE Journal: 6
	<u>(3)</u> ,446–450 (1960).
	1. Sawistowski, H., Smith, W. "Mass Transfer Process
	calculations", Eng. News: 41, 68 (1963).
References:	2. Treybal, R. E., "Mass-Transfer Operations", 3 rd Edn., McGraw-Hill
	(1981).

Elective-II: Optimization Techniques in Chemical Engineering (CET-028)						
Subject: Optimization	Year & Semes	Total Course Credit: 3				
Techniques in Chemical	En	L	Т	Р		
Engineering(CET-028)	4 th Year	3	0	0		
Evaluation Policy	Mid-Term	Mid-Term Class Assessment Final-Term		1		
	(30 Marks) (10 Marks)		(60 Marks)			

Course Objective: The objective of the course is to understand the detailed theory and application of optimization in chemical engineering and related fields.

Course outcomes (COs): At the end of the course, student will be able to:

CO1	understand the objective functions and conditions for optimization		
CO2	Application of optimization to different chemical engineering problems, problem		
	formulation procedures for optimization		
CO3	Use of various methods for both constrained and unconstrained optimization problems.		

Details of the Syllabus:

	Basic concepts of systems analysis and optimization, classical optimization
Unit-I	techniques, linear programming, two phase simple method and duality in linear
	programming,
IIn:4 II	Transportation models, assignment models, non-linear programming, method of
01111-11	Lagrange multipliers, Wolf's method for solving N.L.P.P,
	Formulation of optimization problems in Chemical and allied Engineering.
Unit-III	Introduction to dynamic programming, application to chemical engineering.

	1. Rangaiah, G.P., "Multi-Objective Optimization: Techniques and
	Applications in Chemical", World Scientific Publishing Company
Recommended Books:	Pvt. Ltd. (2009).
	2. Deb, K., "Optimization for Engineering Design: Algorithms and
	<i>Examples</i> ", 2 nd Edn.,PHI (2012).
	3. Rao., S.S., " Engineering Optimization: Theory and Practice",
	John Wiley & Sons Inc. (2009).
	1. Vlide, I., "Optimum Seeking Methods", Prentice-Hall Inc. (1964).
	2. Gass, S.I., "Linear Programming: Methods and Applications",
References:	McGraw-Hill (2003).
iterer encest	3. Bazaraa, M. S., ,Sherali, H. D., Shetty, C.M., "Non-Linear
	<i>Programming: Theory and Algorithms</i> ", John Wiley & Sons (2013).

Elective-II: Heterogeneous Catalysis and Catalytic Processes (CET-029)

Subject: Heterogeneous	Year & Semester: B.Tech. Chemical		Total Course Credit: 4		
Catalysis and Catalytic	Engineering		L	Т	Р
Processes	4 th Year &7 th Semester		3	1	0
(CET-029)					
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		
Evaluation Foncy	(30 Marks)	(10 Marks)	(6	50 Marks))

Course Objective

To gain the knowledge of catalyst characteristics, mechanism of catalytic reactions, and design of catalytic reactors.

Course outcomes (COs): At the end of the course, student will be able to:

CO1	develop various catalytic reaction mechanisms.
CO2	characterize a catalyst.
CO3	assess the effects of external heat and mass transfer effects in heterogeneous catalysis.
CO4	calculate the effectiveness of a porous catalyst.
CO5	design different types of reactors for catalytic reactions.

Details of the Syllabus

UNIT-01	Catalysis: Homogeneous and heterogeneous catalysts, classification of catalytic			
	reactions and catalysts, commercial chemical catalysts, steps in catalytic			
	reactions.			
UNIT-02	Preparation and Properties of Catalysts: Methods of catalyst preparation,			
	physical properties of catalyst - surface area, pore volume, pore size distribution,			
	solid density, particle density, bulk density, void volume, catalyst promoters and			
	inhibitors, catalyst accelerators and poisons.			
UNIT-03	Adsorption and Catalytic Reactions: Adsorption isotherms, surface reaction,			
	single site and dual site mechanism, desorption, catalyst deactivation, pore			
	structure and surface area estimation and their significance.			
UNIT-04	External Transport Processes: Fluid particle mass and heat transfer, Mass			
	transfer-limited reactions in packed beds, Non-isothermal behavior of packed-bed			
	reactors, Staged packed bed reactors for approaching optimum temperature			

WAGAR KASH	MILEO			
	progression, Stable operating conditions in reactors and hot spot formation, Effect			
	of external transport processes on selectivity under non-isothermal conditions.			
UNIT	-05	Diffusion and Reaction in Porous Catalysts: Intra-pellet mass transfer and		
		diffusion in cylindrical and spherical porous catalyst particles, Thiele modulus,		
		Diffusion controlled and surface reaction controlled kinetics, Effectiveness factor		
		for catalysts, Effects of heat transfer - temperature gradients across fluid-solid		
	film and across catalyst pellet, Fluidized bed reactors, Three phase reactors -			
	slurry and trickle bed reactors.			
UNIT-06 Generalized Design: Design of catalytic reactors under adiabatic and r				
		adiabatic conditions, Design of industrial fixed-bed, fluidized-bed and slurry		
	reactors.			
Books Recommended				
1.	1. Smith, J.M., "Chemical Engineering Kinetics", McGraw-Hill (1981).			
2. Fogler, H.S., "Elements of Chemical Reaction Engineering", Prentice-Hall India (2009				
3. Denbigh, K.G., and Turner, J.C.R., "Chemical Reactor Theory: An Introduction				
	Cambridge University Press (1984).			

4. Carberry, J.J., "Chemical and Catalytic Reaction Engineering", McGraw-Hill, (2001).

5. Levenspiel, O., "Chemical Reaction Engineering", John Wiley (2006).

8th Semester

Project (CEP-464)

Subject: Project	Year & Semester: B. Tech Chemical	Total Course Credit: 8		
(CEP-464)	Engineering	L	Т	Р
	4 th Year & 8 th Semester	0	0	16
Evaluation Doliay*	Total Marks	S		
Evaluation Foncy	(100)			

*Based on presentations by each of the student before a panel of examiners nominated by H.O.D with due weightage to Supervisor evaluation and final report submitted.

Course Objective

This course enables the students to get first-hand experience acquainting with principles and applications of chemical engineering by analyzing as well as solving problems concerning industries, research etc.

CO1	Acquaint students with research methodology.	
CO2	Enable students to correlate class mode learning to real industrial as well as research	
	applications	
CO3	Understand the literature and previous studies concerning the problem	
CO4	Facilitate the learning of proper report writing and comprehensive communications skills.	

Course outcomes (COs): At the end of the course, student will be able to:

Note: There is no course content fixed. Based on collection of information, survey of literature and procurement of materials including chemicals during the pre-project work, the final semester project work is carried out in the eighth semester and is finalized by the end of the semester. The final evaluation is based on quality of report, presentation and viva voice examination by the examiner (preferably external).

Č	NATIO	NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR				
NE A	Subject: Bioresource Technology	Year & Semes	ster: B.Tech. Chemical	Total C	Course Cr	edit: 3
(Tery	(CET-465)	Engineering 4	4 th year &8 th Semester	L	Т	Р
AN ISA	Bayer Barton South South			3	0	0
	Evaluation Policy	Mid-Term	Class Assessment	Final-Term		
	Evaluation Foney	(30 Marks)	(10 Marks)	()	60 Marks)

Bioresource Technology (CET-465)

Course Objective:

The aim of this course is to provide fundamental knowledge for bioenergy generation and product formation with the help of various conversion processes adequate to diverse bioresource characteristics.

Course Outcomes (COs):

CO1	Fundamental understanding of the bioresourcesand its applications for attainment of social
	objectives (energy, environment, product, sustainability).
CO2	Acquire knowledge with respect to the properties of the bioresources and the conversion
	technologies.
CO3	Exhibiting knowledge of the systems used for bioresource technology.
CO4	Understanding about analysis of data and their applications in design of the systems and
	development of the bioprocess.

Details of the Syllabus:

Unit-I	Bioresources- natural and anthropogenic; importance of bio-resources and their utilization. Natural bio-resources: agricultural, forestry and aquatic biomass. Biomass availability, production and food security, non- edible biomass characteristics. Anthropogenic bio-resources: Organic wastes-domestic and industrial; characteristics of municipal sewage / sludge and industrial sludges.			
Unit-II	 Conversion processes : biochemical, thermo-chemical and physico-chemical conversion processes. Biochemical processes : Microbial anaerobic and aerobic processes, enzymatic processes ; fermentation for alcohols and acids ; penicillin and other therapeutic products. Production of single cell protein (SCP) ; bio-pulping, biogasification. Thermo-chemical processes: pyrolysis (coke and pyro-oils), oxidation-combustion, gasification (downdraft, updraft and fixed bed gasification, fluidized bed and entrained bed gasification). Various methods of manufacture of activated carbons 			
Unit-III	Physico-chemical processes: Pretreatment, steam/acid/alkali hydrolysis, effect of temperature onhydrolysis.			
Unit-IV	Special topics: biofuels, biomaterials, specialty chemicals (gylcol, acetic acid and downstreamchemicals), anhydrous alcohols-ethanol and butanol; biodiesel, bio-aviation turbine fuel (BATF).			

	1.	Shuler, M., Kargi, F., "Bioprocess Engineering, Basic Concep",
		2 nd Edn.,Prentice Hall of India Pvt. Ltd. (2004).
	2.	Chakraverty, A., "Biotechnology and other Alternative Technologies", Oxford
Text Books		and IBH Publishing Co. Pvt. Ltd. (1995).
	3.	Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology- for the
		21stCentury.East-West Press (1997).
	4.	Austin, G.T., "Shreve's Chemical Process Industries", McGraw-Hill Book
		Company (1984).
	1.	Pandey, A., "Concise Encyclopaedia of Bioresource Technology", CRC Press
		(2004).
	2.	Glaucia, M.S. et al. (eds), "Bioenergy &Sustainability: Bridging the Gaps",
		SCOPE 72, Universidade de São Paulo, Brazil (2015).
D	3.	Eckert & Trihn (eds), "Biotechnology for Biofuel Production and Optimization",
Reference		Elsevier (2016).
DOOKS	4.	Cock, "Encyclopedia of Life Support Systems (EOLSS)", UNESCO, (2011)
	5.	S. Van Loo, "Handbook of Biomass Combustionand Co-Firing", Twente
		University Press, 2002.
	6.	Wang, W.C. et al., "Review of Biojet FuelConversion Technologies", National
		Renewable Energy Laboratory (USDE), Technical Report, 2016.

Č	MATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR					
NE A	Bubject: Biochemical	Year & Semester: B.Tech. Chemical	Total C	Course Cr	redit: 2	
2) (In	Engineering Lab.	Engineering 4 th year &8 th Semester	L	Т	Р	
S.R.	WAGAR MASHMURI (CEL-466)		0	0	4	
	Evaluation Policy*	Total Marks	Total Marks			
	Evaluation Toney	(100)				

Biochemical Engineering Lab (CEL-466)

Course Objective:

The purpose is to impart fundamental knowledge with respect to the equipments and techniques essential for carrying out fermentation for generation and analysis of the data and finally development of the bioprocess.

Course Outcomes (COs):

CO1	Acquire basic knowledge of various equipments used in biochemical engineering lab.
CO2	Fundamental understanding of techniques with respect to sterilization, preparation of solid
	and liquid media, culture growth and preservation.
CO3	Basic understanding of estimation techniques for biomass, substrate and product.
CO4	Generation and analysis of data for design and development of bioprocess.

Details of the Syllabus:

Unit-I	Study of various equipments used in biochemical engineering lab.			
Unit-II	Study of sterilization. Preparation of culture media, agar slants and agar plates, growth and preservation of microbial cultures.			
Unit-III	Study of aeration and agitation, determination of volumetric mass transfer coefficient $(k_l a)$ of oxygen. Methods for estimation of biomass, substrate and product concentrations.			
Unit-IV	Kinetic study of fermentation. Study of bioseparation.			

List of Experiments

S.No.	Experiments		
1.	Study the fundamentals of bioreactor, shaking incubator, spectrophotometer, HPLC, laminar flow chamber, autoclave, centrifuge. w.r.t. its construction, function (application) and principle of operation.		
2.	To prepare basic solid media as agar slants and agar plates.		
3.	Study of sterilization by application of a steam autoclave.		
4.	Quantitative estimation of glucose concentration by DNS colorimetric method or by phenol-sulfuric acid method.		

NAGAR KASHMILL	
5.	Estimation of cell concentration.
6.	Determination of volumetric mass-transfer co-efficient of O ₂ by static method.
7.	Determination of volumetric mass-transfer co-efficient of O ₂ by dynamicmethod.
8.	To study the kinetics of alcohol (ethyl alcohol) fermentation by using baker's yeast (<i>Saccharomyces cerevisae</i>) in a batch bioreactor.

References

1.	Shuler, M., Kargi, F., "Bioprocess Engineering, Basic Concep", 2 nd Edn., Prentice
	Hall of India Pvt. Ltd. (2004).
2.	Bhattacharya, R.N., "Experiments with Microorganisms", Emkay Publications,
	Delhi (1986).
3.	Aneja, K.R., "Experiments in Microbiology, Plant Pathology, Tissue Culture and
	Mushroom Cultivation", VishwaPrakashan (New Age International (P) Limited),
	New Delhi (1996).
4.	Experiments Handouts (Departmental)

Modelinger Sinduction of Chemical Process Systems (Code: Chi 407)			
Total Course Credit: 3			
1	Р		
)	0		
Final-Term			
[arks)		
	se Ci) -Tern Iarks		

Modelling& Simulation of Chemical Process Systems (Code: CET-467)

Course Objective: To provide adequate information to the modelling of chemical engineering process systems and also familiarize the numerical simulation of model equations.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1.	Identify the terms involved in inventory rate equation of mass, energy and momentum
CO2.	Recall the basic concepts involved in modeling and simulation
CO3.	Apply conservation of mass, momentum and energy equations to engineering problems
CO4.	Develop model equations for chemical engineering systems
CO5	Solve the model equations and chemical engineering problems using numerical
	techniques

Details of the Syllabus:

	Introduction : Introduction to process modeling and simulation, terminology of Process
	modeling and simulation, Steps for building a mathematical model, Inventory rate
Unit-I	equation of the conserved quantities, Mathematical formulation of the conserved
	quantities (Mass, Momentum and Energy equations), Molecular and Convective
	Transport.
	Rate of generation term and steady state macroscopic balance: Rate of Generation
TT	in Momentum, Energy and Mass Transfer, Steady-State Macroscopic Balances,
Unit-II	comparison of microscopic and macroscopic balances, steady state macroscopic
	balance problem solving using least square method.
	Unsteady state macroscopic balance: Building blocks of unsteady state macroscopic
	balance, Pseudo-Steady-State-Approximation, Conservation of Chemical Species,
Unit-III	Momentum, Energy and total Mass, Unsteady state Energy balance around a
	Continuous Stirred Tank, unsteady state macroscopic balance problem solving using
	Euler's method.
	Modeling of chemical process systems: Models, need of models and their
TT	classification, models based on transport phenomena principles, alternate classification
Unit-1V	of models, Continuous Stirred Tank Reactor (CSTR) with constant holdup, Continuous
	Stirred Tank Reactor (CSTR) with Variable holdup, Two Heated Tank, Gas phase

1	KAST	
		Pressurized CSTR, Multi-Component Flash Drum, Gravity Flow Tank, Non-isothermal
		CSTR, Ideal Binary Distillation Column, Batch reactor.
	TI	Process simulation: Simulation of chemical process equipment, program development
	Unit-V	and numerical solution, Case Studies.

Books Recommended

	1.	Luyben, W. L., "Process Modeling, Simulation and Control for Chemical
		Engineers". McGraw Hill (1990).
Toxt Books	2.	NayefGhasem, "Modeling and Simulation of Chemical Process Systems",
I CAL DUUKS		CRC Press, Taylor & Francis Group (2019).
	3.	Ismail Tosun, Modeling in Transport Phenomena – A Conceptual Approach,
		2 nd Edn, Elsevier Publications 2007.
	1.	Davis M.E., Numerical Methods and Modeling for Chemical Engineers,
		Wiley, New York, 1984
Reference	2.	Ashok Kumar Verma, Process Modelling and Simulation in Chemical,
Doolya		Biochemical and Environmental Engineering, CRC Press, Taylor & Francis
DOOKS		Group (2015).
	3.	Amiya K Jana, "Chemical Process Modelling and Computer Simulation", 2 nd
		Edition, PHI Learning Private Limited, (2011).

Industrial Pollution Abatement (CET-468)

Subject: Industrial Pollution	Year & Sem	Total Course Credit: 3			
Abatement (CET-468)	Chemical	L	Т	Р	
	4 th Year &	8 th Semester	3	0	0
Evaluation Policy	Mid-Term (30 Marks)	Continuous Assessment (10 Marks)	Final-Term (60 Marks)		1)

Course Objectives:

- 1. To understand the significance of industrial pollution abatement
- 2. To understand the sources, effects and prevention of pollution and recycling of water and waste
- 3. To design and understand the working of pollution control equipment

Course outcomes (COs): Upon successful completion of the course, students will be able to:

CO1.	Understand the sources, effects and prevention of pollution and recycling of water and
	waste
CO2.	Illustrate the methods to measure the industrial pollution
CO3.	Understand the principles of industrial pollution control and design air pollution control
	systems
CO4.	Apply the basic chemical engineering concepts in design of industrial wastewater treatment
	systems

Details of the Syllabus:

	Introduction: Environment and environmental pollution from chemical process
Unit-I	industries, characterization of emission and effluents, environmental Laws and rules,
	standards for ambient air, noise emission and effluents
	Pollution Prevention: Process modification, alternative raw material, recovery of
	by/co products from industrial emissions/effluents, recycle and reuse of waste, energy
Unit-II	recovery and waste utilization. Material and energy balance for pollution minimization.
	Water use minimization, Fugitive emission/effluents and leakages and their control-
	housekeeping and maintenance
	Air Pollution Control: Particulate emission control by mechanical separation and
Unit-III	electrostatic precipitation, wet gas scrubbing, gaseous emission control by absorption
	and adsorption; Design of cyclones, ESP, fabric filters and absorbers.
	Water Pollution Control: Physical treatment, pre-treatment, solids removal by setting
Unit IV	and sedimentation, filtration centrifugation, coagulation and flocculation.
UIIIt-1 V	Biological Treatment: Anaerobic and aerobic treatment biochemical kinetics, trickling
	filter, activated sludge and lagoons, aeration systems, sludge separation and drying
Unit V	Solids Disposal: Solids waste disposal – composting, landfill, briquetting / gasification
Unit-V	and incineration

Books Recommended

KASHMICO	AGAR KASHNICO						
		1.	Tchobanoglous, G., Burton, F. L., Stensel, H.D., "Waste Water Engineering:				
			Treatment and Reuse", Tata McGraw Hill, (2003)				
Text Boo	ks 🛛	2.	Vallero, D., "Fundamentals of Air Pollution", Academic Press, (2007)				
	,	3.	Eckenfelder W. W., "Industrial Water Pollution Control", McGraw Hill,				
			(1999)				
		1.	Kreith F. and Tchobanoglous G., "Handbook of Solid Waste Management",				
Reference	ce		Mc Graw Hill, (2002)				
Books 2. Pichtel, J., "Waste Management Practices: Municipal, Hazardous and			Pichtel, J., "Waste Management Practices: Municipal, Hazardous and				
Industrial", CRC (2005)							

Elective –III (CET-069-072) Elective- IV (CET-073--076)

The two of the electives will be online courses, each having 03 no. of credits (Total 06 credits). Courses will be managed by the faculty mentor from the Department (to be nominated). The courses will be floated at the time of beginning of semester preferably from SWAYAM .The student will have to opt for any two of such courses of his/her choice.

Department of Civil Engineering

BTECH. 5th- SEMESTER (Civil)

Course No.	Course title	L	Т	Р	С
CVT301	Design of Structures-I	2	2	0	4
CVL301	Concrete Laboratory	0	0	2	1
CVT302	Highway Engineering and PMS	3	1	0	4
CVL302	Highway Laboratory	0	0	2	1
CVT303	Geotechnical Engineering-I	2	2	0	4
CVL303	Geotechnical Laboratory-I	0	0	2	1
CVT304	Water Resources Engineering	2	2	0	4
CVT305	Structural Analysis-III	2	1	0	3
	Elective Courses				
	Architecture and Town Planning				
CVT307	Concrete Technology	2	1	0	3
	Engineering Seismology				
Total Lecture I	Hours and Credits	28			25

B.TECH. 6th SEMESTER (Civil)

Course No.	Course title	L	Т	Р	С
CVT350	Design of Structures-II	2	2	0	4
CVL350	Structural Engineering LabII	0	0	2	1
CVT351	Traffic Engineering and Road Facilities	2	2	0	4
CVL351	Traffic Engineering Laboratory	0	0	2	1
CVT352	Geotechnical Engineering-II	2	2	0	4
CVL352	Geotechnical Laboratory-II	0	0	2	1
CVT353	Irrigation and Hydraulic Structures	2	1	0	3
CVT1453	Industrial Training & Presentation	0	0	0	1
	Elective Courses (Departmental Elective / Swayam Course)				
CVT254	Water Shed Management				
CV1554	Numerical Methods in Civil Engineering	2	1	0	3
MAT050	Operations Research				
	Computer Aided Design				
CVT355	Disaster Management	2 1	1	0	3
	Applied Hydrology				
Total Lecture Hou	urs and Credits	27			25

B.TECH. 7th SEMESTER (Civil)

Course No.	Course title	L	Т	Р	С
CVT401	Environmental Engineering-I	2	1	0	3
CVL401	Water Quality Lab	0	0	2	1
CVT402	Structural Dynamics	3	1	0	4
CVT403	Construction Technology & Management	2	1	0	3
CVT404	Design of Structures-III	2	2	0	4
CVT405	Quantity Surveying and Cost Evaluation	3	1	0	4
CVS405	Seminar	0	2	0	1
CVP406	Project Pre-Work 0		0	4	2
Elective course	es (Departmental Elective/ Swayam Courses)				
	Railway and Airport Engineering				
CVT406	Fluvial Hydraulics	2	1	0	3
	Advanced Geotechnical Engineering				
Total Lecture H	Iours and Credits	28			25

<u>B TECH. 8th SEMESTER (Civil):</u>

Course No.	Course title	L	Т	Р	С
CVT450	Hydropower Engineering	2	2	0	4
CVT451	Bridge Design	3	1	0	4
CVP452	Project*	0	5	10	10
ELECTIVE C	ELECTIVE COURSES (Departmental Elective/Swayam Courses)				
	Rock Mechanics and Tunneling Technology				
CVT454	Transportation Planning and Economics	2	1	0	3
	Advanced Structural Analysis				
	Ground Improvement Techniques				
CVT455	Earthquake Resistant Design	3	1	0	4
	Environmental Engineering-II				
Total Lecture Hours and Credits30		25			

*The evaluation will be done as per statutes.

Course Title: DESIGN OF STRUCTURES-I (Code: CVT301)	Syllabus for B.Tech. 5 th Semester (Civil Engineering)	Total Course Credit:			
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	End-Term Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	2	0

Course Objective: The objective is to equip students with basic understanding of the behavior of the reinforced concrete structures and to develop the skill to analyze and design basic concrete members.

Course Outcomes:

CO1: To develop basic understanding of reinforced concrete as a construction material.

CO2: To develop understanding of various design philosophies and their differences.

CO3: To understand behavior of RCC beams.

CO4: To understand behavior of RCC members under flexural shear.

CO5: To understand behavior of compression members.

CO6: To understand behavior of two-way slabs using moment coefficients.

S. No.	Course Contents	
01.	General material properties	03
	Properties of Concrete & Reinforcing Steel, Characteristic Strength, Stress Strain Curves, Shrinkage & Creep Phenomenon.	
02.	Basic design Philosophies	
	Working Stress, Ultimate Load & Limit State Method of Design. Analysis & Design of Structures In Flexure/Torsion By Limit State Method.	
03.	Design & Analysis of Flexural members	18
	Design of singly and doubly reinforced sections: rectangular sections & T sections; codal provisions. Behavior of beam in shear & bond, design for shear, anchorage & slipping of reinforcement. Detailing of reinforcement as per codal provisions with reference to IS 456-2000. Serviceability limit state of deflection and cracking. Calculation of deflection, codal requirements.	
04.	Design & analysis of columns	05
	Design of columns: short and long column, eccentrically loaded columns using interaction curves	
05.	Design & Analysis of solid slabs	07
	Design of one-way and two-way slabs with and without corners held down. Introduction to design by moment coefficients. Introduction to Masonry retaining walls	

- 1. Mosley ,W.H Hulse ,R and Bungey."Reinforced concrete design to EuroCode 2",7th Edition,Palgrave Macmillan ,London,2012
- 2. Wight, J.K," Reinforced Concrete: Mechanics & Design", 7th Edition, Pearson/Prentice Hall, 2015.
- 3. S Unnikrishna Pillai,Devdas Menon,"Reinforced Concrete Design" 3rd Edition, Mcgraw Hill Publication.
- 4. Kong & Evans, Design of reinforced concrete & Pre-stressed concrete Structures, CRC Press Published, 1987

Course Title: Concrete Lab. (Code: CVL 301)	Syllabus for B.Tech. 5th Semester (Civil Engineering)	Total Course Credit: 1		1
Internal Examination	External Examination	L T P		Р
50 Marks	50 Marks	0	0	2

- **CO1** To handle concrete and its constituents in laboratory.
- CO2 To design experiments related to testing various aspects of concrete and its constituents.
- **CO3** To test concrete and concrete structures for various characteristics/properties and compare the same with those given as per IS codes.
- CO4 To understand how concrete behaves in actual buildings.

List of Experiments / Objective

A) CEMENT: Standard Consistency and setting times

To determine: i) Standard consistency ii) Initial setting time iii) Final setting time in conformity with IS code 4031.

Tensile and Compressive strength

To determine the tensile strength and compressive strength of Cement in accordance with IS code - 403 1.

B) AGGREGATES:

Particle size distribution and fineness modulus

To determine the particle size distribution and fineness modulus of coarse and fine aggregates (IS - 460). All the relevant tests for aggregates as per I.S. codes.

C) CONCRETE:

Workability test

- i) To determine the consistency of fresh concrete by slump test.
- ii) To determine the workability of freshly mixed concrete by the compaction factor test

Compressive strength of Cement Concrete (Nominal mix)

To determine the cube strength of concrete for different mixes and different W/C ratios.

Flexural Strength of Concrete

To determine the flexural strength (Modulus of Rupture) of concrete (Nominal Mix)

Ultimate strength of Beams

To determine the flexural ultimate strength of

- i) an under reinforced beam
- ii) an over reinforced beam

Bond strength

To determine the bond strength between

- i) Mild steel plain bars & concrete
- ii) Tor Steel/cold twisted bars and concrete

Course Litle: Highway Engg. And PMS (Code: CVT302)	SyllabusforB.Tech.5 th Semester(CivilEngineering)	Total Course Credit: 4	
Midterm Examination	Class Assessment (Assignments, interaction, tutorials, viva etc.)	Major Examination L T P	
30 Marks	10 Marks	60 Marks 2 2 0	

Course Outcomes:

CO1: To design roads and highway alignment.

CO2: To develop geometric design of highways.

CO3: To design pavements.

CO4: To test properties of road aggregates and bituminous material.

CO5: To select materials for cement concrete roads.

CO6: To perform pavement management.

S. No.	Course Contents	Contact Hours
01.	INTRODUCTION	04
	Scope, History, classification of roads. Comparison with other modes of transportation	
02.	Alignment design: route survey and highway Location.	03
03.	Geometric design: cross-section elements; sight distances, horizontal and vertical alignment	12
04.	Pavement design: factors affecting pavement design, types of pavements, Empirical methods of flexible pavement design (e.g. C.B.R, group index and Burmister's layer theory), stresses due to load and temperature in rigid pavements, introduction to design methods of rigid pavements.	08
05.	Highway materials and construction : Properties and tests for road aggregates and bituminous materials, design of bituminous concrete mix, methods of preparing sub grade, base course and construction of various types of surface covers, joints in cement concrete roads.	07
06	Pavement management system: basic concept, data requirements & collection methods, maintenance and rehab treatments, priority programming, implementation of PMS.	06

References:

1) Khanna, S.K. and Justo, C.E.G. 2002. "Highway Engineering". Nem Chand Brothers, Roorkee.

2) Bhanot, K.L.1990. "Highway Engineering", S. Chand and Company (P) Ltd., New Delhi.

3) Rao, G.V. 1996. "Principles of Transportation and Highway Engineering", Tata McGraw Hill, New Delhi.

- 4) Pavement Design and Management Guide by Transportation Association of Canada, Ottawa, Ontario, Edn. Dr. Ralph Haas, University of Waterloo.
- 5) Relevant IRC Codes/Specification

Course Title: Highway Lab. (Code: CVL 302)	Syllabus for B.Tech. 5th Semester (Civil Engineering)	Total Course Credit: 1		1
Internal Examination	External Examination	L	Т	Р
50 Marks	50 Marks	0	0	2

CO1 Conduct tests on aggregate; aggregate gradation, specific gravity, aggregate crushing, aggregate abrasion, aggregate impact: follow standard test procedures, design observation sheet, record observations and analyze, presentation and analysis of test results, derive conclusions

- **CO2** Conduct tests on aggregate; soundness, flakiness, elongation, combined flakiness & elongation, deleterious material: follow standard test procedures, design observation sheet, record observations and analyse, presentation and analysis of test results, derive conclusions
- **CO3** Conduct tests on coarse and fine aggregate and bitumen; fineness modulus, silica content, organic content, silt content, alkalinity, viscosity; penetration, softening point, flash & fire point, ductility, specific gravity,: follow standard test procedures, design observation sheet, record observations and analyze, presentation and analysis of test results, derive conclusions
- **CO4** Conduct tests on modified binders, bituminous Mixes and subgrade soil; elastic recovery, separation difference, Marshall stability, flow value, index properties of soil, CBR of soil, subgrade modulus: follow standard test procedure, design observation sheet, record observations and analyse, presentation and analysis of test results, derive conclusions

Expt. No	Contents
1	Tests on aggregate: Aggregate grading, Specific gravity, crushing, Abrasion, Impact test, Soundness, Flakiness, Elongation, Fineness Modulus, Silica content, Organic content, Silt content, Alkalinity, Deleterious material.
2	Tests on bitumen and bituminous mixes: Viscosity, Penetration, Softening point, Flash & fire point, Ductility, Specific gravity, Elastic recovery, Marshall Stability.
3	Tests on sub-grade: sub-grade modulus, CBR.

Geotechnical Engineering-I

Geotechnical Engineering-I (Code: CVT303)	Syllabus for B. Tech. 5 th Semester (Civil Engineering)	Total Course Credit: 4
Midterm Examination	Class Assessment (Assignments, interaction, tutorials, viva etc.)	End-Term Examination L T P
30 Marks	10 Marks	60 Marks 2 2 0

Course Objective: To develop analytical and experimental skills to determine various stresses acting on soil material.

Course Outcomes:

CO1: To classify soils and understand their properties.

CO2: To analyze flow through soils.

CO3: To perform/demonstrate soil compaction tests.

CO4: To determine stress distribution in soils.

CO5: To utilize various methods of soil investigation in field and laboratory.

Detailed Syllabus:

Sr. No.	Course Contents	Contact Hours
	INTRODUCTION:	
1	Soil Engineering- Origin and formation of soils & Rocks, Weathering of Rocks & Soil deposits, Types of Soil Deposits, Clay and Clay Mineralogy, Types of clay minerals, Structure of Clay Minerals, Physical and Geochemical Properties of Clays and Clay Minerals, Role of Soils in Engineering, Problems in Soil Engineering, Application of properties of soils, Scope of Soil Mechanics in Civil Engineering Practice.	04
	SOIL PHASE-SYSTEM:	
2	Soil as a Three/Two Phase Soil System- Soil Constituent Properties and Inter- relationships, Description & Evaluation of Index Properties of soils, Engineering Soil Classification systems	08
	ENGINEERING PROPERTIES OF SOILS- SITE IMPROVEMENT:	
3	Determination of Compaction Characteristics - Need for soil compaction, Compaction Mechanism, Influencing factors, Proctor theory of compaction, Compaction tests, Compaction curve & parameters, Zero-air-void or saturation curve, Properties of compacted soils, Field compaction and field compaction control.	04
	EFFECTIVE STRESS AND STRESS DISTRIBUTION:	
4	Total and effective stresses, pore water pressure, Concept of stresses & Strains in soils, Settlement, Soil Modulus for Soils under application of stresses, Stress distribution under concentrated load. Boussineq's method, Westergard's method, and Burmister's Approach.	04

	ENGINEERING PROPERTIES OF SOILS - MOVEMENT OF WATER THROUGH SOIL-SOIL HYDRAULICS: Soil Hydraulics- Different forms of water flow through soils, Hydraulic heads, Pore water pressure. Principle of Effective stress. Capillarity. Darcy's law. Permeability of	
5	soils , factors influencing permeability, Lab & field methods of determination of permeability, Permeability of stratified soil deposits.	04
	SEEPAGE THROUGH SOILS -Seepage & Flow Nets, laplace equation for steady state flow, Seepage force, Quick sand & Critical Gradient, Construction of flow nets and their typical applications, Flow nets. for homogeneous embankments/dams with and without toe filters, Concrete dams without & with sheet-pile at U/S, D/S or at both locations.	
	ENGINEERING PROPERTIES OF SOILS - VOLUME CHANGE:	
6	SOIL COMPRESSIBILITY- Fundamental concepts of consolidation, Types of Volume changes in Soil masses, Terzaghi's One dimensional consolidation equation- Consolidation concept by Spring Analogy & Soil Skeleton, One dimensional consolidation, Terzaghi's equation,	06
	Consolidation Lab. tests , $e - \sigma$ and $e -\log\sigma$ curves, Compressibility parameters, Pre- consolidation pressure, OCR, Rate of Consolidation, Consolidation settlement, Degree of Consolidation, Secondary Consolidation, Time required for settlement, Field consolidation curve.	
	BEHAVIOR OF SOILS - SOIL INVESTIGATION	
7	Soil Exploration - Soil Types: Coarse grained and Fine grained soils, Objectives of Soil Exploration, Planning of Soil Exploration, Boring & Sampling in Soils,	06
	Field and Laboratory Investigation methods, Penetration methods, Geo physical methods- electric resistivity method and Seismic method, Suitability of tests	
		36

<u>COURSE TEXTBOOK</u>: Some useful resources are:

- 1. Kasmalkar, B. J. (1997). Geotech. Engineering. Pune Vidyarthi Griha Prakashan-1786, Sadashiv Peth, Pune-411030
- Murthy, V. N. S. (1991). Principles of Geotechnical Engineering, CBS publishers & distributors, 4819/XI, 24 Ansari Road, Daryaganj, New Delhi-002
- 3. Coduto, D.P., Geotechnical Engineering Principles and Practices, Prentice Hall, New Jersey, 1999.
- 4. Cernica, John N. (1995). *Geotechnical Engineering*, John Wiley & Sons, New York.
- 5. Das, Braja M. (1999). *Principles of Geotechnical Engineering*. PWS Publishing, Pacific Grove, Calif.
- 6. Gopal Ranjan & ASR Rao (2000). Basic ans Applied Soil Mechanics, New Age Int`l Publishers New Delhi 002
- 7. P. Purushothama Raj (1995). Geotechnical Engineering, Tata McGraw-Hill, New Delhi-002

8. David F. McCarthy (2007). Essentials of Soil Mechanics & Foundations: Basic Geotechnics (7/E), Prentice-Hall, New Jersey, Columbus, Ohio

9. Alam Singh & G R Chowdhary (1990). Soil Engineering in Theory & Practice: Vol-2, Geotechnical Testing & Instrumentation, CBS publishers & distributors, 4819/XI, 24 Ansari Road, Daryaganj, New Delhi-002

10. K. H. head (2006). Manual of Soil Laboratory Testing: Vol-1, Whittles Publishing, CRC Press, UK

Title: Geotechnical Lab – I (Code: CVL 303	Syllabus for B. Tech. 5thSemester(CivilEngineering)	Total Course Credit: 1		it: 1
Internal Examination	External Examination	L	Т	Р
50 Marks	50 Marks	0	0	2

COURSE OUTCOMES:

- 1. To determine basic soil properties and consistency limits.
- 2. Draw complete particle size distribution curve of a given soil.
- 3. Determine Compaction characteristics of a given soil.
- 4. Determine Permeability of any given soil specimen.

Expt. No.	Name of the Experiment
1	Soil Identification Tests
2	Water Content Determination Test
3	Field Density Measurement
4	Specific Gravity Test
5	Sieve Analysis Test
6	Sedimentation Analysis Test
7	Atterberg and Shrinkage Limits
8	IS Light Heavy Compaction Tests
9	Permeability Tests

Course Title: WATER RESOU RCES ENGINEERING (Code: CVT304)	Syllabus for B.Tech. 5 th Semester (Civil Engineering)	Total Course Credit: 4	
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	End-Term Examination L T P	
30 Marks	10 Marks	60 Marks 2 2 0	

Course Objective: To impart the knowledge for understanding elementary aspects of hydrology and Fluvial Hydraulics for use in the planning, design, and management of water resources projects. Also to impart understanding of introductory aspects of integrated water resources development and management.

Course Outcomes:

CO1: To perform multiple analysis on precipitation data.

CO2: To estimate various components of hydrological cycle such as stream flow, runoff, evapotranspiration and infiltration.

CO3: To measure components of hydrological water balance in field.

CO4: To perform hydrograph analysis and estimate magnitude of flood.

CO5: To determine reservoir capacity and sedimentation.

CO6: To perform steady state analysis of groundwater movement.

CO7: To determine the technical, social and economic aspects of water resources planning and management.

S. No.	Course Contents	Contact Hours
01.	Definition and scope of hydrology, hydrological cycle, water balance equation.	02
02.	Precipitation, its mechanism, forms, weather systems, Indian scenario, measurement, average precipitation, gauge network adequacy, missing data determination, and consistency.	
03.	Evaporation: factors affecting, measurement, empirical equations, analytical methods, reservoir evaporation; Evapotranspiration, its measurement, ET equations, potential evapotranspiration.	
04.	Interception and depression storage.	01
05.	Infiltration, infiltration capacity, measurement, indirect determination, infiltration indices.	03
06.	Streamflow measurement: Direct and indirect methods, depth measurement, velocity measurement, stage-discharge relationship.	03
07.	Runoff: Factors affecting, runoff characteristics of streams, rainfall-runoff relationships.	02

CAR KAS		
08.	Hydrographs: Definition, components, base flow separation, effective rainfall, unit hydrograph, its derivation, applications, and limitations.	03
09.	Floods: Rational method, empirical methods, U.H. method, Design flood definition.	02
10.	Flood routing: Reservoir and channel routing.	03
11.	Reservoir Design Studies: Types of reservoirs, storage capacity, fixation of capacity, safe yield, reservoirse dimentation: trap efficiency, capacity-inflow ratio, life of reservoirs.	03
12.	Groundwater: Introduction, types of aquifers, aquifer properties, Darcy's law, Dupuit assumptions, steady one-dimensional aquifer flow, Well Hydraulics: Steady flow towells in confined and unconfined aquifers.	03
13.	Fluvial Hydraulics: Introduction, properties of sediment particles, brief description of incipient motion, bed load, and suspended load.	03
14.	Water Resources Planning and Development: National water policy, Single and multi- purpose development, Integrated water resources development and management, inter- state and international aspects of river basin development.	02

- 1. Subramanaya, K."Engineering Hydrology" Tata McGraw Hill, New Delhi, 2001.
- 2. Linsely, K., Kohler, A. and Paulhus L.H. "Hydrology for Engineers" McGrawHill BookCompany Inc. New York, 1975.
- 3. Ragunath, H.M. "Hydrology Principles Analysis and Design" New AgeInternational (P) Ltd Publishers., New Delhi, 2005.
- 4. Garde, R.J. and RangaRaju K.G. "Mechanics of sediment transportation and alluvial stream problems". New Age International (P) Ltd. Publishers, NewDelhi, 1994.
- 5. Arora, K.R. "Irrigation Water power and water Resources Engineering". Standard Publishers Distributors, Delhi, 2002.
- 6. Wilson, E.M. "Engineering Hydrology" ELBS, English Language book Society/Macmillam Education Ltd., London, 1999.
- 7. Asawa, G.L. Irrigation and Water Resources Engineering, New ageInternational Publishers, 2005.

Structural Analysis – III (Code: CVT305)	Contact Hours = 42	Total Course Credit: 3			
Mid-Term	Class Assessment	End-Term	L	Т	Р
30 Marks	10 Marks	60 Marks	2	1	0

Course Objective: To learn the method of drawing influence lines for determinate and indeterminate structures. The students are expected to analyze the arches and suspension bridges and learn the plastic analysis of beams and rigid frames.

Course Outcomes:

CO1: Draw influence lines for statically determinate structures and calculate critical stress resultants.

CO2: Understand Muller-Breslau principle and draw the influence lines for statically indeterminate beams.

CO3: Analyze three hinged, two hinged and fixed arches.

CO4: Analyze the suspension bridges with stiffening girders.

CO5: Understand the concept of Plastic Analysis and the method of analyzing beams and frames.

S. No.	Contents	Contact Hours
01.	Influence Line Diagrams for Determinate Structures: Influence lines for reactions in statically determinate beams, Girders with floor systems, Trusses: ILD for deflections. Calculation of critical stress resultants due to concentrated and distributed moving loads – absolute maximum bending moment – influence lines for member forces in pin jointed plane frames. Muller-Breslau Principle	10
02	Arches – Types of arches – Analysis of three hinged, two hinged and fixed arches – Parabolic and circular arches – Rib shortening and temperature effects.	8
03.	Cables and Suspension Bridges: Statics of a suspension cable. Analysis of cables and suspension bridges with and without stiffening girders. Influence lines for three hinged stiffening girders.	8
04.	Plastic Analysis: Plastic theory, Plastic Section Modulus, Shape factor and Moment of resistance, Plastic hinge and Mechanism – Collapse load – Static and Kinematic methods- Upper and Lower Bound Theorems – Plastic Analysis of Indeterminate beams and frames including Gable Frames. Plastic moment distribution for multi-storey and multi-bay frames.	10
05.	Influence Line Diagrams for Indeterminate Structures: - Influence lines for shear force, bending moment and support reaction components of beams, arches. Development of force envelope.	6

Textbooks:

1. Hibbeler, R. C. (2002). Structural Analysis, Pearson Education (Singapore) Pt. Ltd., Delhi

2. Leet, K. M. and Uang, C-M. (2003). *Fundamentals of Structural Analysis*, Tata McGraw-Hill Publishing Company Limited, New Delhi.

3. V.K. Manicka Selvam: Fundamentals of Limit Analysis of Structures (A Course in Plastic Analysis of Structures), Dhanpat Rai Publications.

- 1. C. S. Reddy, 'Basic Structural Analysis', Tata McGraw Hill, New Delhi.
- 2. C.K. Wang, 'Intermediate Structural Analysis', Tata McGraw Hill, New Delhi.
- 3. Junnarkar.S.B. and Shah.H.J, "Mechanics of Structures", Vol II, Charotar Publishing House, New Delhi 2016.

Concrete Technology (Code: CVT307)	Syllabus for B.Tech. 3rd Year(5thSemester)Engineering)	Total Course Credit: 3			
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	1	0

Course Objective: To impart understanding of various aspects related to ingredients and properties of concrete and concrete mix design.

Course Outcomes:

CO1: Understand properties and role of ingredients like cement, aggregate etc. to produce better quality concrete

CO2: Understand the behavior of fresh and hardened concrete.

CO3: Apply design mix to produce concrete with adequate strength

CO4: Understand the need for special concrete

S. No.	Course Contents	Contact Hours
01.	Cement: Its Basic Chemistry, Types of Portland cement	05
02.	Normal aggregates and their properties	05
03.	Fresh Concrete and its properties. Strength of Concrete: Water/Cement ratio- Gel/Space Ratio, Influence of Temperature on Strength of Concrete and Bond between concrete and Reinforcement, Mixing, handling, placing, and Concrete. Elasticity, Shrinkage and Creep of Concrete	18
04.	Mix Design: IS method	05
05.	Special Concretes	05

- 1) Neville, A.M. "Properties of Concrete. Pearson Publishers, New Delhi, 2004
- 2) Shetty, M.S. "Concrete Technology" S.Chand& Company New Delhi, 2002
- 3) Gambhir, M.L. "Concrete Technology" TaTa McGraw Hill New Delhi, 1995
- 4) Neville, A.M. and Brookes, J.J." Concrete Technology", Pearson. 1994

Course Title: ENGINEERING SEISMOLOGY (Code: CVT307)	Syllabus for B.Tech. 5 th Semester (Civil Engineering)	Total Course Credit: 3			
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	End-Term Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	1	0

Course Objective: To impart the basic understanding of earthquakes, physics of the earth's interior from a practical side, to foresee the potential consequences of strong earthquakes on urban areas and civil infrastructure and how to do more efficient hazard management and mitigation. This module will communicate how science can enhance community resilience and has relevance far beyond any site for earth sciences, earthquake engineering, preparedness, mitigation, emergency response, decision-making, and public policy.

Course Outcomes:

- **CO1:** Properties of the Earth's interior, physical characteristics of seismic sources, Estimation of seismic hazard and risk
- **CO2:** Effects of earthquakes on humans, objects and surroundings.
- **CO3:** Information on the soil structure and properties at the construction site, as well as on the path between epicentre and the site
- **CO4:** Parameters needed in order to construct seismically safe and sound structures.

S. No.	Course Contents	Contact Hours
01.	Engineering Seismology, Seismology and Seismic Exploration (Definitions).	06
	Introduction to Seismic Hazard and Earthquake Phenomenon.	
	Global seismicity - Analysis of earthquake focal mechanisms.	
02.	Seismotectonic and Seismic Zoning of India. Micro-zonation.	07
	Mechanism of Faulting. Earthquake Prediction.	
03.	Site Response to Earthquakes: Local geology and soil conditions. Site investigations and soil tests. Dynamic design criteria for a given site.	08
04.	Earthquake Monitoring and Seismic Instrumentation. The Seismograph – Principles of Seismometer. Location of the epicenter of an earthquake. Earthquake size and intensity. Energy released in an earthquake.	08
05.	Earthquake: Risk and Preparedness.	08
	Earthquake: Social Consequences; Codes and Public Policy.	

- 1. Bolt, B.A., W.H. Freeman, Earthquake, New York, 1993.
- 2. Kearey P and Brooks, An Introduction to Geophysical by Exploration, M. Blackwell PublishersOxford, 1991.
- 3. Robinson, E.S andCoruch, Basic Exploration Geophysics, C. John Wiley & Sons, 1998.
- 4. Walker, B.S., Earthquake Time-Life Books Inc., Alexandria, Virgina, 1982.
- 5. Bott, M.H.P., EdwardArnold, The Interior of the Earth. London, 1982.
- 6. Flower, C.M.R, The Solid Earth: An Introduction to GlobalGeophysics., CambridgeUniversity Press, 1990.
- 7. Lay, T. and Wallace, T.C, Modern Global Seismology., Academic Press, San Diego, 1995.

Course Title: Architecture & Town Planning (Code: CVT307)	SyllabusforB.Tech.5thSemester (Civil Engineering)Total Course Credit:		lit: 3	t: 3	
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	End-Term Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	1	0

Objective: To impart understanding of various aspects related to architecture planning

and design. Various aspects of town planning, city master plans, etc.

Course Outcomes:

CO1: To be able to understand the importance of Architecture, its history and relationship with Civil Engineering.

CO2: To develop and understanding of Architectural Planning, Design and functional analysis.

CO3: To be able understand various aspects of town, city and regional planning.

CO4: To understand the concept of Master plan and City zoning.

Details of Course:

S.No.	Contents	Lecture Hours		
	A. ARCHITECTURE:			
	INTRODUCTION:			
1	Architecture and Civil Engineering, Classical Architecture, Contemporary	4		
	Architecture, Genaral aspects of Architectural projects.			
	ARCHITECTURAL PLANNING AND DESIGN:			
2	Introduction, factors affecting Architectural design, principles of Architectural	6		
	design, organization of space, space standards, modular co-ordination.			
	FUNCTIONAL ANALYSIS:			
	Analytical study of buildings in respect of functional efficiency, Architectural			
3	efficiency, Building science, environmental controls- both exterior and interior,	6		
	physical and economical constraints with reference to residential and public			
	buildings.			
	ARCHITECTURAL PLANS AND PROJECTS:			
4	Introduction to Architectural plans, preparation and reading of Architectural plans,	10		
4	analytical study of various works/ projects of some architects like LE Corbusier,	10		
	Phillip Jhonson, F.L. Wright, etc.			
	A. TOWN PLANNING:			
5	INTRODUCTION:	3		
5	Planning at various levels- national, regional, city and village.	3		
6	HISTORY:	3		

KAST		
	Brief historic review of some ancient towns, present day planning in India.	
7	MASTER PLAN: Importance of master plan for redevelopment of existing townsand planning of new	2
	towns, implementation, building bye-laws, concept of Redburn neighbourhood pattern.	
	ZONING:	
8	Zoning regulations for various urban land uses including density and height zoning,	2
	multi-story buildings and their implications on urban planning.	
	Total	36

BOOKS RECOMMENDED:

- 1. Architectural Design by K.R. Moudgil
- 2. New Concepts in Architecture and Design by Yoshikawa
- 3. Reading Architectural Plans by Ernest R. Weidhaas
- 4. Introduction to Architecture by V.B. Vaidya.
- 5. Town Planning by Rangawala.
- 6. Town Design by Fredrick Gibberd.

B.TECH. 6th SEMESTER (Civil)

Course No.	Course title	L	Т	Р	С
CVT350	Design of Structures-II	2	2	0	4
CVL350	Structural Engineering LabII	0	0	2	1
CVT351	Traffic Engineering and Road Facilities	2	2	0	4
CVL351	Traffic Engineering Laboratory	0	0	2	1
CVT352	Geotechnical Engineering-II	2	2	0	4
CVL352 Geotechnical Laboratory-II		0	0	2	1
CVT353	Irrigation and Hydraulic Structures	2	1	0	3
CVT1453	Industrial Training & Presentation	0	0	0	1
	Elective Courses				
	Water Shed Management				
CV1354	Numerical Methods in Civil Engineering	2	1	0	3
MAT050 Operations Research					
	Computer Aided Design				
CVT355	Disaster Management	2	1	0	3
	Applied Hydrology	1			
Total Lecture Hours and Credits		27	•		25

Design of Structures -II (Code: CVT350)	Syllabus forB.Tech. 6thSemester(CivilEngineering)	Total Course Credit: 4		
Midterm Examination	ClassAssessment(Assignments,interaction,tutorials, viva etc.)	Major Examinatio L T P		
30 Marks	10 Marks	60 Marks 2 2 0		

Course Objective: This course is designed to introduce the behavior and design of structural steel members according to the limit states design concept. Students are expected to obtain basic knowledge about the design and failure mode of structural steel members after finishing this course.

Course Outcomes:

- **CO1:** Design of bolted and welded connections; concentric and eccentric
- CO2: Design of rolled and built-up tension members.
- **CO3:** Design of rolled and built-up compression members.
- **CO4:** Design of laterally supported and unsupported flexural members
- CO5: Design of plate girders

CO6: Understanding failure modes and application of Limit States Design philosophies of steel design.

S. No.	Course Contents	Contact Hours
01.	General considerations	2
	Introduction to structural steel and their design philosophies. Properties, rolled sections.	
02.	Simple Connections	8
	Design of bolted connections, welded connections: concentric and eccentric connections, load transfer mechanism, failure of joints, prying action ,selection of fasteners	
03.	Tension members	4
	Types & design of tension members; Rolled and Built-up sections, types of failures, lug angles, gusset plates.	
04.	Compression members	6
	Effective length, slenderness ratio & types of buckling, design of compression members; Rolled and Built-up sections. Design of column bases.	
05.	Beams	6
	Behaviour of beams in flexure, classification of sections, lateral torsional buckling, shear strength of beams. Design of flexural member, laterally supported, laterally unsupported and built-up beams.	

KINAGAR	(ASHMUCA	
06.	Roof Truss	4
	Types of roof trusses, Loads on a roof truss, Design of truss members	
07.	Plate Girders	4
	Elements & proportioning of plate girder, shear buckling design methods, types & design of stiffners, curtailment of flanges, design procedure of Plate Girders with special focus on shear buckling & use of web stiffeners.	

- 1) Design of steel structures By Subramanian
- 2) Steel structures Design & Behaviour By Salmon & Johnson
- 3) Design of steel structures By SK Duggal.
- 4) Design of steel structures By Vizrani and Ratwani

Structural Engg. Lab – II (Code: CVL – 350)	I Syllabus for B.Tech. 6 th Semester (Civil Engineering) Total Course Cr		se Credit:	Credit: 1	
Internal Examination	External Examination	L	Т	Р	
50 Marks	50 Marks	0	0	2	

- **CO1** Ability to demonstrate professional engineering approach, including application of principles and utilization of technical resources such as software's towards solving technical problems requiring civil engineering interventions.
- **CO2** Ability to furnish and/or analyse designs and construct structural systems, produce related documents, drawings and reports, and present objective estimates of the related quantities.
- **CO3** Ability to conduct field and laboratory investigations pertaining to civil engineering domain, and utilize modern tools and techniques of surveying.
- CO4 To understand the behaviour of structural members

Name of the experiment:

Expt. No	Contents
1.	Deflection of curved beams
2.	Behaviour of a portal frame under different load combinations
3.	Deflection of Truss
4.	Behaviour a cantilever beam under symmetrical and un-symmetrical loading
5.	Analysis of an elastically coupled beam
6.	Analysis of a redundant joint

Analysis of two hinged arch

Traffic Engg. And Road Facilities (Code: CVT351)	SyllabusforB.Tech.6thSemester (Civil Engineering)	h Total Course Credit: 4	
Midterm Examination	ClassAssessment(Assignments,interaction,tutorials, viva etc.)	End-Term Examination L T P	
30 Marks	10 Marks	60 Marks 2 2 0	

Course Objective: To impart understanding and knowledge of various aspects of Traffic Engineering and Road Facilities.

Course Outcomes:

CO1: To understand the various aspects of roads, road characteristics, road capacity

CO2: To understand the level of service concept &traffic control devices.

CO3: To understand the aspects of traffic flow, fundamental relation of traffic flow, etc.

CO4: To understand the intersections and interchanges along with their requirement and design.

S. No.	Course Contents	Contact Hours
01.	Components of traffic system-vehicle characteristics; human characteristics, road characteristics & Traffic Studies.	10
02.	Intersections-unsignalized intersections, channelization and round abouts, interchanges- requirement & design.	08
03.	Traffic-control devices, Traffic signs- role and types, signalized intersections, signal timing design; signal coordination, Parking facilities-parking demand, on-street parking, off-street parking.	12

04.	Traffic flow theory-flow parameters; fundamental relation of traffic flow, road	10
	capacity and level of service concept.	

- 1. CA O'Flaherty, Transport Planning and Traffic Engineering, John Wiley & Sons, Inc., New York; Toronto,2002.
- 2. McShane &Roess, Traffic Engineering, Prentice-Hall of India Private Ltd, NewDelhi-110001, 1990.
- 3. Kadiyali & Lal, Principles and Practices of Highway Engineering, Khanna Publishers, Delhi-6, 1996.
- 4. Chakarborty & Das, Principles of Transportation Engineering, Prentice-Hall of India Private Ltd, New Delhi-110001
- 5. L. R. Kadiyali, Traffic Engineering and Transport Planning, Khanna Publishers, 2-B, NaiSarak, Delhi- 110006, 1999.

Traffic Engineering Lab- II (Code: CVL 351)	SyllabusforB.Tech.6thSemester (Civil Engineering)	Total Course Credit: 1		1
Internal Examination	External Examination	L	Т	Р
50 Marks	50 Marks	0	0	2

- **CO1** To understand the road user/ driver characteristics in Lab, traffic volume studies in field, intersection volume studies in field: design of questionnaires, data collection, compilation and analysis of field and lab data, presentation of results and derive conclusions
- **CO2** To perform small-network volume studies and OD volume studies: design of questionnaires, data collection, compilation and analysis of field and lab data, presentation of results and derive conclusions
- **CO3** To understand the traffic speed (spot speed) studies, conduct of travel-time & delay studies, accident studies: design of questionnaires, data collection, compilation and analysis of field and lab data, presentation of results and derive conclusions
- **CO4** To understand and perform pedestrian and parking studies: design of questionnaires, data collection, compilation and analysis of field and lab data, presentation of results and derive conclusions.

Expt. No	Contents
1	Study of Road user characteristics
2	Traffic volume studies

MAGAR KASHM	
3	Intersection volume studies
4	Small-network volume studies
5	OD volume studies
6	Study of traffic speed
7	Speed & delay studies
8	Travel-time studies
9	Accident studies
10	Pedestrian studies
11	Parking studies

Geotechnical Engineering – II (Code: CVT352)	SyllabusforB.Tech.6THSemester (Civil Engineering)	Total Course Credit: 4			
Midterm Examination	Class Assessment (Assignments, interaction, tutorials, viva etc.)	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	2	0

Course Outcomes (COs)

CO1: To equip the knowledge of strength and mechanical behaviour of soils.

CO2: To understand the concepts of bearing capacity and foundations.

CO3: To understand the practical aspects of earth pressure and retaining structures.

CO4: To understand the concepts of slope stability along with its practical application

Detailed Syllabus:

Sr. No.	Course Contents		Contact Hours
------------	-----------------	--	------------------

SHEAR STRENGTH:	
 Shear Strength Concept, Theories of shear strength, Mohr-Coulomb Law, Laboratory determination of: Triaxial Compression Test under Different Drainage Conditions, viz undrained, drained and consolidated undrained. Direct Shear Test Unconfined Compression Test, and. Vans shear test 	10
EARTH PRESSURE:	
Lateral earth pressure. Rankine's theory Active and Passive States. Lateral earth pressure under various conditions, like surcharge, sloping backfill and high water table behind the wall. Earth pressure diagrams, Total thrust, Tension Cracks and bracing of excavations.	04
STABILITY OF SLOPES:	
3 Infinite slopes, conjugate stresses, stability number, Swedish and Friction circle methods. Submergence case, complete draw down case, Steady seepage case.	04
STABILISATION:	
Methods of stabilization. Brief introduction to each of the methods of stabilization	02
INTRODUCTION TO FOUNDATION ENGINEERING	
Foundation, Foundation types, Construction materials, Principles of foundation Engineering, Foundations applications, Challenging problems	0.6
BEARING CAPACITY AND FOUNDATIONS:	06
Basic terminology, bearing capacity of shallow foundations. Methods of determination of bearing capacity, Prandtl's solution Terzaghi's solution for ultimate bearing capacity. Size effects. Effects of rigidity of footings. Plate load test.	
FOUNDATION DESIGN:	
• Design principles for footing and rafts.	
• Foundations on clays and sands	
• Pile foundation types, classifications and determination of load carrying capacity, dynamic and static methods	10
 Pile load test, pile groups efficiency of pile groups. 	
Total	36

References:

- 1. Ranjan, G and Rao, P., "Basic and Applied Soil Mechanics", New Age International Pvt. Limited, New Delhi, 2002.
- 2. Arora, K.R., "Soil Mechanics and Foundation Engineering", Standard Publishers Distributors, Delhi, 1987.
- 3. Singh, A., "Basic Soil Mechanics & Foundations", CBS Publishers & Distributors, 2004.
- 4. Taylor, D.W., "Fundamentals of Soil Mechanics", Wiley, New York, 1948.
- 5. Bowles, J.E., "Physical and Geotechnical properties of Soils", McGraw Hill Publishers, 1979.
- 6. Terzaghi, K., "Theoretical Soil Mechanics", Wiley, New York, 1943.
- 7. Terzaghi, K., Peck, R.B. and Mesri, G., "Soil Mechanics in Engineering Practice", 1996.
- 8. Jumikis, A.R. "Soil Mechanics", R.E. Krieger Pub. Co., Florida, US, 1984.
- 9. Purushothama, P. "Geotechnical Engineering", McG00raw Hill Education, 1995.
- 10. <u>Venkataramaiah</u>, C., "Geotechnical Engineering", New Age International Publishers, Daryagunj, New Delhi, 1995.

Geotechnical Engineering Lab- II (Code: CVL -352)	Syllabus for B. Tech. 6 th Semester (Civil Engineering)	Total Co	ourse C	redit: 1
Internal Examination	External Examination	L	Т	Р
50 Marks	50 Marks	0	0	2

COURSE OUTCOMES

- **CO1**. Determine consolidation characteristics of a given soil sample.
- **CO2**. Obtain shear strength parameters of different types and/or consistencies of soils and under different drainage conditions.
- **CO3.** Perform Standard Penetration test of soil to obtain SPT (N) value.
- CO4. Determine allowable soil pressure of soil foundation system by vertical plate load test.

Expt. No.	Name of the Experiment
1	Consolidation Test

KASHMIISU	
2	Direct Shear Test
3	Unconfined Compression Test
4	Unconsolidated Undrained Triaxial Test
5	Vane Shear Test
6	Consolidated Undrained Triaxial Test
7	Standard Penetration Test
8	Plate Load Test

Irrigation And Hydraulic Structures (Code: CVT353)	SyllabusforB.Tech.6thSemester (Civil Engineering)	Total Course Credit: 3
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination L T P
30 Marks	10 Marks	60 Marks 2 1 0

Course Outcomes:

CO1: To appreciate various methods of irrigation and water application to agricultural fields.

CO2: To carry out hydraulic design of irrigation canals, diversion headworks and cross-drainage works.

CO3: To appreciate the soil-water- plant relationship and understand the crop water requirements.

CO4: To Understand various aspects of water logging of agricultural lands.

S. No.	. Course Contents			
01.	INTRODUCTION	04		
	Present status of irrigation in India, Advantages of irrigation, brief description of Gravity, Lift and Sprinkler irrigation.			
02.	SOIL-WATER- PLANT RELATIONSHIP. CROP WATER REQUIREMENTS:	08		
	Soil moisture and crop water relationships, Duty, Delta, Consumptive use, Irrigation requirements, Principal Indian crops, Multiple Cropping, etc.			
03.	CANAL IRRIGATION:	04		
	Types of canals, parts of canal irrigation system, channel alignment, assessment of water requirements, estimation of channel losses, Design of channels, Regime and semi theoretical approaches, Canal lining, factors affecting choice of various types of canal linings.			
04.	DIVERSION HEADWORKS:			
	Selection of site and layout, Parts of diversion head works, types of weirs and barrages, Design of weirs on permeable foundations, control of silt entry into canal, Silt excluders and different types of silt ejectors			
05.	CROSS DRAINAGE WORKS:			
	Necessity of cross drainage works, their types and selection, Design of various types of cross drainage works-Aqueduct, Siphon aqueduct, Super passage, Siphon, Level crossing.			
06	WATER LOGGING:			
	Causes, preventive and curative measures, drainage of irrigated lands, saline and alkaline lands.			

- 2. Singh Bharat. "Fundamentals of Irrigation Engineering", Nem Chand & Brothers, Roorkee.
- 3. Varshney, Gupta and Gupta, Irrigation Engineering and Hydraulic Structures". Nem Chand & Brothers, Roorkee.

 Arora, K.R. Irrigation, water power and Water Resources Engineering", Standard Publishers Distributors, Delhi.

5. Asawa, G.L. "Elementary Irrigation Engineering" New Age International (P) Ltd. Publishers, New Delhi.

E R CAN	Water Shed Management Structures (Code: CVT 354)	Syllabus for B.Tech. 6 th Semester (Civil Engineering)	Total Course	Cred	lit: 3	
	Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination	L	Т	Р
	30 Marks	10 Marks	60 Marks	2	1	3

Course Outcomes:

CO1: To perform studies related to watershed management.

CO2: To prepare pre-feasibility and detailed project reports, etc.

CO3: To appreciate the concept of integrated water resources management.

CO4- To understand the concepts of renewable energy, biomass, etc.

CO5- To equip with the rural technological delivery systems and low cost technology that can be used in the farm.

S. No.	Course Contents	Contact Hours
01.	INTRODUCTION	04
	Importance of Water Shed Development for improvement in Environment.Status of Watershed Development in India, Watershed Concepts	
02.	Land:	08
	Survey(layout), Soil and Soil Moisture Conservation, Rainwater Management, Reclamation of saline soils.	
03.	Water: :	04
	Data and Analysis, Integrated Water Resources Management, Conjunctive Use	
04.	Greenery:	04
	Agriculture, Crop Husbandry, Sustainable Agriculture, Biomass, Management, Dryland Agriculture, Irrigation, Pastures and Silvipastures, Horticulture, Social Forestry, Afforestation.	
05.	Energy:	
	Renewable Resources, Biomass, small hydropower, Ocean Tides and Waves.	06
06	Socioeconomics: Peoples' part, State and Integrated Approach, Sustainable Society, Economics.	04
07	Appropriate Technology Farm Equipment, Contour Methods, Check Dams, Water Catchment and	03
	Harvesting, Low Cost Technology, Rural Technological Delivery Systems.	

- 1 Murthy, J.V.S. Watershed Management, New Age International Publishers (P) Ltd. India.
- 2 Suresh, R. Watershed Hydrology, Standard Book House, India. .
- 3 Das, Ganshyam.Hydrology and Soil Conservation Engineering, Prentice Hall of India. .

Operations (Code: MAT 050)	Research	Syllabus for B Semester (Civil Er	.Tech. 6 th ngineering)	Total Course	Cred	lit: 3	
Midterm Examination		Class (Assignments, tutorials, viva etc.)	Assessment interaction,	Major Examination	L	Т	Р
30 Marks		10 Marks		60 Marks	2	1	3

Objective: To familiarize the students with different aspects of optimization theory.

Course Outcomes:

CO1: Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand

CO2: Understand the relationship between a linear program and its dual, including strong duality and complementary slackness

CO3: Be able to build and solve Transportation Models and Assignment Models.

CO4: Learn optimality conditions for single- and multiple-variable unconstrained and constrained nonlinear optimization problems, and corresponding solution methodologies.

Details of Course:

S.No.	Contents	Lecture
		Hours
1	Linear programming - Formulation of Linear programming problem, Theory of Convex sets, Graphical solution of L.P.P, Simplex Method, Two Phase Simplex Method, Duality in Linear Programming, Transportation and Assignment problem. Application of Linear programming to Industrial Problems.	20
2	Non-Linear programming- quadratic form, Hessian Matrix, Positive definite and Negative Definite, Method of Lagrange multipliers, Wolfe's method of solving Quadratic Programming problem. Illustrations of some civil Engineering problems.	16
	Total	36

BOOKS RECOMMENDED

- 1. Linear Programming by S.I. Gass, Mc Graw Hill.
- 2. Operations research An Introduction, by Hamidi A.Taha, Macmillan.
- 3. Principles of Operations Research: with Application to Management Decisions.by H.M.Wagner, Prentice-Hall
- 4. Linear Programming by Hadley, Adison Wesley
- 5. Non Linear and Dynamic Programming by G.Hadley, Addison Wasley
- 6. Theory of Linear and Non-Linear Programming by S.Vajda, Longmans (London)

7. Foundations of Optimization, by D.I.Wilde and C.Boigtler Prentice Hall (1977).

Numerical Methods in Civil Engineering (Code: CVT 354)	SyllabusforB.Tech.6thSemester (Civil Engineering)	Total Course Credit: 3	
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination L T P)
30 Marks	10 Marks	60 Marks 2 1 3	

Objective: To impart understanding and knowledge of various aspects of numerical methods in the field of Civil Engineering – its various sub-disciplines.

Course Outcomes:

CO1: Apply numerical methods to obtain approximate solutions to mathematical problems.

CO2: Understand numerical techniques to find the roots of non-linear equations and solution of system of linear equations.

CO3: Understand the difference operators and the use of interpolation.

CO4: Understand numerical differentiation and integration and numerical solutions of ordinary and partial differential equations

Course Details:

S. No.	Contents	
1	Finite Difference	2
-	Difference table and its usage, the difference operator Δ , $\mathbf{\nabla}$ and the operator E.	1
	Interpolation	
2	Interpolation with equal intervals, Newton's forward difference formula,	4
	Newton's backward difference formula, interpolation with unequal intervals,	
	Newton's divided difference formula, and Lagrange's interpolation formula.	
	Central Differences	
3	The central difference operator δ and the averaging operator μ . Relations	4
5	between the operators, Guass's backward and forward interpolation formula,	-
	Sterling's ,Bessel's,Laplace and Everett's formulae.	
	Inverse Interpolation	
	The central difference operator δ and the averaging operator μ . Relations	
	between the operators Δ , ∇ , δ and μ . Guass's, Sterling's and Evett's formulae	
4	and their applications.	6
	Numerical Solutions of Algebraic and Transcendental Equations	
	Regula-Falsi method, Bolzano's process of bisection of intervals, Newton-	
	Raphson method.	
5	Numerical Differentiation and Integration	10

	Total	40
ð	Seidel iteration methods, power methods for solving Eigen value problems.	0
0	Numerical Solution of Simultaneous Equations and Eigen Value Problems	C
7	Numerical Solutions of Ordinary Differential Equations Picard's method, Taylor series method, Euler's method and Runga-Kutta method.	4
6	Difference Equations Linear homogeneous and non-homogeneous difference equations of order n with constant coefficients and their solutions, method of undetermined coefficients.	4
	Numerical differentiation of a function, differential coefficients of a function in terms of its difference, numerical integration of a function, trapezoidal rule, Sympson's rule, Weddle's rule, The Euler-Maclaurin expansion formula.	

11. Books Recommended:

- 1. Mathematical numerical analysis by S.C. Scarborough
- 2. Numerical methods for scientific and Engineering computation by M.K. Jain, S.R.K. Iyenger & R.K. Jain.
- 3. Numerical solution of differential equations by M.K. Jain.
- 4. Numerical methods for Scientists and Engineers by R.G. Stanton.
- 5. Numerical methods by P.K. Kandasamy, K. Thilagavathy, & K. Gunavathi.
- 6. Numerical methods by E. Balagurusamy.

ComputerAidedDesign(Code:CVT 355)	Syllabus for B.Tech. 6 th Semester (Civil Engineering)	Total Course Credit: 3
Midterm Examination	Class Assessment (Assignments, interaction, tutorials, viva etc.)	Major Examination L T P
30 Marks	10 Marks	60 Marks 2 1 3

Objective: To impart understanding of various aspects related to various computer softwares

Course Outcomes:

CO1: To develop an aptitude to use modern computer tools to conceptualize, create, model, analyze and evaluate designs within the context of local and global needs.

CO2: Introducing various programming languages like C and Fortran to the students.

CO3: To teach the students to understand the details of various CAD packages.

CO4: To develop a basic understanding of how to apply CAD packages in various civil engineering related applications.

Course Details:

S.	Contents	
No.		Hours
1	Introduction: - Basic concepts of CAD. Digital computer systems, number systems, Hardware, System and application software, Hardware for CAD Systems, Management of storage devices Files and their management, management commands.	4
2	Introduction to CAD Softwares:- Concept and examples of programming languages, user friendly (Menu Driven) softwares, basic programming techniques, Development of Algorithms, Applications of CAD	6
3	Programming softwares :- Application of C/Fortran language, Characters, Constants and Variables, Input and Output operators, statements, Library functions and header files, Data Types, Declaration of variables, relational and logical operators Main, Include and Define functions, If else statements, While statement and loops, decision making alternatives, Switch statements, For and Go To statements, Do statement, sub routines etc, Arrays and their types. Application of the programming language using examples for all statements.	12
4	Applications in Civil Engineering:- Application of CAD in various fields of Civil Engineering. Formation of Computer aided programmes for design of simply supported beams carrying udl and point loads, design of columns, Retaining walls, slope analysis,	10

AGAR KA		
	Design of Pipes, Sedimentation Tank Design, Filter Designs, application to survey	
	and other Civil Engineering related subjects.	
	CAD packages for Civil Engineers :-	
5	Introduction to Menu Driven softwares i.e. Stadd, Stadd pro, Autocad, AutoCivil,	4
	Graphics packages etc	
	Total	36

Recommended Books:

- 1. Computer Aided Design ---M.N.Shesha Prakash, G.S.Suresh
- 2. Computer Applications-----Gautam Roy
- 3. Programming in C-----E.Balaguruswamy
- 4. Fortran77/90-----R.K.Jain, R.P.Suri
- 5. Autocad Fundamentals-----Micheal E.Beall, Howard M.Fuller

Disaster Management (Code: CVT 355)	Syllabus for B.Tech. 6 th Semester (Civil Engineering)	Total Course Credit: 3
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination L T P
30 Marks	10 Marks	60 Marks 2 1 3

Objective: To impart knowledge for understanding of various aspects of disaster management cycle. Control and mitigation measures for disasters like : floods, droughts, landslides, and earthquakes.

Course Outcomes:

CO1: To understand the basic principles and various stages of disaster management and develop a knowhow about regional, national and international level regulatory authorities.

CO2: To have an understanding of various aspects of floods as disasters and various planning and mitigation measures.

CO3: To develop an understanding about Droughts and their soci-economic impacts - drought management.

CO4: To be able to understand different aspects of landslides and their mitigation.

CO5: To understand different aspects of earthquake and their impacts on the Civil Engineering Structures and control and mitigation measures thereof.

S.No.	S.No. Contents	
		Hours
	Introduction to disaster management, various stages of disaster management,	
1	Indian seup- National Disaster Management Authority, state level authorities,	4
	Objectives of NDMA	
	Flood Disasters: Occurrence, Causes and effects of floods; flood plain	
2	delineation, mitigation measures viz., structural and non-structural measures,	8
	flood fighting, etc.	
3	Droughts: Various definitions, drought monitoring indices, combating drought	8
4	Landslides: Causes, effects, and control measures, instrumentation and	0
4	monitoring.	ð
5	Earthquakes: Causes and effects, earthquake resistant design of buildings.	8
	Total	36

Details of Course:

1. Suggested Books:

S.No.	Name of Books/Authors/Publishers	Year of Publication
1.	Chow ,VenTe;Maidment,David, R., Mays Lary, W. Applied Hydrology, McGraw Hill Publications.	1988
2	Singh, Vijay P. Elementary Hydrology, Prentice Hall of India.	1994
3	Ragunath, H.M. "Hydrology Principles Analysis and Design" New Age International (P) Ltd Publishers., New Delhi.	2005
4	Yevjevich. Coping with drought, Water Resources Publications.	1977
5	Yevjevich, etalDrought Research needs, Water resources Publications, Colorado State University, USA.	1977

Applied Hydrology (Code: CVT 355)	Syllabus for B.Tech. 6 th Semester (Civil Engineering)	Total Course Credit: 3			
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	1	3

Objective: To impart the knowledge for understanding of some of the engineering and advanced applications hydrological analysis and design.

Course Outcomes

CO 1: To develop an understanding about various concepts of hydrometeorology.

CO2: To be able to compute hydrological abstractions.

CO3: To be able to compute flood runoff, extreme flows, etc.

CO4: To understand and perform calculations on problems involving regression analysis.

Details of Course:

S.No.	Contents	Lecture Hours
1	INTRODUCTION:	2
1	Historical development, concepts of hydrometeorology.	3
	PRECIPITATION:	
2	Selection of precipitation networks, Storm analysis, Storm selection, DAD Analysis,	6
Z	Depth-area frequency curve, Concept of probable maximum precipitation and	0
	effective rainfall.	
	EVAPORATION AND EVAPO-TRANSPIRATION:	
3	Measurement, factors affecting evaporation and evapo- transpiration, evaporation	5
	reduction, E.T. equations	
	INFILTRATION:	
4	Factors affecting measurement, infiltration capacity by hydrograph analysis,	5
	infiltration indices, empirical and analytical equations.	
	RUNOFF:	
5	Determination of available flow, derivation of unitgraph from complex storm	ø
5	hydrograph, S-curve hydrograph, IUH and its determination,	0
	elementary idea of conceptual models, Synthetic unitgraphs.	
	EXTREME FLOWS:	
6	Estimation of design flood, flood frequency analysis, factors affecting droughts,	8
	analysis of droughts.	
7	REGRESSION AND CORRELATION:	4
/	Elementary treatment with two variables and application to hydrologic problems.	4

Total	

39

1. Suggested Books:

S.No.	Name of Books/Authors/Publishers	Year of
		Publication
1	Chow, VenTe, Maidment, David, R., Mays Lary W. "Applied	1000
1.	Hydrology", McGraw Hill Publications.	1988
2	Viessmann, Warren Jr., Lewis Gary L." Introduction to Hydrology"	2000
2	Prentice Hall of India, New Delhi.	2009
2	Wilson, E.M. "Engineering Hydrology" ELBS, English Language	1000
3	book Society/ Macmillam Education Ltd., London.	1999
4	Linsely,K.,Kohler, A. and Paulhus L.H. "Hydrology for Engineers"	1075
4	McGraw Hill Book Company Inc. New York.	1975
5	Linsely,K.,Kohler, A. and Paulhus L.H. "Applied Hydrology"	1040
5	McGraw Hill Book Company Inc. New York.	1949
6	Chow VenTe," Handbook of Applied Hydrology", McGraw Hill	1064
0	Book Company, New York.	1904
7	Singh, V.P."Elementary Hydrology", Prentice Hall of India, Pvt. Ltd.,	1004
/	New Delhi.	1994

B.TECH. 7th SEMESTER (Civil)

Course No.	Course title	L	Т	Р	С
CVT401	CVT401 Environmental Engineering-I		1	0	3
CVL401	Water Quality Lab	0	0	2	1
CVT402	Structural Dynamics	3	1	0	4
CVT403	Construction Technology & Management	2	1	0	3
CVT404	Design of Structures-III	2	2	0	4
CVT405	Quantity Surveying and Cost Evaluation	2	1	0	3
CVS405	Seminar	0	2	0	2
CVP406 Project Pre-Work		0	0	4	2
Elective cours	es				
	Railway and Airport Engineering				
CVT406	Fluvial Hydraulics	2	1	0	3
	Advanced Geotechnical Engineering				
Total Lecture Hours and Credits28		25			

13/18/ (153	Environmental Engg - I (Code: CVT401)	Syllabus for B.Tech. 7 th Semester (Civil Engineering)	Total Course Credit: 3			
	Midterm Examination	Class Assessment (Assignments, interaction, tutorials, viva etc.)	Major Examination	L	Т	Р
	30 Marks	10 Marks	60 Marks	2	1	0

Objective: To impart training to the student of various aspects related to water quality, Quantity, Storage and Distribution in addition to sanitation of buildings.

Course Outcomes:

CO1 : To be able to identify the sources of water and assess it's water quality parameters.

CO2 : To be able to assess the water demand for various uses based on population estimation.

CO3 : To be able to understand various processes involved in water Treatment.

CO4 : To be able to design various components of water supply distribution system which includes reservoirs, pipe networks, pumps, etc.

CO5 : To be able to understand various aspects of water supply and sanitation in buildings including plumbing fixtures.

S No	Contents	
		Hours
1	Introduction and scope, Various sources of water, Water Quality Parameters,	
	significance and codal recommendations of limits for various uses	6
2.	Water demand for various purposes, Population forecast, storage capacities of	
	reservoirs, Variation in demand	6
3.	Water treatment: - Conventional treatments like screening, sedimentation,	
	Coagulation, Filteration, Disinfection. Advanced treatments like Micro Filteration,	10
	Reverse osmosis, Activated carbon, etc	
4.	Systems of distribution, Location of reservoirs, distribution patterns,	2
5.	Pipe designs, network analysis by various methods, pipe materials and joints,	
	leakage prevention, types of pumps, Pump Design	U
6	Water supply in buildings, Plumbing and fixtures	3
7.	Sanitation of buildings.	3
	Total	36

Suggested books :-

S.No	Name of books/Authors/Publishers	Year
1.	"Water Works Engineering", /S.R Q, Motley E.M, Guang Zha/Prentice Hall	2009
2	"Env. Engg .Vol-1/ Modi P.N./ Standard Book House, Delhi.	2008

KASH KASH	MUEG	
3	"Water and Waste Water Tech."/ Hammer M.J, / Prentice Hall	2001
4	"Water Supply and Sewerage," /McGhee T.J / McGraw Hill, Inc	1991
5	Dr. B. C. Punmia, Ashok Kr. Jain, Arun Kr. Jain, "Water Supply Engineering", Lakshmi Publications, New Delhi.	1995

Water Quality Laborator (Code: CVL 401)	y Syllabus for B. Tech. 7 th Semester (Civil Engineering)	Total Course Credit:		redit: 1
Internal Examination	External Examination	L	Т	Р
50 Marks	50 Marks	0	0	2

Course Outcomes:

- **CO1** : To be able to learn the basics of chemical analysis using gravimetric methods and develop an understanding about important Processes like filtration, titration, etc.
- **CO2** : To be able to use water testing kits and other devices like digital pH meter, flame Photometer etc.
- **CO3** : To be able to carry out all the requisite quality tests on water from the point of view of Drinking water standards.
- **CO4** : To be able to develop an understanding of various reagents used in water testing.

Details of Course:

S.No	List of Experiments	Contact Hours
1.	To determine the total solids, suspended solids and dissolved solids for a given	
	sample of water	2
2.	To determine the alkalinity of a given sample of water	2
3.	To determine the total hardness and carbonate hardness for a given sample of water.	2
4.	To determine the turbidity of water.	2
5	To find the colour and odour of a given sample of water	2
6.	To determine the percentage of Sodium and potassium in a given sample of Water	2
7.	To determine the percentage of sulphates, chlorides, iodide, Floride.	2
8.	To determine the concentration of dissolved oxygen in a given sample of water and	
	to find out the oxygen consumed.	2
9.	To determine the percentage of Ammonia and Nitrogen present in a given sample of	
	water.	2
10.	To determine the percentage of Magnesium, Calcium, Iron, Silica and Aluminium	
	in a given sample of water.	2
	Total	20

Structural Dynamics (Code: CVT402)	Syllabus for B.Tech. 7 th Semester (Civil Engineering)	Total Course Credit: 4			
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	3	1	0

- **CO1** Get familiarized with basic principles, terminology etc. of structure dynamics and recognize the properties affecting the dynamic behavior of the structure including appropriate idealization for reliable dynamic analysis.
- **CO2** Understand free vibration of single degree of freedom systems particularly the determination of important dynamic properties (natural frequency and damping) and the forced vibration response of single degree of freedom systems under viscous dynamic excitation like harmonic, periodic, step/pulse and generalized type of loading.
- **CO3** Learn about some key concepts like natural frequencies, mode shapes and orthogonality relationships of multi degree of freedom systems, understand the free vibration of multi degree of freedom systems and computation of important dynamic properties and understand the forced damped and undamped vibration of multi degree of freedom systems under dynamic excitations using various methods.
- CO4 Learn about Indian Standard Codal provisions for earthquake resistant design of buildings using Equivalent Static Method.

S. No.	Course Contents	Contact Hours
01.	Nature of dynamic loading: Harmonic, earthquake and blast loading,	08
02	Single degree of freedom systems, free vibrations and forced vibrations:	06
03	Harmonic force, Periodic force, Impulse, and General types of loading.	04
04	Multi-degree of freedom systems, numerical techniques for finding natural frequencies and mode shapes, orthogonality relationships of principal modes, Rayleigh's Principal and its application for determination of fundamental frequency. Evaluation of dynamic response by mode superposition method.	06
05	Discussion on Indian standards, codal provisions for earthquake resistant design. Design of buildings (Plane frames only) based on Codal provisions Nature of dynamic loading: Harmonic, earthquake and blast loading, Single degree of freedom systems, free vibrations and forced vibrations: Harmonic force, Periodic force, Impulse, and General type of loading	06

- Structural Dynamics by Anil.K. Chopra 2005
 Dynamics of Structures ,Clough and Penzien 5th Edition
- 3. Dynamics of structures by Vinod Hosur
- 4. Structural Dynamics Theory and computation by Mario Paz

Construction Technology & Management (Code: CVT403)	Syllabus for B.Tech7 th sem	Total Course Credit: 3		3	
Mid-semester Examination	Continuous Class- Assessment	End-Semester Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	1	0

<u>Course Objective:</u> To impart understanding of various aspects of construction equipment, and management of construction projects

Course Outcomes:

CO1- To understand the various techniques of civil engineering constructions.

- CO2- To understand the various aspects of construction equipment's.
- CO3- To develop the skill for the management of construction projects.
- **CO4-** To develop the concept of works accounting and leadership organization.

Details of Course:

S. No	Contents	Lecture Hours
01.	Construction Management, its necessity; objectives &Functions	03
02.	Construction methods and plant important equipments only	06
03.	Project scheduling: Various techniques namely Bar chart; CPM and PERT.	07
04.	Engineering economics of projects; Depreciation; Sinking Fund; compound interest factors, Selection of most economical alternative by variable cost method/Cost benefit ratio. Owning and Operating cost.	10
05.	Organization of Leadership: Function of project organization. Principles and advantages of good organization. Leadership and motivation	04
06.	Works accounting. Cashbook, Imprest cash, contractors bills, store accounts. Materials at site account. Indent, invoice, Debit & Credit note, suspense head stock, Engineering Statements, Form of agreement.	06

Books Recommended:

1. Construction Management by Mahesh Verma

2. Construction of Plant and Equipment by Peurifay

3.CPM &PERT by B.C.Punmia 4.Project Management by K.N.JHA

Design of Structures III (Code: CVT404)	Syllabus for B.Tech. 7 th semester (Civil Engineering)	Total Course Credit: 4
Midterm Examination	Class Assessment (Assignments, interaction, tutorials, viva etc.)	Major Examination L T P
30 Marks	10 Marks	60 Marks 2 2 0

Course Outcomes:

- **CO1**: Design RCC footings(Isolated footings and various types of combined footings) and Design of masonry foundations
- CO2: Design cantilever and counter fort type RCC retaining walls. Design masonry retaining walls.

CO3: Design underground, circular and rectangular water tanks with reference to IS: 3370.Design of domes and ring beams.

CO4: Design Rectangular, T and I section beams of pre stressed concrete.

S. No.	Course Contents	Contact Hours
01.	Foundations: The design of RCC footings, isolated footings and various types of combined footings, design of masonry foundations	06
02.	Retaining walls: Design of cantilever and counter-fort type RCC retaining walls. Design of masonry retaining walls	05
03.	Water tanks: Design of underground, circular and rectangular water tanks with reference to IS:3370.	06
04.	Pre-stressed concrete: Design of Rectangular, T and I section beams of pre stressed concrete.	10
05.	Domes: Design of domes and ring beams.	04
06.	Works accounting. Cashbook, Imprest cash, contractor's bills, store accounts. Materials at site account. Indent, invoice, Debit & Credit note, suspense head stock, Engineering Statements, Form of agreement.	05

- 1) Construction Management by Mahesh Verma
- 2) Construction of Plant and Equipment by Peurifay

Eller (Cr	Quantity Surveying & Cost Evaluation (Code: CVT405)	Syllabus for B.Tech. 7 th Semester (Civil Engineering)	Total Course	Cred	lit: 3	
	Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	End-Term Examination	L	Т	Р
	30 Marks	10 Marks	60 Marks	2	1	0

Course Objective: To impart understanding of various aspects related to Material/labour analysis and other physical measurements in the field of Civil Engineering.

Course Outcomes:

CO1: Importance of estimation in civil engineering

CO2: Importance of specification in civil engineering

CO3: How we can perform estimate of different civil engineering structures

CO4: Importance and objective of rate analysis

CO5: Importance of road estimate and its cost analysis

S. No.	Course Contents	Contact Hours
01.	Estimate:	04
	Importance, Items of a work and their units. Types of estimates, viz. preliminary; approximate; Abstract estimate; Plinth area estimate; detailed estimate; revised estimate; supplementary estimate, bill of quantities and abstract of cost.	
02.	Analysis of Rates:	08
	Preparing analysis of rates, Labour schedule, material schedule & rate schedule. Analysis of rates- of limeconcrete in foundation; Brickwork in foundation superstructure; stone masonry; R.C.C. work; R.B.work; Plastering; pointing; white washing; colour washing; painting; wood work, earth work in foundation; earth work in road; D.P.C.; Steel work for reinforcement; steelwork in trusses; wood work in frames, shutters etc.	
03.	Specifications:	04
	General specifications and detailed specifications, Book of specifications, specifications for earth work in foundation; L.C. in foundation; R.C.C. work; Brick work; R. B. work; Wood work indoors, windows etc. D.P.C. centering and shuttering; earthwork incanal and road.	
04.	Works Estimate:	10
	Estimates of building; Estimates of walls; methods of building estimate; Longwall- shortwall and centreline methods; Estimate of masonary platform, estimate of a masonry tank, estimate of roof trusses (wooden/steel)Estimate of a single roomed building; estimate of a two roomed building with C.G.I roof over wooden trusses and over steel truss. estimate of a shop; estimate of a R.C.C. beam, R.C.C. Slab	

05.	Estimate of Road: Methods of estimating; materials for different items of work and labour; methods of	04
	estimating earth work; estimate of a metaled road.	
06.	Valuation & Rent Fixation:	04
	Valuation of building-various methods; Rent fixation, plinth area requirement.	
07.	Introduction to Building Codes:	02
	Sanitary fitting; Electrification; in-built furniture, Hazard safety measures in high rise buildings.	

References:

1. Datta, B. N., Estimating and Costing in Civil Engineering (Theory & Practice), UBS Publishers' Distributors Pvt Ltd; 28th Revised Edition 2016.

2. Khanna, P.N. Indian Practical Civil Engineers Handbook by Published by UBS Publishers' Distributors (P) Ltd in 2012.

Railway & Airport Engineering (Code: CVT-406)	Syllabus for B.Tech4th Year (7th Semester)	Total Course Credit: 3			
Mid-Term Examination	Continuous Internal Assessment	End semester examination	L	Т	Р
30 Marks	10 Marks	60 Marks	3	1	0

Course Outcomes:

CO1: Able to understand the transport system of the country.

CO2: Knowledge about various aspects of railway design

CO3: Able to understand various aspects of airport system and airport pavement design.

CO4: Understanding of Railway planning, design, construction and maintenance and planning and design principles of Airports

S. No	Topic	Lecture Hours
1.	Importance of transportation systems. History of railways and its development, development of Indian Railways. Surveys for Route location.	06
2.	Permanent way and it's component parts, Formation, Ballast, Sleepers, Rails. Gauge problem, Creep and Tilt in Rails.	06
	Track resistance and tractive effort, super-elevation near branching of curves; gradients.	
	Track fittings and fastenings. Points and crossings.	
	Station Platforms- Various types of yards and sidings. Signals.	
3.	Classification of airports; planning, Surveys and site selection of airports.	08
	Runway Length, Patterns and orientation-wind rose diagram. Width and grades of runway; Taxiways and aprons.	
	Difference between Highway and airport pavements; Introduction to various design methods. Airport DrainagE	

Books Recommended:

- 1. Satish Chandra, M. M. Agarwal, "Railway Engineering", Oxford University Press (Latest Edition).
- 2. S. Ponnuswamy, "Railway Transportation- Engineering, Operation and Management", Narosa Publishing House, New Delhi (Latest Edition).
- 3. Rangawala, S.C, "Railway Engineering", Charotar Publishers, Anand (Latest Edition).

4. Arora, S.P. and Saxena, "Railway Engineering", Dhanpat Rai Publishers, New

(Latest Edition).

- 5. Khanna, Arora and Jain, "Airport Planning and Design", Nem Chand and Brothers, Roorkee (Latest Edition).
- 6. Horren Jeff. "Airport Planning and Design"

Delhi

Fluvial Hydraulic (Code: CVT-406)	Syllabus for B.Tech4th Year (7th Semester)	Total Course Credit: 3
Mid-Term Examination	Continuous Internal Assessment	End semester examination L T P
30 Marks	10 Marks	60 Marks 3 1 0

Course Outcomes:

CO1 : To develop an understanding about the origin and properties of Sediments.

CO2 : To be able to understand the establishment of threshold of particle transport and formation of various bed forms.

CO3 : To be able to understand the different aspects of channel roughness and resistance to flow in rigid and mobile boundary channels.

CO4 : To be able to understand various features of bed load, suspended load and total load transport.

CO5 : To be able to perform calculations leading to stable channel design.

Details of Course:

S.	Contents	Lecture
No.		Hours
1	Introduction: Sediment and fluvial hydraulics, nature of sediment problems.	2
2	Properties of sediment: Particle size, shape, density, fall velocity. Bulk properties viz particle size distribution, specific weight, and porosity.	2
3	Threshold of particle Transport: Introduction, Incipient motion criteria: component velocity, lift concept, critical tractive force (Shields and White'	2
4	Bed Forms: Terminology, Theoretical analysis of bed forms, empirical and graphical analysis, factors affecting bed forms.	4
5	Channel roughness and resistance to flow: Resistance to flow with rigid boundary: Velocity distribution approach, Darey-Weibach formula, Chezys formula, Manning's formula, sediment size and Manning's coefficient.	4
	Resistance to flow with movable boundary: Grain roughness and form roughness, surface drag and form drag, different approaches viz. Einstein;s, Einstein-Barbarosa, Engelund and Hansen etc.	2
	Bed Load Transport: Introduction, Shear stress approaches viz, Duboys; Sheilds, Kalinskes, etc. Energy Slope approaches viz Meyer-peter, meyer-	6

AGAR KAST		
	Peter and Mueller, Discharge approach, velocity and Bed form approaches, Probabilistic approach viz ?Einstein's approach.	
	Suspended Load Transport: Introduction, general considerations, Exchange theory under equilibrium conditions-The Rouse equation, effect of suspended sediment on Z,K and velocity distribution, Suspended load formulas	6
	viz Lane and Kalinske, Eubsteub etc, Total Load Transport:	
	Introduction; General approaches; Total Load Transport functions based on –Einsteins bed load function, power concept, etc.	4
	Stable Channel Design: The empirical stable channel design, Tractive force method of stable channel design: Drag distribution and resistance to motion, design values for boundary shear, the stable cross section, Design by tractive force method.	4

- 1. References:
 - 1. Graf, W.H. Hydraulcis of Sediment Transport, McGraw Hill international
 - 2. Garde, R.J. and Rangaraju, K.G. Mechanics of sediment transportation and alluvial stream problems
 - 3. Yang, Chih Ted (1996) Sedient Transport Theory and Practice, McGraw Hill Companies Inc. New York.
 - 4. Raudkivi, A.J. Loose Boundary Hydraulics, Pergamon Press.

Advanced Geotechnical Engineering (Code: CVT406)	Syllabus for B.Tech. 7 th Semester (Civil Engineering)	Total Course Credit: 3			
Midterm Examination	Class Assessment (Assignments, interaction, tutorials, viva etc.)	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	1	0

- **CO 1**: To understand the earth pressure analysis for sloping backfill, proportioning of retaining walls and stability checks.
- CO 2: To understand the analysis and design of pile foundations, Raft foundations.
- **CO 3**: To understand the various aspects of environmental geotechniques, including the basics and design of landfills.
- CO 4: To learn the advanced methods of slope stability analysis
- **CO 5:** To learn the basics of soil dynamics.

Detailed Syllabus:

Sr. No.	Course Contents	Contact Hours
	EARTH RETAINING STRUCTURES:	
1	Analysis and design earth retaining structures	08
	Seepage through anisotropic soils	
	GROUND IMPROVEMENT TECHNIQUES:	
2	Stone column and pre-consolidation	12
2	Analysis and design of raft footings	12
	Analysis and design of pile foundations	
	ENVIRONMENTAL GEOTECHNICS:	
	Part-I: Evolution of Solid Waste	
	• Solid Waste-Sources, Types and Properties of Solid waste, Waste Handling and Separation, Storage & Processing at Source	
3	• Disposal & Residual Matter, Planning, Sitting & Permitting of Waste management Facilities	12
	Part –II: Landfill Engineering	
	• Introduction-Need for Landfills, Types of Landfills, Physical Characteristics of Landfills.	
	• Barrier Systems- Concept of Barrier Systems & Engineering Design, Transport Mechanism, Filter Criteria	

	 Landfill Liners-Types of Landfill Liners, Engineering Properties, Analysis, design & Construction of Liners, Leachete Collection Pipes. Landfill Covers-Basic Concepts for Cover Systems, Components, Assessment, Advantages & Disadvantages, Protection Layer, Barrier Layer 	
4	SOIL DYNAMICS: Brief introduction; comparison of soil mechanics and soil dynamics; soil dynamic properties; laboratory and field tests for determination of dynamic soil properties; introduction to machine foundations; types of machine foundations	06
	Total	38

- 1. Shamsher, P. (1996) Analysis and Design of Retaining Structures against Earthquakes, American Society of Civil Engineers
- 2. Bowles, J. E. (1988) Foundation Analysis and Design. New York: McGraw-Hill.
- 3. Mitchell, J. K and Soga, K. (2005). Fundamentals of Soil Behavior, John Wiley and Sons Inc.
- 4. Gulhati, S. K. and Datta, M. (2005). Geotechnical Engineering, Tata McGraw-Hill Education
- 5. Reddi, L. N. and Inyang, H. F. (2000). Geoenvironmental Engineering Principles and Applications, Marcel Dekker Inc.

<u>B TECH. 8th SEMESTER (Civil):</u>

Course No.	Course title	L	Т	Р	С
CVT450	Hydropower Engineering	2	2	0	4
CVT451	Bridge Design		1	0	4
CVP452	VP452 Project* 0 5		5	10	10
ELECTIVE COURSES					
	Rock Mechanics and Tunneling Technology				
CVT454	Transportation Planning and Economics 2		1	0	3
	Advanced Structural Analysis				
	Ground Improvement Techniques				4
CVT455	Earthquake Resistant Design	3	1	0	
	Environmental Engineering-II				
Total Lecture I	Hours and Credits	30			25

*The evaluation will be done as per statutes.

Hydropower Engineering (Code: CVT450)	Syllabus for B.Tech. 8 th Semester (Civil Engineering)	Total Course Credit: 4			
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	2	0

Course Outcomes:

CO1: Analyze and perform hydro power potential assessment studies.

CO2 Understand various types of hydro power developments.

- **CO3**: Develop a knowledge related to various hydropower structures viz., canals, tunnels, penstocks, dams, spillways, etc.
- **CO4:** Appreciate and have basic knowledge about power house details pertinent structures,

Transmission systems, and economic feasibility of hydropower plants.

S. No.	Course Contents	Contact Hours
	Introduction	02
01.	Introduction and historical Development, Hydropower development Power equation, Assessment of potential, Comparison of Hydropower plant and nuclear power plant	
02	Classification High, medium and low Head schemes, Run off river plants, Storage power station Tidal power plant, Recent experiences, Underground Power plant. Pumped Storage Schemes, Various hydropower systems. Power demand, Role of Hydropower grid.	04
03	Water Conveyance System	02
	Introduction to Power Canals, Power canals, Alignment Design of Power Canals Flumes, Covered conduits and Tunnels Penstocks, Types of penstocks	
04	Dams	03
	Arch dam and classification with example Buttress dam, types Design: basic principles Design of gravity dams, Numerical questions for design of gravity dam Construction of Gravity Dams Details of construction of Gravity Dams	
05	Embankment Dams	04
	Introduction to embankment dams Types of embankment dams, considerations for embankment dam Introduction to Earthen dams. Rock fill dams, types of rock fill dams. Design considerations for embankment dams. Design of embankment dams	
06	Spillway	05
	Introduction, uses of spillway. Types of spillway, spillway as gate. Conditions for spillway. Design of silting basin. Numerical questions	
07	Power House Details	03
	Forebay, intake of a power house with general Introduction Layout of a power house, site selection for a power house. Hydropower units arrangement, underground power station	

INAGAR KASHMIBL	1	
08	Transmission system	04
	Introduction to transmission system Importance and use of transmission system	

- 1. Arora, K.R. "Irrigation water power and Water Resources Engineering", Standard Publisher Distributors, Delhi. 2002
- 2. Dandekar, M.M. "Water Power Engineering", Vikas Publishing House Gaziabad, U.P. India 1985

Major

Examination

60 Marks

Total Course Credit: 4

L

3

Т

1

Р

0

Ser and a ser a se			12011102
国家(ひょう	Bridge Design (Code: CVT451)	Syllabus for Semester (Civil H	B.Tech. 8th Engineering)
	Midterm Examination	Class (Assignments, tutorials, viva etc.	Assessment interaction,

Course Outcomes:

30 Marks

CO1: Classify different types of bridges and demonstrate fundamental knowledge of design of bridges and understand hydrologic and hydraulic aspects of waterway bridges.

10 Marks

- CO2: Use influence lines to calculate maximum effects (forces) due to standard moving vehicle loads prescribed in IRC Codes. Select an appropriate load system as per IRC-6 and evaluate design forces and moments in bridges.
- CO3: Design the slab culvert

CO4: Design the Truss type bridges including cross beams and stringers.

- **CO5:** Design Plate Girder Bridges both composite and non-composite.
- **CO6:** Design slabs for all types of bridges.

S. No.	Course Contents	Contact Hours
01.	Introduction Historical evolution of bridges. Types of bridges. Modern trends in bridge engineering. Bridge loading standards Evolution of bridge loading standards. Indian Roads Congress bridge loading standards. Impact factors. Comparative analysis of highway loading standards. Indian Railway bridge loading standards. Track load and wheel load. Influence line diagrams Introduction to influence line diagrams Use of influence line diagrams to calculate effect of moving loads on the bridge. Influence line diagram and IRC codes. Evaluation of design loads and moment forces in bridges.	08
02	Slab culvert Introduction to slab culvert. General features of slab culvert. Design coefficients for	10
	flexural members. Analysis of slab decks. Design aids and tables for R/C bridge deck slabs. Design of R/C slab culvert for IRC class AA loads.	
03	Steel Truss Bridges	10
	Introduction to steel truss. General features of steel trussed bridges. Types of trusses. Analysis of truss frames. Design features of trusses. Design examples of truss bridges.	
04	Plate girder bridges.	06
	Introduction to plate girder bridges. General features of plate girder bridges. Composite plate girder bridges and design principles. Design examples of plate	

girder bridges. Non composite plate girder bridges. Design principles. Design examples of non-composite plate girder bridges.

- 1. Design of Bridges N. Krishna Raju Oxford and IBH Publishing House
- 2. Essentials of Bridge Engineering Johnson Victor, D. Oxford and IBH Publishing House
- 3. Design of Highway Bridges Barker RM & Puckett JA WILEY
- 4. Bridge Engineering Ponnuswamy, S McGraw Hill

Course Title: Rock Mechanics and Funneling Technology (Code: CVT454)	Syllabus for B.Tech. 8 th Semester (Civil Engineering)	Total Course	Cred	it: 3	
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	1	0

Course Outcomes:

CO1- Predict and validate the long-term strength and behavior of fractured rock **CO2-**Concerned with the stability of engineering structures.

CO3-Influence of geological conditions on design and construction of tunnels.

CO4-The designing, planning, construction, maintenance and safety of tunnels.

S. No.	Course Contents	Contact Hours
01	Rock Mechanics	06
01.	Introduction to rock mechanics and rock engineering.	
02	Physical and Mechanical Properties of Rocks. Laboratory Testing.	03
03	Foundations and slope stability: foundations on discontinuous rock, slope instability basic mechanisms.	03
04	Rock reinforcement and rock support: underlying principles, similarities and differences. Rock Bolting.	03
05	Introduction to tunneling: Fundamental definitions, tunneling art and engineering, historical development, Classification of tunnels.	05
06	Geological aspects of tunneling: Geological investigation, evaluation and appreciation, importance of geological knowledge, aim of geological investigation, principal elements of exploration program, Influence of geological conditions on design and construction of tunnels.	08
07	Methods of Tunneling in soft and hard rock. Lining of tunnels. Tunnel supports.	05

References:

- 1. Brown, E.T.; Analytical and Computational Methods in Engineering Rock Mechanics, CBS Publishers and Distributors, New Delhi.
- 2. Goodman, P.E.; Introduction to Rock Mechanics, John Wiley & Sons.
- 3. Design and Construction of Tunnels: Analysis of Controlled Deformations in Rock and Soils(ADECO-RS) by Pietro Lunardi
- 4. Tunneling and Tunnel Mechanics: A Rational Approach to Tunneling by D. Kolymbas.
- 5. Introduction to Tunnel Construction (Applied Geotechnics) by David Chapman, Nicole Metje and Alfred Stärk.
- 6. Tunneling to the Center of the Earth: Stories (P.S.) by Kevin Wilson. Quantum Theory of Tunneling by Mohsen Razavy.
- 7.

Transportation Planning & Economics (Code: CVT454)	Syllabus for B.Tech. 8 th Semester (Civil Engineering)	Total Course	Credi	t: 3	
Midterm Examination	ClassAssessment(Assignments,interaction,tutorials, viva etc.)	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	1	0

Course Outcomes:

- **CO1-** To get to understand the basics and scope of transportation planning and transportation economics, transportation planning issues.
- **CO2-**To learn about Public Transportation: public transport modes, desirable characteristics of public transport systems, transit system operations, route development, stopping policy, stop location, scheduling, capacity of transit systems, socially optimal pricing
- **CO3-** To understand transport planning process, transportation and land use, transport planning strategies, transport planning models, travel demand analysis, operational transportation and land use models.
- **CO4-**To learn transport economics and finance: pavement economics- construction cost; maintenance cost and vehicle operation cost, economic evaluation of highway projects-different methods; comparison of evaluation techniques, freight transport-trends and economic growth.

S. No.	Course Contents	Contact Hours
	Transportation Planning	03
01.	Scope Of Transportation Planning Scope Of Transportation Economics	
	Transportation Planning Issues	
02	Public Transportation	08
	Public Transportation: public transport modes	
	Desirable Characteristics Of Public Transport Systems, Transit System Operations	
	Route Development, Stopping Policy, Stop Location, Scheduling	
	Travel Demand Analysis, Operational Transportation And Land Use Models	
03	Transport Analysis And Forecasting	12
	Transport Planning Process. Transportation And Land Use. Transport Planning Strategies. Travel Demand Analysis. Growth Factor Models. Synthetic Models-1	
	Synthetic Models-2	
04	Transport Economics And Finance	12
	Construction Cost; Maintenance Cost And Vehicle Operation Cost	
	Economic Evaluation Of Highway Projects- Basic Principles; Time Value Of	
	Money. Net Present Value (NPV) Method; Benefit-Cost (B/C) Ratio Method	
	Internal Rate Of Return (IRR) Method. Freight Transport-Trends And Economic Growth	

References:

- 1. Transport Planning and Traffic Engineering by CA O'Flaherty, John Wiley & Sons, Inc., New York; Toronto
- 2. Transportation Engineering and Planning by Papacostas&Prevedouros, Prentice-Hall of India Private Ltd, New Delhi-110001
- 3. Principles of Transportation Engineering by Chakarborty& Das, Prentice-Hall of India Private Ltd, New Delhi-110001
- 4. Urban Transportation Planning by Meyer & Miller, McGraw Hill, New Delhi.

Course T Structural Techniques (Fitle: Code: C	Advanced Analysis 2VT454)	Syllabus for B. Tech. 8thSemester(CivilEngineering)	Total Course Cr	edit: 4	ļ	
Midterm Exar	nination		Class Assessment (Assignments, interaction, tutorials, viva etc.)	Major Examination	L	Т	Р
30 Marks			10 Marks	60 Marks	2	2	0

Course Outcomes:

- 1. To impart understanding of various aspects related to matrix element methods of structural analysis.
- 2. Introduction to Finite Element Analysis of Structural Analysis
- 3. To impart understanding of plane stress and plain strain problems

S.No.	Topic/contents	Lecture
		Hours
1	MATRIX METHODS OF STRUCTURAL ANALYSIS:	20
	Introduction to matrix stiffness and flexibility methods. Formulation of stiffness	
	matrix for Simple Planar Elements, Trusses and beams. Analysis of Planar Trusses	
	and Beams using - Direct Stiffness method. Application of matrix displacement	
	method to Rigid jointed frames.	
2	FINITE ELEMENT METHOD:	16
	Introduction to Finite Element Method of Structural Analysis. Review of Principle	
	of Virtual work. Formulation of element stiffness matrix for one dimensional bar	
	and beam element. Application to bar elements with varying areas of cross sections	
	and beams with varying moment of inertia. Plane stress and plane strain problems,	
	use of higher order elements.	

1. Books Recommended:

- 1. Fundamentals of Structural Analysis ; Harry H. West . John Wiley & Sons.
- 2. Matrix Analysis of Framed Structures ; Gere and Weaver , CBS Publishers & Distributors.
- 3. Indeterminate Structural Analysis ; C.K. Wang , Mc-Graw Hill International Edition.
- 4. Concepts and Elements of Finite Element Analysis; Robert D. Cook.
- 5. Matrix and Finite Element Displacement analysis of Structures ; D.J Dawe

CourseTitle:GroundImprovementTechniques (Code:CVT455)	Syllabus for B. Tech. 8 th Semester (Civil Engineering)	Total Course C	redit:	4	
Midterm Examination	Class Assessment (Assignments, interaction, tutorials, viva etc.)	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	2	2	0

Course Outcomes:

CO1: The various aspects related to liquid, solid and gaseous waste

CO2 Quantification and projection of waste produced by communities.

CO3: Segregation and treatment of various types of wastes produced

CO4: Environmental effects of various types of wastes.

Detailed Syllabus:

Sr. No.	Course Contents	Contact Hours
	Introduction:	
01.	Need for Engineered Ground Improvement, Classification, Ground Improvement Techniques, Suitability, Feasibility and Desirability of Ground Improvement Techniques, Current & Future Developments	08
	Ground Improvement Techniques Mechanical Modification:	
02	Introduction to Mechanical Modification, Principles of Soil Densification, Properties of Compacted Soil, Compaction Control, Specification of Compaction, Requirements, Types of Compaction Equipment	06
	Hydraulic Modification:	
03	Objectives & Techniques, Dewatering Systems, Soil-Water Relationships, Single& Multiple Well Formulas, Drainage of Slopes, Filtration & Seepage Control, Pre loading & Vertical Drains, Electro kinetic Dewatering & Stabilization.	06
	Chemical Modification/Stabilization:	
	Effect of various admixtures on Engineering Properties of	
04	Soils such as: Cement, Lime, Fly ash, Bitumen, Cement Lime Fly ash. Other chemical additives such as NaCL, CaCL2 ,CaSO4 , Ca (OH)2 , NaOH etc., Grouting- Applications to Embankments, Foundations& Sensitive Soils, Admixtures in Pavement Design.	06

05	Thermal Modification: Thermal Properties of Soils, Heat Treatment of Soils, Ground Freezing, Strength &Behaviour of Frozen Ground. Modification By Inclusions & Confinement: Evolution of Soil Reinforcement, Applications of Geosynthetics Material in Civil Engineering, Soil Nailing, Soil Anchors, Soil Confinement by Formwork.	06
Total		32

References:

- 1. Methods of Treatment of Unstable Ground : Belt Butterworths, 1975
- 2. Engineering Principles of Ground Modification: Manfired, R. H.
- 3. Engineering Treatment of Soils : Bell, F. G
- 4. Geosynthetics for Soil Improvement : ASCE, GST No. 18, New York
- 5. Grouting Theory & Practice : Nonveiller, E
- 6. Soil Stabilization : Ingles, O. G. & Metcalf, J. B.

Earthquake Resistant Design (Code: CVT455)	Syllabus for B.Tech. 8 th Semester (Civil Engineering)	Total Course Credit: 4			
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination	L	Т	Р
30 Marks	10 Marks	60 Marks	3	1	0

Course Outcomes:

CO1 Introduction to some important definitions/ concepts, terminology, etc. about Engineering seismology such as origin of earthquakes, propagation of seismic waves, key ground motion characteristics in the form of response spectrum and Design response spectrum.

CO2 Response of building structures under ground motion followed by computation of seismic forces on buildings based on various methods (equivalent static method, dynamic analysis (i.e. Modal analysis) also called response spectrum method) as per IS 1893 code.

CO3 Seismic design and detailing of RCC elements as per IS 13920 code.

CO4 Seismic design of brick masonry buildings as per IS- 4326 code and repair of buildings as per IS-13935.

S. No.	Course Contents	Contact Hours
01.	Introduction to Earthquakes, Acceleration time history, Response Spectrum, Design Spectra.	08
02	Response of buildings subjected to ground motion based on modal analysis.	06
03	Seismic design of R.C.C Structures (upto 2-Storey Buildings) based on Codal provisions IS:1893.	07
04	Seismic design of brick masonry structures based on Codal provisions.	06
05	Detailing of R.C.C. Elements as per IS:13920. Repair and seismic strengthening of buildings IS:13935	06

References:

- 1. Earthquake Resistant Design of buildings Manish Shirkhinde and Pankaj Agarwal
- 2. Earthquake Resistant Design and risk reduction David. J. Dowrick
- 3. Earthquake Resistant Design by James .M.Kelly
- 4. Earthquake resistant design of structures by S.K Duggal.

Environmental Engineering (Code: CVT455)	Syllabus for B.Tech. 8 th Semester (Civil Engineering)	Total Course Credit: 4
Midterm Examination	ClassAssessment(Assignments, tutorials, viva etc.)interaction,	Major Examination L T P
30 Marks	10 Marks	60 Marks 3 1 0

Course Outcomes:

CO1: The various aspects related to liquid, solid and gaseous waste

CO2 Quantification and projection of waste produced by communities.

CO3: Segregation and treatment of various types of wastes produced

CO4: Environmental effects of various types of wastes.

Course Details:

S.No	Contents	Lecture
		Hours
1.	Environment and its importance:	
	Importance of clean Environment, co-existence, habitat and eco systems.	2
2.	Environmental pollution:	
	Sources of pollution to Land, Water and Air. General effects of pollution.	6
	Pollution by sewage. Nature and types of sewages (domestic, Industrial etc).	U
	Calculation of storm water and sewage.	
3.	Sewage disposal: -	
	Methods of sewage disposal, effects of disposal on land and in water bodies,	8
	Self-purification of streams, BOD calculations, Design of sewers, Types of	0
	sewers	
4.	Unit operations in sewage treatment:	
	Unit operations in Sewage treatment, screening, grit removal, sedimentation,	10
	filtration, Activated sludge process. Septic and Imhoff tanks, soakages for	10
	isolated systems.	
5	Prevention for ground water contamination.	2
6	Solid Waste management:	
	Solid waste management, Constituents of solid waste, Sanitary land filling,	4
	Composting, Incineration	
7	<u>Air pollution: -</u>	
	Air pollution, Air quality standards, measurement of air pollution, factors	4
	responsible for pollution, engineering measures to check air pollution.	
	Total	36

Suggested books

S.No	Name of Books/ Authors/ Publishers	Year of
		Publication
1.	Modi P. N.," Waste water Treatment"	2005
2.	McGhee, T.J., "Water Supply and Sewerage", McGraw Hill	1991
3.	Hammer, M.J. and Hammer M.J., "Water and Waste Water Technology"	
	Prentice Hall of India	2000
4.	Nathanson J.A. "Basic Environmental Technology" 5th Ed.	2009
5.	Viessman W. and Hammer M.J. "Water Supply and Pollution Control" 6 th	
	Ed. Addison Wesley Longman	1999
6	Dhameja, Suresh K. Environmental Engineering and management	
7	Sincero and Sincero. Environmental Engg,(A Design Approach)	

Computer Science Engineering Department

Semester: 5th

S.No.	Subject	Code	L T P	Credits
1	Computer Organization & Architecture	CST305	3 1 0	4
2	Design & Analysis of Algorithms	CST306	3 1 0	4
3	Microprocessor	CST307	3 0 0	3
4	Microprocessor - Lab	CSL308	0 0 2	1
5	Operating Systems	CST309	3 1 0	4
6	Python Programming	CST310	3 1 0	4
7	Python Programming - Lab	CSL311	0 0 2	1
8	Data Communication	CST312	3 1 0	4
	Total Credits			25

Semester: 5th - Other Department Courses

- Electronics & Communication Engineering

S.No.	Subject	Code	LTP	Credits
1	Data Structures	CST313	3 1 0	4
2	Data Structures Lab	CSL314	0 0 2	1

- Information Technology

S.No.	Subject	Code	L	Т	Р	Credits
1	Design & Analysis of Algorithms	CST306	3	1	0	4

Semester: 6th

S.No.	Subject	Code	L	Т	Р	Credits
1	Artificial Intelligence	CST352	3	1	0	4
2	Artificial Intelligence - Lab	CSL353	0	0	2	1
3	Computer Networks	CST354	3	1	0	4
4	Computer Networks - Lab	CSL355	0	0	2	1
5	Theory of Computation	CST356	3	1	0	4
6	Computer Graphics	CST357	2	1	0	3
7	Computer Graphics -Lab	CSL358	0	0	2	1
8	Java Programming	CST359	2	0	2	3
9	Elective I	CSE0XX	3	0	0	3
10	Practical Training & Tour	CSI461	0	0	0	1
	Total Credits					25

Semester: 7th

S.No.	Subject	Code	L	Т	Р	Credits
1	Compiler Design	CST415	3	1	0	4
2	Compiler Design - Lab	CSL416	0	0	2	1
3	Network Security	CST417	3	1	0	4
4	Network Security - Lab	CSL418	0	0	2	1
5	Pre-Project	CSP419	0	0	6	2
6	Seminar	CSS420	0	0	2	1
7	Elective II	CST0XX	3	0	0	3
8	Elective III	CST0XX	3	0	0	3
9	Swayam Online Course		3	0	0	3
10	Operations Research & Optimization		3	0	0	3
	Total Credits					25

Semester: 7th - Other Department Courses

- Electronics & Communication Engineering (M.Tech.)

S.No.	Subject	Code	LTP	Credits
1	Internet & Web Design	CSL501	1 0 2	2
2	RDBMS	CST502	2 0 2	3

- Information Technology (Elective)

S.No.	Subject	Code	LTP	Credits
1	Compiler Design	CST415	3 0 0	3
2	Compiler Design - Lab	CSL416	0 0 2	1

Semester: 8th

S.No.	Subject	Code	L	Т	Р	Credits
1	Project	CSP460	0	0	12	10
2	Elective IV	CST0XX	3	0	0	4
3	Elective V	CST0XX	3	1	0	4
4	Swayam Online Course		3	0	0	3
6	Industrial Organization & Management		3	0	0	4
	Total Credits					25

List of Electives

S.No.	Subject	Code
1.	Simulation & Modeling	CST001
2.	Graph Theory	CST002
3.	Digital Signal Processing	CST003
4.	Multimedia Technology	CST004
5.	Logic Programming	CST005
6.	Embedded Systems	CST006
7.	Advanced Java & Android Programming	CST007
8.	System on Chip (SoC)	CST008
9.	Advanced Internet Technologies	CST009
10.	Wireless Communication	CST010
11.	Fault Tolerant Computing	CST011
12.	Image Processing	CST012
13.	System Design using HDL	CST013
14.	Real Time Systems	CST014
15.	Unix & Shell Programming	CST015
16.	High Speed Networks	CST016
17.	Advanced Algorithms	CST017
18.	Reconfigurable Computing	CST018
19.	Computer Vision	CST019
20.	Advanced Computer Networks	CST020
21.	Advanced Computer Graphics	CST021
22.	Advanced DBMS	CST022
23.	Advanced Computer Architecture	CST023
24.	Advanced Compilation Techniques	CST024
25.	Principles of Cryptography	CST025
26.	Neural Networks	CST026

27.	Pervasive Computing	CST027
28.	Distributed and Parallel Computing	CST028
29.	Cloud Computing	CST029
30.	Software Project Management	CST030
31.	Big Data	CST031
32.	Cyber laws and Forensics	CST032
33.	Expert Systems	CST033
34.	Mobile Computing	CST034
35.	Green Computing	CST035
36.	Introduction to Robotics	CST036
37.	Data Analytics	CST037
38.	Computational Biology	CST038
39.	Special topics in Computer Science	CST039
40.	System & Network Administration	CST040
41.	Pattern Recognition	CST041
42.	Natural Language Processing	CST042
43.	Quantum Computing	CST043
44.	Deep Learning	CST044
45	Introduction to Data Science	CST045
46.	Internet of Things (IoT)	CST046
47.	Advanced Cryptography	CST047
48.	Data Mining	CST048
49.	Advanced Graph Algorithms	CST049
50.	Advanced Java	CST050
51.	Numerical Methods	Maths

List of Swayam Online Courses

S.No	Course Name	Course Duration
1.	Animations	15 weeks
2.	Web based Technologies & multimedia	15 weeks
3.	Applied Natural Language Processing	12 weeks
4.	Art of C Programming	12 weeks
5.	Artificial Intelligence	12 weeks
6.	Artificial Intelligence Search Methods for Problem Solving	12 weeks
7.	Bandit Algorithm	12 weeks
8.	Computer Fundamentals	12 weeks
9.	Computational Number Theory and Algebra	12 weeks
10.	Computer Networks	12 weeks
11.	Computer Architecture & Organization	12 weeks
12.	Cyber Security	12 weeks
13.	Cyber Security	12 weeks
14.	Concrete Technology	12 weeks
15.	Data Mining	12 weeks
16.	Data Structure and Algorithm in Java	12 weeks
17.	Deep Learning	12 weeks
18.	Deep Learning in Computer Vision	12 weeks
19.	Design and Analysis of Algorithms	12 weeks
20.	Discrete Math	12 weeks
21.	Ecommerce Technologies	12 weeks
22.	Electricity and Safety Measures	12 weeks
23.	Energy Resources and Conversion Processes	14 weeks
24.	Fundamentals of computer systems	12 weeks
25.	Introduction to IT	12 weeks
26.	Linux for Sys-Ads	12 weeks
27.	Linux Bash	12 weeks
28.	Linux Operating System	12 weeks

RINAGAR KASHMID						
		Department of Computer Sci National Institute of Tech	ence & Engin mology Srinag	eering gar		
Course '	Title	Computer Organization & Architecture	Semester	5 th		
Departn	nent	Computer Science & Engineering	Course Code	e CST	305	
Credits		04	L	Т	Р	
Course	Type	Theory	3	1	0	
course	- , pe	Course Object	tives	-	Ŭ	
 Course Objectives To understand the basics of computer organization: structure and operation of computers and their peripherals. To describe arithmetic and logical operations with integer and floating-point operands and their representation in computers and implement the Hardware for Arithmetic Operations. To study basic processing unit and organization of simple processor, concept of pipelining and other large computing systems. To study hierarchical memory systems including cache memories and virtual memory. To study different ways of communicating with I/O devices and standard I/O interfaces. Upon completion of the course the student will be able to: Understand the basic structure and operation of digital computer; Study the design of arithmetic and logic unit and implementation of fixed point and floating-point arithmetic operations; Study the hierarchical memory system including cache memories and virtual memory; Study the hierarchical memory system including cache memories and virtual memory; Study the different ways of communicating with I/O devices and standard I/O 						
O		Course Syno	psis	- 1-11 f		
buses; C	oncept	of sub-routine; Memory organization	on; interrupts; V	HDL con	cepts.	
		Course Outline /	Content		r	
Unit		Topics			Week	
1.	 Introduction: Overview of basic digital building blocks; basic structure of a digital computer. Basic Performance Equation, Clock Rate, Performance Measurement. Number system and representation of information, arithmetic and logical operation, hardware implementation, Real numbers -fixed and floating point, IEEE754 representation. 					
2.	CPU path Extern routin call ar	Subblock: Datapath - ALU, Registe – microprogramming (only the in the interface. Various addressing main e and sub-routine call. Use of stack is and return, instruction interpretation is	ers, CPU buses dea), hardwire nodes. Concep for handling su	; Control ed logic; t of sub- b-routine	3	

CAR KAS					
3.	Memory Subblock: Memory organization; concepts of semi-				
	conductor memory, CPU memory interaction, organization of	3			
	memory modules, cache memory and related mapping and				
	replacement policies, virtual memory				
4.	Pipelining: Introduction to pipelining, Instruction pipeline,				
	Arithmetic pipeline, Data hazards, instruction hazards,	2			
	performance considerations.				
5.	I/O Subblock: I/O techniques - interrupts, polling, DMA;				
	Synchronous vs. Asynchronous I/O; Controllers.	3			
	Introduction to VHDL concepts: examples to be taken up from the				
	rest of the course for implementation.				
Text Books					
1.	Computer Organization, Hamachar, Vranesic & Zaky.				
2.	Circuit Design with VHDL, Volnei Pedroni.				
	References				
1.	Vincent. P. Heuring, Harry F. Jordan -Computer System design	and Architecture			
	2nd edition, Pearson, 2003.				
2.	Apman, Gabriele Jost, Ruud van van der Pas, -Using OpenMP:	Portable Shared			
	Memory ParallelProgramming (Scientific and Engineering Co	omputation), 1st			
	edition, MIT Press, 2007.	-			
3.	H. J. Siegel.Interconnection Network for Large Scale Parallel Prod	cessing, McGraw			
	Hill, 1990.	-			
1					

INAGAR KASHMIB							
		Dep artment of Computer Sci National Institute of Tech	ence & Engin	eering Par			
Course '	Title	Design and Analysis of Algorithms	Semester	5 th			
Departn	nent	Computer Science &	Course Code	e CST3	806		
.1		Engineering		-			
Credits		04	L	Т	Р		
Course '	Туре	Theory	3	1	0		
	~ ~ ~	Course Objec	tives				
• T	o unde	rstand asymptotic notations to anal	yze the perform	nance of al	gorithms.		
• 1	To unde	rstand and apply various problem	solving tech	niques sucl	n as divide and		
c	onquer,	greedy algorithm, dynamic progra	mming, etc.				
• T	To solve	given problem by selecting the ap	propriate algor	ithm desig	n technique and		
յլ	ustify th	ne selection.					
• 1	o know	the concepts of P, NP, NP-hard ar	nd NP-complet	e problems	5.		
		Learning Outc	comes				
This is a	first co	urse in algorithm design. Students	will:				
• L	earn go	ood principles of algorithm design;					
• L	earn he	ow to analyze algorithms and esti	mate their wo	orst-case ar	nd average-case		
b	ehavior	(in easy cases);					
• A	Analyze	the asymptotic performance of alg	orithms.				
• V	Vrite rig	gorous correctness proofs for algori	thms				
• E	Become	familiar with fundamental data st	tructures and	with the m	anner in which		
tl	hese dat	a structures can best be implemente	ed; become acc	customed to	the description		
0	f algori	thms in both functional and proced	ural styles;				
• L	earn h	ow to apply their theoretical kn	owledge in p	ractice (vi	a the practical		
c	ompone	ent of the course).	•				
Desirent		Course Syno	psis				
Basic sti	rategies	of algorithm design: top-down d	esign, divide	and conqu	er, average and		
Worst-ca	se crite	eria, asymptotic costs. Simple rec	ta ata alva ava	ons for as	hanna mionita		
	or appro	bash tablas Applications to so	ting and soor	ching ma	triv algorithms		
queues,	graphs,	d spanning tree problems. Introduc	ting and sear	e ontimisat	tion algorithms:		
dynamic	paul all	mming greedy algorithms. Graph	algorithms: d	e opunnsa anth first a	nd broadth first		
search	progra	mining, greedy argonums. Oraph	argoriums. u	epui msi a			
scarch.		Course Outline /	Content				
Unit			content		Week		
1.	Analy	vsis of Algorithms: Algorithm	n Design p	aradigms.	VV COR		
	motiv	ation. Review of algorithmic	strategies. as	symptotic			
	analysis: upper and lower complexity bounds Identifying 2						
	differences among best, average and worst Case Behaviours. Big						
	O, little O, omega and theta notations. Standard complexity						
	classe	s. Empirical measurements of p	erformance. 7	Time and			
	space	trade-offs in algorithms. Analysin	ng recursive a	lgorithms			
	using	recurrence relations.	C	~			
2.	Divid	e & Conquer: Structure of divide a	and conquer al	gorithms:			
	exam	oles, Binary search, Quick sort,	analysis of di	vide and			
	conquer run time recurrence relations.						

	Greedy Algorithms: Overview of the greedy paradigm, examples of exact optimization solution (minimum cost spanning	
	tree), approximate solution (Knapsack problem), single source	
	shortest paths.	
3.	Dynamic Programming: Overview, difference between	2
	dynamic programming and divide and conquer, applications:	
	shortest path in graph, matrix multiplication, travelling	
	salesperson problem, longest common sequence.	
4.	Graph Algorithms: Graphs and their Representations, Graph	
	Traversal Techniques: Breadth First Search (BFS) and Depth	
	First Search (DFS), Applications of BFS and DFS, Minimum	2
	Spanning Trees (MST), Prim's and Kruskal's algorithms for	3
	MS1, Connected Components, Dijkstra's Algorithm for Single	
	Source Shortest Paths, Floyd's Algorithm for All-Pairs Shortest	
5	Pauls Floblelli. Bask Treaking: Overview & Overage problem and Knonseek	
5.	problem	
	Branch & Bound: I.C. searching bounding EIEO branch and	2
	bound Applications: 0/1 Knapsack problem Travelling	2
	salesperson problem	
6	Computational complexity: Complexity measures. Polynomial	
0.	vs non-polynomial time complexity: NP hard and NP complete	1
	classes, Examples.	-
	Text Books	
1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and	l Clifford Stein,
	"Introduction to Algorithms", PHI.	
2.	Mark Allen Weiss, "Data Structures and Algorithm Analysis	in C++", Third
	Edition, Pearson Education, 2006	
3.	Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, "F	undamentals of
	Computer Algorithms", Second Edition, Universities Press, 2011	
4.	Anany Levitin. "Introduction to the Design and Analysis of algori	thms", Pearson.
	References	
1.	Steven S Skiena, "The Algorithm Design Manual" – Springer Pub	olications
2.	Knuth, "The Art of Programming", Addison Wesley Vol I and II	
3.	Michael T Goodrich, "Algorithm Design" WILEY Publications.	

Department of Computer Science & Engineering National Institute of Technology Srinagar									
Course 7	Гitle	Microprocessor	Semester	5 th					
Departn	nent	Computer Science &	Course Code	e CST307					
Credits		03	L	Т	Р				
Course 7	Гуре	Theory	3	0	0				
	Course Objectives								
• T	o unde	rstand the basic Structure and Opera	tions of micro	computer and					
• T	o fam	iliarize basic architecture of 808	5 microproce	essors and pr	ogram 8085				
	licronr	pressor using Assembly Level Lang	uage	ssors and pr	ogram 0005				
	'o under	rstand the System bus structure and	uuge. its different on	arations					
• 1		istand the System bus structure and	its unrerent op						
• 1	o unde	rstand interfacing of 16 bit micropro	cessor with m	emory and per	ripheral chips				
11	ivolvin	g system design.							
• T	'o famil	iarize basic architecture of 8086 mic	croprocessor						
		Learning Outc	omes						
• V	Vrite pr	ograms to run on 8085 microprocess	sor based syste	ms.					
• D m • U o	Design hicropro Indersta f operat	system using memory chips ar ocessor. and and devise techniques for faster tions and enhance performance of m	nd peripheral execution of a icroprocessors	chips for 1 instructions, ir	6 bit 8085				
• D • U	Distingu Indersta	ish between RISC and CISC process and multi core processor and its adva	sors. antages.						
		Course Syno	psis						
Microcon Program	mputer ming, E	Structure and Operations, Micropro- Bus System, Microprocessors Interfa	cessors and Me cing, Introduct	emory, Assemition to 8086 ar	bly Language chitecture.				
		Course Outline /	Content						
Unit		Topics			Week				
1.	Micro Eleme Input	computer Structure and Operation ents, Typical Microcomputer Structu Output	ons: Basic M are, CPU, Mer	icrocomputer nory System,	2				
2.	Microprocessors and Memory: Typical 8, 16 and 32 bit Microprocessors,8085,Microprocessor Specification, Memory 2 Technologies 2								
3.	Assen Regist Addre Progra Subro	ably Language Programming: Pro- ters, Fetch, Execute Operation of essing Modes, Basic Operations, N am Flow, Control Using Looping an utines, Interrupts, Resets	ogramming Mo of CPU, Inst Aicroprocesson d Branching, S	odel of 8085, truction Set, Arithmetic, Stack,	3				

AGAR KASH		
4.	Bus System: System Bus Structure, Bus Operations, Cycle by Cycle	
	Operations, Timing and Control, Priority Management, Address	2
	Decoding	
5.	Microprocessors Interfacing: Interfacing concepts, Parallel Input	
	Output, Memory Interfacing, Direct Memory Access. The Serial	3
	Subsystems. Programmable Peripheral Interface, Analog Converter	
	Subsystem	
6.	Introduction to 8086 architecture: Main features and addressing	2
	modes, difference between 8085 and 8086.	
	Text Books	
1.	Microprocessor by Goankar	
2.	Microprocessor by Douglas Hall	
	References	
1.	8086/8088 family: Design Programming and Interfacing: John Uffenbe	eck.

Department of Computer Science & Engineering								
Course '	Title	Microprocessor Lab	Semester	gai	5 th			
Departn	nent	Computer Science &	Course Cod	e	CST308			
-		Engineering						
Credits		01	L		Т	Р		
Course '	Туре	Lab	0		0	2		
	Course Objectives							
• T n	To beco nicropro	ome familiar with the architectu ocessor.	re and Instr	uctio	n set of	Intel 8085		
• T	lo expo	se students, to the operation of typic	al 8085 microj	proce	ssor train	er kit.		
• T	To provi	ide practical hands on experience wi	th Assembly L	Langu	age Progi	ramming.		
• [Develop	and test assembly language program	ns to use instru	iction	s of 8085	j.		
• (Get fam	iliarize with interfacing of various	peripheral dev	vices	with 808:	5 using 8279		
с	hip.	C	1 1			U		
-	r ·	Learning Outc	omes					
By the e	nd of th	his course, the students will be able	to run program	ms or	n 8085 m	icroprocessor		
based sv	stems		10 1011 p10810		1 0000 111			
bused sy	stems.							
		Course Syno	psis					
To enabl	le a stud	lent to have a practical command ov	er the concept	s lear	ned in the	e course.		
		Course Outline /	Content					
Unit		Topics				Week		
1.	•	Develop a program to add two dou	ble byte numb	bers.		1		
	•	Develop a subroutine to add two fl	oating point q	uantit	ties.			
2.	Devel giving	op program to multiply two single l g a 16 bit product.	oyte unsigned	numł	bers,	1		
3.	Devel point	op subroutine which will multiply numbers.	v two positive	e floa	ting	1		
4.	Write numbe	program to evaluate P* Q*+R* ers.	& S are 8 b	oit bi	nary	1		
5.	Write numbe	a program to divide a 4 byte nun er	ber by anoth	er 4	byte	1		
6.	Write up to a	a program to divide an 8 bit number a fractional quotient of 16 bit	by another 8 b	it nun	nber	1		
7.	7. Write a program for adding first N natural numbers and store the 1 results in memory location X							
8.	Write C. The	a program which decrements a hex n e Program should half when the prog	umber stored i ram register re	in reg eads 7	ister zero.	1		
9.	Write progra the ab	a program to introduce a time dela am as a subroutine display numbers ove calculated time delay between e	y of 100 ms u from 01H to C	using DAH v	this with	1		
10.	N hez	x numbers are stored at consecut ag from X. Find the largest number a	tive memory nd store it at lo	locat locatio	ions n Y.	1		

AGAR KASHM		
11.	Interface a display circuit with the microprocessor either directly	1
	with the bus or by using I/O ports. Write a program by which the	
	data stored in a RAM table is displayed.	
12.	Design and interface a circuit to read data from an A/D converter,	1
	using the 8255 A in the memory mapped I/O.	
13.	• Design and interface a circuit to convert digital data into	1
	analog signal using the 8255 A in the memory mapped I/O.	
	• Interface a keyboard with the microprocessor using 8279	
	chip and transfer the output to the printer.	
14.	Design a circuit to interface a memory chip with microprocessor	1
	with given memory map.	
	Text Books	
1.	Microprocessor by Goankar	
2.	Microprocessor by Douglas Hall	
	References	
1.	8086/8088 family: Design Programming and Interfacing: John Uffe	enbeck

RINAGAR KASHMIB									
		Department of Computer Sci National Institute of Tech	ence & Engin nology Srinag	eering gar					
Course '	Title	Operating System	Semester	5 th					
Departn	nent	Computer Science &	Course Code CS		809				
-		Engineering							
Credits		04	L	Т	T P				
Course '	Туре	Theory	3	1	0				
		Course Objec	tives						
• 1	To under	rstand the services provided by and	the design of a	n operating	system.				
• 1	To under	rstand the structure and organization	of the file sys	tem.					
• 1	To under	rstand what a process is and how pro	ocesses are syn	chronized a	and scheduled.				
• 1	To under	rstand different approaches to memo	ory managemen	nt.					
• S	Students	should be able to use system calls f	or managing p	rocesses, m	emory and the				
f	ïle syste	em.							
• S	Students	should understand the data structu	res and algorit	thms used	to implement an				
(DS.								
		Learning Outo	omes						
On comp	pleting t	his course the students should have	acquired the fo	ollowing ca	pabilities:				
• A	An appre	eciation of the role of an operating s	ystem.						
• E	Become	aware of the issues in the manager	nent of resour	ces like pro	ocessor, memory				
a	ind inpu	t-output.							
• S	Should b	e able to select appropriate productive	vity enhancing	tools or uti	lities for specific				
n	needs lik	te filters or version control.							
• (Obtain s	ome insight into the design of an op-	erating system	•					
		Course Syno	psis						
The cou	ırse wil	ll provide an introduction to Ope	erating Systen	ns (OS), th	heir design and				
impleme	entation.	We will discuss the goals of an OS,	and some succ	essful and r	not-so-successful				
OS desi	gns. W	e will also discuss the following (OS services in	detail: th	read scheduling,				
security,	virtual	memory, file system. In this cour	se we will exp	plore the co	ore principles of				
operating	g syster	ns design and implementation, inc	luding basic of	operating s	ystem structure;				
process a	and thre	ad synchronization and concurrency	; file systems a	nd storage	servers; memory				
manager	ment teo	chniques; process scheduling and r	esource mana	gement; vi	rtualization; and				
security.			~						
T T •/		<u>Course Outline /</u>	Content		**7 1				
Unit	T (Topics			Week				
1.	Intro	duction: Operating system and f	unction, Evo	lution of					
	operat	ing system, Batch, Interactive, Time	Sharing and R	leal Time	1				
	System, System protection.								
2.	2. Operating System Structure: System Components, System								
2	structu	tre, Operating System Services.	Dulus	inter of	1				
3.	Conci	Irrent Processes: Process co	oncept, Princ	Section					
		mency, Producer Consumer Pro	in Concernation	Section	2				
	Proble	an, Semaphores, Classical problem	s III Concurren	hoduling	L				
4		Schoduling: Schoduling Concent	Dorformanaa	Critorio					
4.	CPU Sohod	uling Algorithm Evolution Multim	, renormance	uling	n				
1	Scheduling Algorithm, Evolution, Multiprocessor Scheduling. 2								

ANDAR KASI		
5.	Deadlock: System Model, Deadlock Characterization,	
	Prevention, Avoidance and Detection, Recovery from deadlock	2
	combined approach	
6.	Memory Management: Base machine, Resident monitor,	
	Multiprogramming with fixed partition, Multiprogramming with	
	variable partition, Multiple base register, Paging, Segmentation,	2
	Virtual memory concept, Demand paging, Performance, Paged	2
	replaced algorithm, Allocation of frames, Thrashing, Cache	
	memory, Organization, Impact on performance.	
7.	I/O Management & Disk Scheduling: I/O devices and	
	organization of I/O function, I/O Buffering, DISK I/O, Operating	2
	System Design Issues.	
8.	File System: File Concept, File Organization and Access	n
	Mechanism, File Directories, File Sharing, Implementation Issues.	2
	Text Books	
1.	J. Peterson, A. Silberschatz, and P. Galvin. Operating System Cond	cepts, Addison
	Wesley, 3rd Edition, 1989.	
2.	Andrew S. Tannenbaum, "Modern Operating Systems", Prentice H	[all.
3.	William Stallings "Operating Systems – Internals and design princ	ciples", Prentice
	Hall	
	References	
1.	D.M Dhamdhere: Operating systems - A concept based Approach,	3rd Edition,
	Tata McGraw- Hill, 2012.	
2.	P.C.P. Bhatt: Introduction to Operating Systems Concepts and Pra	ctice, 3rd
	Edition, PHI, 2010	
3.	Harvey M Deital: Operating systems, 3rd Edition, Pearson Educati	on, 2011.

KASHMIDO	MAGAR KASHWIBU					
Department of Computer Science & Engineering National Institute of Technology Srinagar						
Course T	itle Pytho	n Programming	Semester	5 th		
Departme	ent CSE		Course Code	e CST310)	
Credits	04		L	Τ	Р	
Course T	ype Theor	·у	3	1	0	
		Course	Objectives			
 Course Objectives To learn Syntax, Semantics and create Functions and to handle strings and files in Python. To understand Lists, Dictionaries, and Regular Expressions in Python. To implement OOP concepts in Python. To build web services and Introduction to Network and Database Programming in Python. Learning Outcomes The students should be able to: Understand Python syntax and semantics and be fluent in the use of Python flow control and functions. Demonstrate proficiency in handling Strings and File Systems. Implement Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions. Interpret the concepts of Object-Oriented Programming as used in Python. Implement exemplary applications related to Network Programming, Web Services and Databases in Python. 						
expression expression	is and staten is; Networke	ents; Functions; Strin d Programs; Unix We Course Out	gs; Files; Lists; Dic b Services; OOP; Us line / Content	tionaries; Tu sing Database	ples; Regular s	
Unit		Topics	S		Week	
1.	Why should and statemer	you learn to write prog ts, Conditional execut	grams, Variables, exp ion, Functions	pressions	3	
2.	Iteration, Str	ings, Files			3	
3.	Lists, Diction	naries, Tuples, Regula	r Expressions		3	
4.	Classes and o	bjects, Classes and fu	nctions, Classes and	methods	2	
5.	Networked p SQL	rograms, Using Web S	Services, Using datab	bases and	3	
ļ		Text	Books			
 Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3", 1st Edition, CreateSpace Independent Publishing Platform, 2016. (http://do1.drchuck. com/pythonlearn/EN_us/pythonlearn.pdf) (Chapters 1 – 13, 15) 						
2.	2.Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2ndEdition, Green Tea Press, 2015. (http://greenteapress.com/thinkpython2/thinkpython2.pdf) (Chapters 15, 16, 17)					
1		Kete	rences	Islas D (1)		
1.	Charles Dier Wiley India	pach, "Introduction to Pvt Ltd. ISBN-13: 978	Computer Science U 8-8126556014	Jsing Python'	, 1st Edition,	

KASHMI	
2.	Mark Lutz, "Programming Python", 4th Edition, O'Reilly Media, 2011.ISBN-13:
	978-9350232873
3.	Wesley J Chun, "Core Python Applications Programming", 3rdEdition,Pearson
	Education India, 2015. ISBN-13: 978-9332555365
4.	Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data Structures
	and Algorithms in Python",1stEdition, Wiley India Pvt Ltd, 2016. ISBN-13: 978-
	8126562176
5.	Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data Structures
	and Algorithms in Python",1stEdition, Wiley India Pvt Ltd, 2016. ISBN-13: 978-
	8126562176

MAGAR KASHMILL		Department of Computer Sc	tience & Engineeri	ing	
Course	Titla	Puthon Programming Lab	Somostor	5th	
Doportr	nont	Computer Science &	Course Code		11
Departi	nem	Engineering	Course Coue	CS15	11
Credits		01	T	т	р
Course	Type	Lab		<u> </u>	2
Course	турс	Lau Course Obje	ctives	0	2
• T	To learn	Syntax Semantics and create Fu	unctions and to han	dle strij	ngs and files in
• I F	vthon	Syntax, Semanties and create 1 d	inctions and to nan	uic suin	ings and mes m
• 7	yunon. Fo under	rstand Lists Dictionaries and Rec	ular Expressions in	n Pythoi	n
• 7	Fo imple	ement OOP concepts in Python		ii i yuuoi	
• 7	Fo build	web services and Introduction to	Network and Dat	abase P	rogramming in
F	vthon.				10814
	Junom	Learning Out	comes		
The stud	lents sho	ould be able to:			
• U	Jndersta	and Python syntax and semantics	and be fluent in the	he use	of Python flow
с	ontrol a	and functions.			-
• I	Demons	trate proficiency in handling Strin	gs and File System	s.	
• I	mpleme	ent Python Programs using core d	ata structures like	Lists, D	Dictionaries and
u	ise Regi	llar Expressions.			
• I	nterpret	the concepts of Object-Oriented	Programming as us	ed in Py	thon.
• I	mpleme	ent exemplary applications related	to Network Progra	amming	, Web Services
a	ind Data	bases in Python.			
		Course Syne	opsis		
Introduc	tion to	Python Programming; Building	blocks of a pytho	n progr	am: Variables,
expressi	ons and	statements; Functions; Strings; H	Files; Lists; Diction	naries; 7	Suples; Regular
expressi	ons; Ne	tworked Programs; Unix Web Ser	vices; OOP; Using	Databa	ses
		Course Outline	/ Content		
Unit		Topics			Week
1.	Imple	ment a sequential search			1
2.	Create	e a calculator program			1
3.	Explo	re string functions			1
4.	Imple	ment Selection Sort			1
5.	Imple	ment Stack			1
6.	Read	and write into a file			1
7.	Demo	nstrate usage of basic regular exp	ression		1
8.	Demo	nstrate use of advanced regula	r expressions for	data	1
_	valida	tion.			
9.	Demo	nstrate use of List			1
10.	Demo	nstrate use of Dictionaries			1
11.	Create	e Comma Separate Files (CSV)	, Load CSV files	into	1
	intern	al Data Structure			
12.	Write	script to work like a SQL SELEC	T statement for int	ernal	1
	Data S	structure made in earlier exercise			
13.	Write	script to work like a SQL Inner J	oin for an internal	Data	1
	Struct	ure made in earlier exercise	-		
		Text Boo	ks		

inter inter	
1.	Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3",
	1st Edition, CreateSpace Independent Publishing Platform, 2016.
	(http://do1.drchuck. com/pythonlearn/EN_us/pythonlearn.pdf) (Chapters $1 - 13$,
2.	Allen B. Downey, "Think Python: How to Think Like a Computer Scientist",
	2ndEdition, Green Tea Press, 2015.
	(http://greenteapress.com/thinkpython2/thinkpython2.pdf) (Chapters 15, 16, 17)
	References
1.	Charles Dierbach, "Introduction to Computer Science Using Python", 1st Edition,
	Wiley India Pvt Ltd. ISBN-13: 978-8126556014
2.	Mark Lutz, "Programming Python", 4th Edition, O'Reilly Media, 2011. ISBN-13:
	978-9350232873
3.	Wesley J Chun, "Core Python Applications Programming", 3rdEdition, Pearson
	Education India, 2015. ISBN-13: 978-9332555365
4.	Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data Structures
	and Algorithms in Python", 1stEdition, Wiley India Pvt Ltd, 2016. ISBN-13: 978-
	8126562176
5.	Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data Structures
	and Algorithms in Python". 1stEdition. Wiley India Pyt Ltd. 2016. ISBN-13: 978-
	8126562176
1	UTEUD UET I U

MAGAR KASHMISS		• • • • •	• • •				
Department of Computer Science & Engineering National Institute of Technology Srinagar							
Course	Fitle Data Communication	Semester	5 th				
Departr	nent Computer Science & engineering	Course Code	e CST31	2			
Credits	04	L	<u> </u>	P			
Course	Fype Theory	3	1	0			
	Course Obje	ctives					
•]	o understand the concept of communication	on engineering,	signals, char	nels and			
С	ommunication systems.	0 0	0				
•]	o understand and analyze the characteristi	cs of various me	odulation tec	hniques.			
•]	'o critically analyze various modulation te	chniques used ir	n modern cor	nmunication			
S	ystems						
•]	o solve basic network design problems us	ing knowledge o	of common l	ocal and wide			
a	rea network architectures.						
•]	o apply knowledge of computers, softwar	e, networking te	chnologies a	nd			
1	Inormation assurance to an organization's	nanagement, op	berations, and	requirements.			
Ry tha a	Learning Out	comes					
	dentify various components in a data comp	J.	m describe f	bair properties			
• 1	xplain how they work and evaluate their p	erformance.	iii, describe t	lien properties,			
	Aprian now mey work and evaluate them p	me that require	the engliceti	one of data and			
• 1	omputer communication technology	enis that require	the application	ons of data and			
Ĺ	Course Syn	neie					
Samplin	g: Nyquist sampling theorem: Digital modu	lation Techniqu	les. Line cod	ing techniques:			
Data tra	smission: Multiplexing Techniques: Error	s in data comm	unication: B	asic concept of			
network	LAN, MAN and WAN.		, _				
	Course Outline	' Content					
Unit	Topics			Week			
1.	Data and Signals: Data, Signals, Types	s of Signals, Ba	ndwidth,				
	spectrum, Digitization of analog sigr	als, sampling,	Nyquist	1			
	sampling theorem, quantization, quantiz	ation noise, Pu	ulse code				
	modulation.						
2.	Digital modulation Techniques: ASK, J	SK, PSK, DPS	K, M-ary	1			
	PSK, QAM. Signal constellation.			1			
3.	Line coding techniques: NRZ, RZ, Bipl	ase, Mancheste	er coding,				
	AMI, HDBn.			2			
4.	4. Transmission media : Guided and un-guided media, twisted wire						
	pair, co-axial cable, optical fibre, microwave links, satellite 2 microwave link their characteristic features and emplications for						
data transmission							
5	Data transmission: simpley half d	inlex and full	dunley				
5.	J. Jata transmission. Simplex, nan duplex and full duplex, Asynchronous and synchronous data transmission. Carrier bit and 2						
	frame synchronization techniques. Phase lock loop						
6.	Multiplexing Techniques: Frequency	Division Mult	tiplexing.				
			· · · · · ·				
	Time Division Multiplexing, Waveleng	h division Mul	tiplexing	2			
5.	data transmission: Data transmission : simplex, half du Asynchronous and synchronous data tran frame synchronization techniques, Phase Multiplexing Techniques: Frequency	plex and full smission. Carrie lock loop. Division Mult	duplex, er, bit and tiplexing,	2			

Errors in data communication: Types of errors, error detection	
and correction techniques, forward error correction, polynomial	2
error detection scheme, computation of CRC. Hardware.	
Data communication network: Basic concept of network,	
Advantages and applications, Types of networks (LAN, MAN and	2
WAN), Different network topologies like star, ring, hybrid, tree.	
Text Books	
William Stallings: Data & Computer Communications, 7th Ed, PH	Ι
Andrew Tanenbaum, "Computer Networks" PHI	
References	
Sklar, "Digital Communications fundamentals & Applications"2nd	Ed Pearson Pub
Keizer, "Local Area Networks" McGraw Hill	
	Errors in data communication: Types of errors, error detection and correction techniques, forward error correction, polynomial error detection scheme, computation of CRC. Hardware. Data communication network: Basic concept of network, Advantages and applications, Types of networks (LAN, MAN and WAN), Different network topologies like star, ring, hybrid, tree. Text Books William Stallings: Data & Computer Communications, 7th Ed, PH Andrew Tanenbaum, "Computer Networks" PHI References Sklar, "Digital Communications fundamentals & Applications"2nd Keizer, " Local Area Networks" McGraw Hill

VAGAR KASHMIBU							
		Department of Computer Sci National Institute of Tech	ence & Engine nology Srinaga	ering ar			
Course 7	Title	Artificial Intelligence	Semester	6 th			
Departn	nent	Computer Science &	Science & Course Code CST		ST352		
	-						
Credits	Credits 04 L T						
Course '	Гуре	Theory	3	1	0		
. т	· · · · · · · · · · · · · · · · · · ·	Course Objec	tives				
• 1	o unde	rstand the fundamentals of compu	tational intellige	nce			
• 1	o know	about the various knowledge repr	resentation meth	lods			
• T	o unde	rstand the features of neural netwo	ork and its imple	mentation			
•]	Γo stud	y about various data clustering me	thods				
• T	o gain	knowledge in evolutionary compu	tation and neuro	o – fuzzy sy	ystems		
		Learning Out	comes				
• I1	mpleme	ent computational intelligence thro	ugh applications	S			
• U	Indersta	and knowledge representation met	hods and apply a	approxima	te reasoning		
• A	Apply ev	volutionary algorithm to solve the	optimization pro	oblem			
• (Gain res	search Knowledge to develop appl	ications using h	ybrid syste	ems		
• A	ble to l	Model Flexible Fuzzy Inference sy	stems for dynar	nic nonline	ear data sets.		
		Course Syno	psis				
Introduct	tion and	history of AI; Knowledge represe	ntation; Inference	ce mechani	isms; Machine		
Learning	g and Ex	xpert systems.	,		,		
		Course Outline /	Content				
Unit		Topics			Week		
1.	Intro	duction to Al And P	roduction S	ystems	2		
	: Intro	duction to AI-Problem formulatio	n, Problem Defi	nition -			
	Produ	ction systems, Control strategi	es, Search stra	ategies.			
	Proble	em characteristics, Production sy	stem character	istics -			
	Specia Droble	alized production system- Proble	em solving met	nods -			
	F10016	Climbing Depth first and Bre	ath first Con	straints			
	satisfa	action - Related algorithms Measured	re of performar	ice and			
	analys	sis of search algorithms.					
			1				
2.	Repre	esentation of Knowledge: Game	playing - Kno	wledge	3		
	representation, Knowledge representation using Predicate						
nedicate calculus. Knowledge representation using other logic-							
	Struct	ured representation of knowledge.	ution using othe	liogie			
3.	Know	ledge Inference: Knowledge repr	resentation -Pro	duction	3		
	based	system, Frame based system.	Interence - Ba	ckward			
	reason	ng, rorward chaining, Kule Va	aue approach,	FUZZY			
	Netwo	ork-Demoster - Shafer theory	siali ilicuiy-Da	ayesiali			
	1.00000	Sin Sempoter Shuter theory.					

CAR KAC		
4.	Planning and Machine Learning : Basic plan generation systems - Strips -Advanced plan generation systems – K strips -Strategic explanations -Why, Why not and how explanations. Learning- Machine learning, adaptive Learning.	3
5.	Expert Systems : Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON, Expert systems shells.	3
	Text Books	
1.	Deepak Khemani. A First Course in Artificial Intelligence	, McGraw Hill
	Education (India), 2013	
2.	Stuart Russell and Peter Norvig.ArtificialIntelligence: A Moder	n Approach, 3rd
	Edition, Prentice Hall, 2009.	
-	References	
1.	Stefan Edelkamp and Stefan Schroedl. Heuristic Search Applications, Morgan Kaufmann, 2011.	n: Theory and
2.	John Haugeland, Artificial Intelligence: The Very Idea, A Brac MIT Press, 1985	lford Book, The
3.	Pamela McCorduck, Machines Who Think: A Personal Inquiry	into the History
	and Prospects of Artificial Intelligence, A K Peters/CRC Press; 2	2 edition, 2004.
4.	Zbigniew Michalewicz and David B. Fogel. How to Solve It: Mo	odern Heuristics.
	Springer; 2nd edition, 2004.	
5.	Judea Pearl. Heuristics: Intelligent Search Strategies for Con Solving, Addison-Wesley, 1984.	mputer Problem

Department of Computer Science & Engineering National Institute of Technology Sringgar						
Course T	`itle	Artificial Intelligence Lab	Semester	541	6 th	
Departm	ent	CSE	Course Code	e	CST353	
Credits		01	L		Т	Р
Course T	'ype	Lab	0		0	2
		Course Objec	tives			
• To	o under	rstand the concepts of Artificial int	telligence and	mac	hine learr	ning.
• To	o under	rstand and practice prolog and pytl	non.			
• To	o under	rstand and practice various classifi	ers like SVM	and	neural net	tworks.
• To	o under	rstand and practice logic and reaso	ning through l	ogic	program	ming.
		Learning Outo	omes			
• De	evelop	the basic logic programs.				
• Ur	ndersta	anding the implementation of vario	ous machine le	arni	ng librario	es like torch,
ter	nsor flo	ow.			e	
• Ha	ands or	n experience on applying various c	lassifiers on N	ANIS	ST datase	t.
		Course Outline /	Content			
Unit		Topics				Week
1.	Study	of PROLOG.			1	
2.	Write	a program to solve 8 queens' prob	lem		1	
3.	Solve	any problem using depth first sear	ch.		1	
4.	Solve	any problem using best first search	h.		1	
5.	Solve	8-puzzle problem using best first s	search		2	
6.	Solve	Robot (traversal) problem using m	neans End Ana	lysi	s 2	
7.	Solve	traveling salesman problem.			2	
8.	Imple	ementation of Linear and Logistic	regression.		2	
9.	Imple	menting classifiers on MNIST Dat	a set.		2	

	Department of Computer Sc National Institute of Tecl	ience & Enginee nnology Srinaga	ering r	
Course '	Fitle Computer Networks	Semester	6 th	
Departn	tent Computer Science & Engineering	Course Code	CST35	4
Credits	04	L	Т	Р
Course '	Fyne Theory	3	1	0
	Course Obie	rtives	_	
• [Inderstand network models and architectur	es		
 S n A n E c Jpon co 	pecify and identify deficiencies in existing ew and better protocols. Analyse, specify and design the topological etworking infrastructure. Explain concepts and theories of networking lassifying networks <u>Learning Out</u> mpletion of the course the student will be a	and routing strat and apply them comes ble to:	en go on to egies for ar to various	o formulate n IP based situations,
• E in • E • C • E • E • E	Describe and analyse the hardware, softwar interrelations. Explain networking protocols and their hier Compare protocol models and select approp Develop solutions for networking Explain concepts and theories of networking lassifying networks	e, components of archical relations priate protocols fo g and apply them	a network hip or a particu to various	and the lar design. situations,
The cour	Course Sync rese aims to familiarise the student with network	opsis working concepts	. protocols	and the
nternet.			, protocols	
Unit	Course Outline /	Content		Wook
	Topics	and annliastions	Tunas	1
1.	of networks (LAN, MAN and WA topologies like star, ring, hybrid, tree.	N), Different r	, Types network	1
2.	Network Protocol Architecture : OSI R of the OSI model. Physical, Data-lin Session, Presentation and Application lay	Reference model, k, Network, Tra rer.	Layers ansport,	1
3.	Network Switching Techniques: Circ switching and packet switched network circuit services, Frame relay, ATM	cuit switched, n s, Datagram and	nessage virtual	2
4.	Flow and Error Control: Stop and wa window flow control, error control prot Stop-&-wait ARQ, Go back by N ARQ, S	ait flow control, ocols, ARQ tech Selective repeat A	Sliding niques, ARQ.	2
5.	Routing algorithms: Routing tables, algorithm, classification, optimality prin path algorithm, Dijkstra algorithm, fl random routing, adaptive routing, distan algorithm. Congestion Control: Congestion in n	features of a ciple, sink tree, s looding, fixed n ce vector and lin etworks and qua	routing shortest couting, nk state ality of	2

OAN KAO					
6.	Medium Access Control Protocols: TDMA, FDMA, CDMA,	2			
	ALOHA, Slotted ALOHA, CSMA, CSMA/CD, Ethernet, Token				
	Ring network				
7.	Network security: Need for network data security, plaintext,	2			
	cyphertext, encryption techniques, substitution, transposition,				
	DES encryption standard, Private key, public key, Authentication.				
8.	Internetworking and Internet fundamentals: Network	2			
	Interconnections, Bridges, Routers, Internet Concepts, Brief				
	concepts about common Channel signalling and Integrated				
	Text Books				
1.	William Stallings: Data & Computer Communications, 7th Ed, PHI				
2.	Andrew Tanenbaum, —Computer Networks, PHI				
3.	Peterson and Davie, "Computer Networks, A Systems Approach",	5th ed., Elsevier,			
	2011				
	References				
1.	Keizer, — Local Area Networks, McGraw Hill				
2.	Sklar, —Digital Communications fundamentals & Applications 2nd Ed Pearson				
	Pub.				
3.	Ying-Dar Liu, Ren-Hung Hwang, Fred Baker, "Computer Network	s: An Open			
	Source Approach", McGraw-Hill, 2011.	-			

Department of Computer Science & Engineering					
		National Institute of Tech	nology Srinag	ar sth	
Course '	Title	Computer Networks Lab	Semester	6 ^{un}	
Departn	nent	Computer Science &	Course Code	CST:	355
		Engineering	-		
Credits		01	L	<u> </u>	<u> </u>
Course	Гуре	Lab	0	0	2
		Course Object	ctives		
• 1	lo gain a	a firm understanding of networking	concepts learne	ed in the co	ourse work by
p	ractical	demonstration.			
• F	Have wo	rking knowledge of the protocols to	be used at vario	ous levels o	of the architecture
		Learning Out	comes		
The stud	ent sho	uld be able to:			
• S	let up L	AN for home, office and similar con	nfigurations		
• S	Secure th	ne network by installing of firewalls	and other secu	rity measu	ires.
				•	
		Course Syno	psis		
The obj	ective of	of the lab course to familiarise st	udents with ne	tworking	concepts from a
practical	perspec	ctive.		U	
-	• •	Course Outline /	Content		
Unit		Topics			Week
1.	Introd	uction & Network Wire Crimping			1
2.	Etherr	net			1
3.	Token	Ring			1
4.	Switch	hed LANs			1
5.	Netwo	ork Design			1
6.	ATM	0			1
7.	RIP: F	Routing Information Protocol			1
8.	OSPF	: Open Shortest Path First			1
9.	TCP:	Transmission Control Protocol			1
10.	Oueui	ng Disciplines			1
11.	RSVP	: Resource Reservation Protocol			1
12	Firewa	alls and VPN			1
1.	Applic	cations			2
		Text Book	s		
1.	Willia	m Stallings: Data & Computer Con	nmunications, 7	th Ed, PHI	
2.	Andre	w Tanenbaum, —Computer Netwo	rks, PHI	,	
3.	Peters	on and Davie, "Computer Networks	s, A Systems A	pproach".	5th ed., Elsevier.
	2011				
	References				
1.	Keizer	r, — Local Area Networks, McGrav	w Hill		
2.	Sklar.	-Digital Communications fundam	entals & Appli	cations 2n	d Ed Pearson
	Pub.	5	11		
3.	Ying-	Dar Liu, Ren-Hung Hwang, Fred B	aker, "Compute	er Network	s: An Open
	Source	e Approach", McGraw-Hill, 2011.	. 1		I

WAGAR KASHMIDU				•				
	Department of Computer Science & Engineering National Institute of Technology Srinagar							
Course	Title	Theory of Computation	Semester	6 th				
Departn	nent	Computer Science &	Course Code	e CST	e CST356			
		Engineering						
Credits		04	L	Т	ГР			
Course	Туре	Theory	3	1	0			
		Course Ol	bjectives					
• (Classify	machines by their power to rec	cognizelanguages.					
• E	Employ	finite state machines to solve p	roblems incomput	ing.				
• 7	o desig	n grammars and recognizers for	or different formal	languages	8			
• (Comprel	hend the hierarchy of problems	arising in the com	puterscie	nces.			
	1	5 1	0	1				
		Learning (Dutcomes					
After co	mpletin	g this course, the student shoul	d be able to:					
• T	Jndersta	and various Computing mod	els like Finite S	tate Mac	hine, Pushdown			
A	Automat	a, and Turing Machine;						
• t	Jndersta	and Decidability and Undecidal	bility of various pr	oblems.				
		Course S	vnopsis					
Complex	kity of c	computations; theorems and pro-	ofs; Finite Autom	ata: conte	ext free grammar;			
pushdow	n autor	nata; concepts in parsing; Turi	ng machines; Com	plexity th	eory.			
1		Course Outlin	ne / Content	1 7	5			
Unit		Topics			Week			
1.	Intro	duction: Complexity of	computations, a	utomata,				
	comp	utability, complexity, mat	hematical notio	ns and	3			
	termir	ology, definitions, theorems an	nd proofs, types of	proofs.				
2.	Autor	nata & Languages: Finite Au	itomata, Non-dete	rminism,	3			
	regula	r expressions, non-regular exp	ressions					
3.	Conte	ext free languages: context	free grammar, p	ushdown				
	autom	ata, non-context free languag	ges, equivalences	closure	3			
	proper	rties, concepts in parsing.						
4.	Comp	outability theory: Turing made	chines, variants o	f Turing				
	machi	nes, the definition of	Algorithm, Dec	idability,	3			
	reduci	bility, advanced topics in comp	putability theory-	recursion				
	theore	em etc.						
5.	Comp	olexity theory- time compl	exity, space con	nplexity,	2			
	intract	tability.						
Text Books								
	1. C. Papadimitrou and C. L. Lewis. Elements of Theory of Computation, Prentice-							
	Hall,1981.							
2.	J.E. H	opcrott and J.D. Ullman. Intro	auction to Antoma	ita Theory	1			
1	Last	Ketere	nces	Indian - 1	tion available			
1.	from	lages of Computations, Addiso	n-wesiey, 1979. (.	maran edi	uon available			
2		Natusa.)	tion" Or I					
2.	Micha	iei Sipser, "Theory of Computa	uion, Cengage L	earning.				

Department of Computer Science & Engineering National Institute of Technology Srinagar					
Course 7	Fitle	Computer Graphics	Semester	6 th	
Departn	nent	Computer Science &	Course Code	e CST	357
Engineering					
Credits		04	L	Т	Р
Course 7	Гуре	Theory	3	1	0
		Course Objec	tives		
• S	tudents	will demonstrate an understanding	g of contempor	ary graphi	cs hardware
a	nd of	basic terminology, scope and techr	iques of Comp	outer Grap	hics.
• D	Demons	trate and implement the 2D primiti	ve drawing alg	orithms	
• D	Demons [®]	trate area filling algorithms, line/ F	olygon clippin	g along wi	ith various 2D
tr	ansform	nations2D viewing and Coordinate	e representation	ıs.	
• U	Indersta	and the 3D graphic primitives along	g with various	Transform	ations and
C	Other alg	gorithmsand Projection Technique	s for representi	ng 3D gra	phic objects
		Learning Out	comes		
• S d	tudents rawing	will have an understanding of 2D polygon filling, clipping, and tran) graphics and sformations.	algorithm	s including: line
• S v m	tudents iewing napping	will understand the techniques u transformations, hierarchical m g.	sed in 3D con odelling, colo	nputer gra our, lighti	phics, including ng and texture
		Course Syno	psis		
Introduct projectio	tion to n; Shac	graphics primitives; geometric t ling models; picture synthesis and	ransformation; analysis.	parallel	and perspective
1 5	,	Course Outline /	Content		
Unit		Topics			Week
1.	Intro	duction: Co-ordinate representatio	n, Pixel, Raster	r Scan &	
	Rando	om Scan methods, colour CRT Ra	ster scan basic	es, video	
	basics	, interactive devices, graphics inp	out and output	devices,	2
	mouse	e, track ball, light pen, digitizer, th	umb wheel, ra	ster scan	
	graph	ics.			
2.	Grap	hics Primitives: 2D Primitives - O	utput primitive	s – Line,	
	Circle	and Ellipse drawing algorithms	- Attributes of	of output	
	primit	ives – Two dimensional Geometri	c transformatio	on - Two	3
	dimen	sional viewing –Line, Polygon, C	urve and Text	clipping	
	algorithms.				
3.	3. Parallel and Perspective projections : Three dimensional object				
	representation –Polygons, Curved lines, Splines, Quadric 3				
	Surfaces- Visualization of data sets - 3D transformations –				
	Viewi	ng -Visible surface identification.	Basic Raster	Graphics	
	Algor	ithms. Geometric Modelling in	5-D. Viewing	1n 3-D.	
	Conce	ept of Synthetic Camera. Dialogue	Design. Graph	ncs User	
	Interfa	aces. Windowing Systems.	1 1	a .	
4.	Rend	ering: Introduction to Shading mo	dels – Flat and	Smooth	
	shadir	ng – Adding texture to faces – Add	ling shadows o	t objects	

MOAR KAST				
	– Building a camera in a program – Creating shaded objects –	3		
	Rendering texture – Drawing Shadows, Graphical Modelling of			
	Discrete events.			
5.	Introduction to Picture Synthesis and Analysis: Conceptual			
	Framework of an Interactive Graphical Simulation System.			
	Simulation of Discrete Event Displays, Animation Techniques,	3		
	Basic Rules for Animation. Graphical Simulation of continuous			
	motion. Role of Virtual Reality in Graphical Simulation.			
Text Books				
1.	Computer Graphics by Hearn and Baker, PHI			
2.	Preparata, Shamos, Computational Geometry- An Introduction.			
	References			
1.	1. Procedural Elements for Computer Graphics by Rogers, TMH.			
2.	2. Mathematical Elements for Computer Graphics by Rogers and Adams, Mac			
	Graw Hills			
3.	3. Computer Graphics: Schaum's Outline of Computer Graphics by Roy A Plastock			
1.	1. Research papers/Journal Articles from Standard Sources			

Department of Computer Science & Engineering National Institute of Technology Srinagar					
Course 7	Fitle	Computer Graphics Lab	Semester	6 th	
Departn	nent	Computer Science &	Course Code	CST.	358
-		Engineering			
Credits		01	L	Т	P
Course 7	Гуре	Lab	0	0	2
		Course Obje	ctives		
• Ir	npleme	nt the 2D primitive drawing algorithm	ns		
• D	emonst	rate and Implement the 2D transform	ation techniques		
• D	Demons	trate and implement the 3D transf	ormation technic	ques	
• Ir	npleme	nt Animation scenes			
		Learning Out	tcomes		
By the er	nd of th	is course, the students will beable	to:		
• Iı	mpleme	ent the algorithms for drawing the	basic graphic pr	imitives.	
• A	Apply di	ifferent kinds of transformations.			
• D	Draw the	ree dimensional objects.			
• 6	Generate	e fractal images.			
		Course Syn	opsis		
Bresenha	am's a	lgorithms for drawing line,	circle and ell	ipse; Tw	vo dimensional
transform	nations,	, Three dimensional transformation	ns, Composite ti	ransforma	tions.
	1	Course Outline	/ Content		
Unit		Topics			Week
1.	Imple	mentation of Bresenham's Algori	thm – Line, Circ	le,	2
	Ellips	e. Implementation of Line, Circle	and ellipse Attri	butes.	
2.	Two I	Dimensional transformations - Tra	Inslation, Rotatio	on,	2
	Scalin	ig, Reflection, Shear.			
3.	Comp	osite 2D Transformations.	**** 1 *		2
<u>4.</u>	Coher	Sutherland 2D line clipping and	Windowing		<u> </u>
5.	Suther	rland – Hodgeman Polygon clippi	ng Algorithm.		1
6.	Inree	dimensional transformations - 1r	anslation, Rotati	on,	2
7	Comp	osite 3D transformations			2
7. 8	Drawi	ing three dimensional objects and	Scenes		<u> </u>
<u> </u>	Gener	ating Fractal images	Scenes.		1
).	Gener	Text Roo	ks		1
1	1 Computer Graphics by Hearn and Baker, DHI				
2	2 Preparata Shamos Computational Geometry An Introduction				
	2. reparata, Shamos, Computational Ocontery- An Intoduction. References				
1.	Proce	dural Elements for Computer Gra	phics by Rogers.	TMH.	
2	Mathe	ematical Elements for Computer G	Braphics by Roge	ers and A	lams, Mac
	2. Mathematical Elements for Computer Graphics by Rogers and Adams, Mac				
	Graw	Hills.			
3.	Graw Comp	Hills. uter Graphics: Schaum's Outline	of Computer Gra	aphics by	Roy A

Research papers/Journal Articles from Standard Sources.

Department of Computer Science & Engineering National Institute of Technology Sripagar							
Course	Fitle	IAVA Programming	Semester	6 th			
Departm	nent	Computer Science &	Course Code	e CST	T359		
Credita							
Credits		U3		1		<u>P</u>	
Course	l ype	Course Obies		0		2	
• T	he Stud	lents will learn to create Classes an	d their Objects	5.			
• L	earn ar	nd implement principles and concept	ots of Object O	rientation	such a	S	
А	bstract	ion, Data Hiding, Polymorphism.					
• I	Develop	p programs by using inbuilt librarie	s and importin	g Package	s. The	students	
W	ill lear	n to create and handle threads, inter	rfaces and app	lets.			
		Course Syno	psis				
On comp	oletion	of the course the student should be	e able to: Use	an integrat	ed dev	elopment	
environm	nent to	write, compile, run, and test simple	object-oriented	l Java pro	grams.	Read and	
make ele	mentar	y modifications to Java programs t	hat solve real-	world prot	lems.		
Unit			Content		v	Veek	
1	Over	view of Basic OOP Concepts: Neg	ed for object-o	riented	•	2	
	paradigm: Agents, responsibility, messages, methods, classes and instances, class hierarchies (Inheritance), method binding, datatypes, variables, scope and life time of variables, arrays, operators, expressions, control statements, type conversion and casting, classes and objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, parameter passing, recursion, string handling, inheritance, super keyword, polymorphism- method overriding, abstract classes.				-		
2.	2. Packages and Interfaces: Defining, Creating and Accessing a 2 Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an 2 interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring 2 packages – Java.io, Java.util. 2 2				2		
3.	Excep excep Termi of try, creatin	tion handling and multithreadin tion handling, benefits of exceptior nation or resumptive models, excep catch, throw, throws and finally, b ng own exception sub classes. Diffe	g: Concepts of handling, ption hierarchy puilt in exception erences betwee	t 7, usage ons, en multi		2	

NAGAR KASHMIBU					
	threading and multitasking, thread life cycle, creating threads, synchronizing threads, daemon threads, thread groups.				
4.	Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes, inner classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, check box groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – boarder, grid, flow, card and grib bag.	1			
5.	Applets: Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets.	2			
6.	Swing: Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing-JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.	2			
7.	JDBC : JDBC Drivers, JDBC API,Executing statements, prepared statements and callable statements	1			
	Text Books				
1.	An Introduction to programming and OO design using Java, J.Ni Hosch, John wiley& sons.	no and F.A.			
2.	An Introduction to OOP, second edition, T. Budd, pearson educa	tion.			
	References				
1.	Introduction to Java programming 6th edition, Y. Daniel Liang, I education.	Pearson			
2.	An introduction to Java programming and object oriented applica development, R.A. Johnson-Thomson.	ation			
3.	. Core Java 2, Vol 1, Fundamentals, Cay.S.Horstmann and Gary Edition, Pearson Education.	Cornell, seventh			

Department of Computer Science & Engineering National Institute of Technology Srinagar 7th **Course Title Compiler Design** Semester Computer Science & Department CST415 **Course Code** Engineering Credits 03 L Т Р **Course Type** 3 0 Theory 0 **Course Objectives**

The objective of this course is to provide To understand different phases of compilation process.

- To analyse and implement various parsing techniques.
- To understand and analyse intermediate code.
- To realize the importance of code optimization and code generation

Learning Outcomes

After completion of this course the students should be able to have a basic understanding required for design of compilers.

Course Synopsis

Structure of compiler, Lexical analysis, Syntax analysis, Bottom up and top down evaluation of attributes, type checking, storage organization, intermediate code generation, basic blocks and flow graphs, register allocation, code generation, peep hole optimization, code generator generators.

Course Outline / Content

Unit	Topics	Week	
1.	Compiler structure: analysis-synthesis model of compilation, various phases of a compiler, tool based approach to compiler construction.	1	
2.	Lexical analysis: Interface with input, parser and symbol table, token, lexeme and patterns. Difficulties in lexical analysis, Error reporting and Implementation. Regular definition, Transition diagrams, LEX.	1	
3.	Syntax analysis: CFGs, ambiguity, associativity, precedence, top down parsing, recursive descent parsing, transformation on the grammars, predictive parsing, bottom up parsing, operator precedence grammars, LR parsers (SLR, LALR, LR), YACC.	2	
4.	Syntax directed definitions : inherited and synthesized attributes, dependency graph, evaluation order, bottom up and top down evaluation of attributes, L- and S-attributed definitions.	2	
5.	Type checking: type system, type expressions, structural and name equivalence of types, type conversion, overloaded functions and operators, polymorphic functions.	2	
6.	Run time system: storage organization, activation tree, activation record, parameter passing, symbol table, dynamic storage allocation.	2	
7.	Intermediate code generation: intermediate representations, translation of declarations, assignments, control flow, Boolean expressions and procedure calls and Implementation issues.	2	
8.	Code generation and instruction selection: issues, basic blocks and flow graphs, register allocation, code generation, dag representation of programs, code generation from DAGs, peep hole optimization, code generator generators, specifications of machine.	2	
	Text Books		
1.	A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools Addison-Wesley, 1988.		
2.	C. Fischer and R. LeBlanc. Crafting a Compiler, Benjamin Cummings, 1991.		

A	GAR KASHMIBU	References					
	1.	A. C. Holub. Compiler Design in C, Prentice-Hall Inc., 1993. Appel. Modern Compiler Implementation in C: Basic Design, Cambridge Press.					
	2.	Fraser and Hanson. A Retargetable C Compiler: Design and Implementation, Addison-Wesley.					

Department of Computer Science & Engineering						
	National Institute of Technology Srinagar					
Course Title	Compiler Design Lab	Semester	7 th			
Department	Computer Science & Engineering	Course Code	CSL416			
Credits	01	L	Т	Р		
Course Type	Lab	0	0	2		
	Course Objectives					

- To understand the implementation of lexical analyser, parser and other compiler design aspects.
- To write codes for various top-down and bottom-up parsers and verify them for correctness.
- To understand Linux Utility Lex and Yacc tools.

Learning Outcomes

After completing this course the students should be able to understand the compiler coding and working in detail.

Course Synopsis

The Lab intends to make students implement lexical analysers and code for each of the following phases of a compiler:

Course Outline / Content

- Syntax Analysis
- Semantic Analysis
- Intermediate Code Generation
- Code Optimization
- Code Generation

Unit	Topics	Week			
1.	Design a lexical analyzer for given language and the	2			
	lexical analyzer should ignore redundant spaces, tabs and				
	new lines.				
2.	Simulate First and Follow of a Grammar	2			
3.	Develop an operator precedence parser for a given	1			
	language.				
4.	Construct a recursive descent parser for an expression.	1			
5.	Construct a LL(1) parser for an expression	2			
6.	Design predictive parser for the given language	1			
7.	Implementation of shift reduce parsing algorithm.	1			
8.	Design a LALR bottom up parser for the given language.	1			
9.	Implement the lexical analyzer using JLex, flex or lex or	1			
	other lexical analyzer generating tools				
	Text Books				
1.	A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech	niques and Tools			
	, Addison-Wesley, 1988.				
2.	C. Fischer and R. LeBlanc. Crafting a Compiler, Benjamin Cummi	ings, 1991.			
References					
1.	1. A. C. Holub. Compiler Design in C, Prentice-Hall Inc., 1993. Appel. Modern				
	Compiler Implementation in C: Basic Design, Cambridge Press.				
2.	Fraser and Hanson. A Retargetable C Compiler: Design and Addison-Wesley.	Implementation,			

Department of Computer Science & Engineering					
National Institute of Technology Srinagar					
Course Title	Network Security	Semester	7 th		
Department	Computer Science & Engineering	Course Code	CST417	417	
Credits	04	L	Т	Р	
Course Type	Theory	3	1	0	
Course Objectives					

- To help the students to understand important security goals in the networks-Confidentiality, Integrity, Authenticity, Non-repudiation and Availability and cryptographic techniques to implement these security goals.
- To provide a necessary review of mathematical concepts to implement different cryptographic techniques to achieve the network security goals and then provides a deeper dive to the field of cryptography- symmetric and asymmetric key cryptography and methods to implement them.
- The course provides a top down approach to explore the security implementations in different network layers-application, transport and network.

Learning Outcomes

After completion of this course the students should be able to:

- Visualize the security goals clearly in the networks.
- Analyse the basic concepts of network security to predict and classify attacks on a system/network.
- Understand and apply authentication techniques to provide secure communication.
- Assess the security threats to ICT infrastructure using modern tools such as firewalls, UTMs, etc.

Course Synopsis

Cryptography, classical encryption, Divisibility, Modular Arithmetic, Random Numbers.

	Course Outline / Content			
Unit	Topics	Week		
1.	Introduction	1		
	Review of Layered Architecture of the Network - the OSI Reference Model, Computer Security Concepts, The OSI Security Architecture, Security - Attacks, Services and			
	Mechamisms.			
2.	Cryptography Introduction: Classical Encryption Techniques Techniques for Implementing Security Goals: An Overview of Cryptography and Steganography, A brief recap of cryptographic principles and motivations for secure network, General thoughts on breaking the cryptosystems.	1		
3.	Review & Self Study - Mathematics for Symmetric Key Cryptography Review of important mathematical concepts: Divisibility, Modular Arithmetic, Groups and Rings. Classical Encryption Techniques - Substitution and Transposition	2		
4.	Random Number (PRN) Generation and Stream Cipher	2		

GAR KASTI	Random Numbers, True Random Number Generators, Pseudo Random Numbers - principles and generators, Cryptographically Secure Random Number Generators, One Time Pad, Stream Cipher- RC4	
5.	Block Ciphers - Data Encryption Standard (DES) and Advanced Encryption Standard (AES)	2
	Block Cipher Structure, Introduction to Data Encryption Standard, Triple DES - introduction, structure & implementation,	
	Fields, Finite Fields - GF(p), GF(2n) and polynomial arithmetic.	
	Advanced Encryption Standard (AES) - Introduction, structure &	
	implementation.	
6.	Block Cipher Operations	2
	Modes of Operations, Electronic Code Book Mode, Cipher Block Chaining Mode, Output Feedback Mode, Cipher Feedback Mode, Counter Mode, Enhancing the Security of Block Ciphers: Multiple Encryption, 3DES and DESX, Meet-in-the Middle Attack.	
7.	Data Integrity	2
	Introduction & Motivation, Hash Functions from Block Cipher, Message Digest (MD) Hash Family, Secure Hash Algorithm (SHA-1 and SHA-3), Message Authentication Codes (MAC).	
8.	Review & Self Study - Mathematics for Asymmetric Key Cryptography	2
	Review of important mathematical concepts used in asymmetric key cryptography – Euclidean and Extended Euclidean Algorithm, Euler's Phi Function, Prime Numbers and Primality Testing, Euler's and Fermat's Theorem.	
9.	Asymmetric Key Cryptography	1
	Introduction & Principles of Asymmetric Key Cryptography, Different Public Key Algorithms, Introduction to RSA, RSA in Practice and Attacks, Diffe-Hellman Key Exchange.	
10.	Digital Signatures	1

AR KASHMIDU	Introduction & Motivation, Principles and Applications, RSA based Digital Signature, RSA Probilistic Signature Scheme.		
11.	Mutual Trust - Key Management and User Authentication	1	
	Introduction and challenges in key distribution, Symmetric Key Distribution and Agreement, Public Key Distribution, Principles of user authentication, User Authentication Protocol – Kerberos, Public-Key Infrastructure.		
12.	Security at the Application Layer	1	
	Application Layer Security - Objectives, Issues and Need, Email Security, Pretty Good Privacy, Secure/Mulitpurpose Internet Mail Extension, Domain Keys Identfied Mail.		
13.	Security at the Transport Layer	1	
	Web Security: Threats and Challenges, Securing Web-based transactions at the transport layer, Secure Socket Layer, Transport Layer Security, HTTPS, Combining HTTP and SSL/TLS - the secure HTTPS, Remote login, Challenges, One Possible Solution Approach – SSH, Wireless Security – TLS and WAP End-to-End Security.		
14.	Security at the Network Layer	1	
	IP Security: Overview and Policy, Encapsulating Security Payload, Combining Security Associations, Internet Key Exchange, Cryptogaphic Suites.		
15.	System Security	2	
	Malwares – Virus, Worms, etc, Malicious Software and Anti- malwares, Distributed Denial of Service Attacks, Intruders and Intrusion Detection, Firewall Need and Characteristics, Types of Firewalls and Biasing, Firewall Location and Confgurations.		
	Text Books		
1.	Stallings William: Cryptography and Network Security - Principles	and Practice,	
	Pearson India, 6th Edition, 2014.		
References			
1.	ChristofPaar and Jan Pelzl: Understanding Cryptography - A Texth	book for	

AGAR KASHMIB	Students and Practitioners, Springer, 1st Edition, 2010.
2.	SchneierBruice: Applied Cryptography : Protocols, Algorithms And Source Code In C, Wiley India, 2nd Edition, Reprint - 2013.
3.	Kurose James F and Keith W. Ross: Computer Networking: A Top-Down Approach, Pearson India, 5th Edition, 2012.

Department of Computer Science & Engineering					
National Institute of Technology Srinagar					
Course Title	Network Security Lab	Semester	7 th		
Department	Computer Science & Engineering	Course Code	CSL418	CSL418	
Credits	01	L	Т	Р	
Course Type	Lab	0	0	2	
Course Objectives					

- To understand principles of web security and to guarantee a secure network by monitoring and analysing the nature of attacks through cyber/computer forensics software/tools
- Exhibit knowledge to secure corrupted systems, protect personal data, and secure computer networks in an Organization.
- To have the ability to compare merits and demerits of different Cryptographic techniques and take decisions while securing a network

Learning Outcomes

At the end of the Lab, students should be able to:

- Analyse and evaluate the cyber security needs of an organization.
- Determine and analyse software vulnerabilities and security solutions to reduce the
- risk of exploitation.
- Measure the performance and troubleshoot cyber security systems

Course Synopsis

Implementation of Cryptography; Threats and Vulnerabilities; Understand the Tools and Techniques.

	Course Outline / Content			
Unit	Topics	Week		
1.	Setting Up the System for testing purpose: Learning Basic			
	Commands.	1		
2.	Software Requirements. Security Attacks : ARP Attacks (ARP	2		
	Cache Poisoning, ARP Man in the Middle Attack).			
3.	IP Attacks (IP Fragmentation Attack, IP Teardrop Attack)	2		
4.	ICMP Attacks(Ping of Death, Smurf Attack, ICMP Destination			
	Unreachable, ICMP Redirect, ICMP Source Quench)	2		
5.	TCP Attacks (SYN Flooding Attack, TCP RST Attack), UDP	3		
	Attack.			
6.	Understand the Tools and Techniques: IEXPRESS 2.0, CAY			
	KARAT, Damm Web Application Vulnerabilities (DWAV), WebGoat, ProRat Trojan, Key Logger, Steganographer etc.	3		

7.	Nmap Port Scanning: TCP Port Scanning (TCP Connect () Scanning, TCP SYN Scan, TCP FIN Scan, XMAS Scan, TCP NULL Scan)	3
8.	UDP Port Scanning, Performing Stealth Scan of a Selected Computer.	2
	Books	
1.	SchneierBruice: Applied Cryptography : Protocols, Algorithms An In C, Wiley India, 2nd Edition, Reprint - 2013.	nd Source Code

Department of Computer Science & Engineering				
National Institute of Technology Srinagar				
Course Title	Pre-Project	Semester	7 th	
Department	Computer Science & Engineering	g Course Code CSP419		
Credits	02	L	Т	Р

GAR KASHMIB	1				
Course Type	Practical	0	0	6	
	Course Objec	tives			
To enh	ance the student's knowledge and sk	ills in solving	problem throu	gh structured	
project	research in order to produce a compe	tent and produ	ictive engineer	•	
	Learning Outo	comes			
Upon completi	on of Pre-Project, student should be a	able to:			
• Identify	y and describe the problem and scope	of project clea	arly.		
Collect	, analyze and present data into meani	ngful informat	ion using relev	ant tools.	
• Select,	plan and execute a proper methodolo	gy in problem	solving.		
Work in	ndependently and ethically.				
• Present	the results in written and oral format	effectively.			
• Identify	y basic entrepreneurship skills in proj	ect manageme	nt		
	Course Synopsis				
Final Year Pro	ject (FYP) is the individual project, w	hich takes place	ce over the two	semesters. It	
is a mandatory subject for students to be awarded with Bachelor Degree. In the FYP, students					
are expected to undergo research studies which relate to the major course offered in the faculty.					
The final year project consists of two parts; the first part FYP 1 is a prerequisite to the second part, FYP 2.					

These two parts of FYP are under subject code CSE-705 and CSE-801 respectively.

Department of Computer Science & Engineering				
National Institute of Technology Srinagar				
Course Title	Seminar	Semester	7 th	
Department	Computer Science & Engineering	Course Code	CSS420	

Credits	01	L	Т	Р	
Course Type	Theory	0	0	2	
Course Objectives					
Each and every student has to deliver a seminar on recent research/technical topics related to CSE through power point presentations. Duration of presentation should be minimum of 30 minutes. Detailed breakup of marks to be decided by the course instructor depending on quality of content, presentation, answer to queries, communication skills etc.					
Learning Outcomes					

To promote further development of student success skills, such as reading and speaking; help students gain intellectual confidence; build in the expectation of academic success; have insight into latest research topics.

Department of Computer Science & Engineering National Institute of Technology Srinagar						
Course Title	Course TitleInternet & Web DesignSemesterMTech					
Department	Computer Science &	Course Code	CSL501			
	Engineering					
Credits	02	L	Т	Р		
Course Type	Theory	1	0	2		
	Course O	biectives				

- 1. The aim of this course is to provide you the conceptual and technological developments in the field of Internet and web designing with the emphasis on comprehensive knowledge of Internet,
- 2. Its applications and the TCP/IP protocols widely deployed to provide Internet connective worldwide.
- 3. The World Wide Web with its widespread usefulness has become an integral part of the Internet. Therefore, this course also puts emphasis on basic concepts of web design.

Course Outline / Content				
Unit	Topics	Week		
1.	Introduction to Internet Internet, Growth of Internet, Owners of the Internet, Anatomy of Internet, ARPANET and Internet history of the World Wide Web, basic Internet Terminology, Net etiquette. Internet Applications – Commerce on the Internet, Governance on the Internet, Impact of Internet on Society – Crime on/through the Internet.	3		
2.	TCP/IP – Internet Technology and Protocol Packet switching technology, Internet Protocols: TCP/IP, Router, Internet Addressing Scheme: Machine Addressing (IP address), E-mail Addresses, Resources Addresses	1		
3.	Internet Connectivity Connectivity types: level one, level two and level three connectivity, Setting up a connection: hardware requirement, selection of a modem, software requirement, modem configuration, Internet accounts by ISP: Telephone line options, Protocol options, Service options, Telephone line options – Dialup connections through the telephone system, dedicated connections through the telephone system, ISDN, Protocol options – Shell, SLIP, PPP, Service options – E-mail, WWW, News Firewall etc.	2		
4.	Internet Network Network definition, Common terminologies: LAN, WAN, Node, Host, Workstation, bandwidth, Interoperability, Network administrator, network security, Network Components: Severs, Clients, Communication Media, Types of network: Peer to Peer, Clients Server, Addressing in Internet: DNS, Domain Name and their organization, understanding the Internet Protocol Address. Network topologies: Bust, star and ring, Ethernet, FDDI, ATM and Intranet. Services on Internet (Definition and Functions) 04 Hrs.	2		
5.	Electronic Mail Email Networks and Servers, Email protocols –SMTP, POP3, IMAp4, MIME6, Structure of an Email – Email Address, Email Header, Body and Attachments, Email Clients: Netscape mail Clients, Outlook Express, Web based E-mail. Email encryption- Address Book, Signature File.	1		

RINAGAR KASHMIB					
6.	Current Trends on Internet	1			
	Languages, Internet Phone, Internet Video, collaborative computing, e-				
	commerce.				
	Web Publishing and Browsing 10 Hrs. Overview, SGML, Web hosting,				
	HTML. CGL, Documents Interchange Standards, Components of Web				
	Publishing, Document management, Web Page Design Consideration				
	and Principles, Search and Meta Search Engines, WWW, Browser,				
	HTTP, Publishing Tools				
7.	HTML Programming Basics	1			
	HTML page structure, HTML Text, HTML links, HTML document				
	tables, HTML Frames, HTML Images, multimedia, Interactivity Tools				
	08 Hrs. 33 ASP, VB Script, JAVA Script, JAVA and Front Page, Flash				
8	Internet Security Management Concepts	1			
0.	Information Privacy and Copyright Issues. Overview of Internet	-			
	Security, Firewalls, Internet Security, Management Concepts and				
	Information Privacy and Copyright Issues, basics of asymmetric				
	cryptosystems.				
	51				
	Text Books				
1. Greenla	aw R and Hepp E "Fundamentals of Internet and www" 2nd EL, Tata McG	rawHill,2007.			
		,			
2 Ivan I	Bayross, "HTML, DHTML, JavaScript, Perl CGI", 3rd Edition, BPB Public	cations.			
3. D. Con	ner, "The Internet Book", Pearson Education, 2009.				
	Deferences				
	Kelerences				
1. M. L. Y	Young,"The Complete reference to Internet", Tata McGraw Hill, 2007.				
2. Godbo	le AS & Kahate A, "Web Technologies", Tata McGrawHill,2008.				
3. Jackson	n, "Web Technologies", Pearson Education, 2008, 4, B, Patel & Lal B, Bari	k. "Internet &			
Web Tecl	hnology ", Acme Learning	,			

Department of Computer Science & Engineering National Institute of Technology Srinagar							
Course Title	RDBMS	Semester	MTech				
Department	Computer Science &	Course Code	CST502				
	Engineering						

Credits	03	L	Т	Р		
Course '	Гуре Theory	2	0	2		
	Course Objec	tives				
1. U	Inderstand functional components of the DI	BMS.				
2. E	2. Devise queries using Relational Algebra, Relational Calculus and SQL.					
3. E	Develop E-R model and design database sch	ema				
4. U	Inderstand transaction processing, concurre	ncy control an	d recovery tech	hniques.		
	Learning Outc	comes		•		
The stud	ent should develop skills and understanding	g in:				
• tł	ne design methodology for databases and ve	erifying their st	tructural correct	ctness		
• in	nplementing databases and applications sof	tware primaril	y in the relation	nal model		
• a	pplying the theory behind various database	models and qu	ery languages			
• in	nplementing security and integrity policies	relating to dat	abases			
		8				
	Course Syno	psis				
The court	rse emphasizes the understanding of the fun	damentals of 1	relational syste	ems including		
data mod	lels, database architectures, and database m	anipulations.				
	Course Outline /	Content	r			
Unit	Topics			Week		
1.	Introduction to databases : What is databased	base system, p	urpose of			
	database system, view of data, relation	al databases,	database			
	architecture, transaction management,			1		
2.	Data models: The importance of data i	models, Basic	building			
	blocks, Business rules, The evolution of c	lata models, D	egrees of	4		
	data abstraction.			1		
3.	Database design and ER Model:	overview. E	R-Model.	1		
	Constraints, ER-Diagrams, ERD Issues, w	veak entity set	s, Codd's			
	rules, Relational Schemas,	5	,			
4.	Relational database model: Logical view	v of data, keys,	integrity			
	rules. Relational Database design: featu	res of good	relational			
	database design, atomic domain and Nor	malization (11	NF, 2NF,	2		
	3NF, BCNF).					
5	Relational Algebra and calculus:	Relational	algebra:	2		
	introduction, Selection and projection, se	t operations, r	enaming,			
	Joins, Division, syntax, semantics. Op	erators, group	ping and			
	ungrouping, relational comparison. Cal	culus: Tuple	relational			
	calculus, Domain relational Calculus,	calculus vs	algebra,			
	Computational capabilities.		4	1		
0	Constraints, views and SQL: what i	s constraints,	types of	1		
	data independence security undetes	muouucuoli on views co	mparison			
	between tables and views SOL data	definition	aggregate			
	function Null Values nested sub que	eries Ioined	relations			
	Triggers.	iico, somed				
4. 5 6	 Relational database model: Logical view rules. Relational Database design: feature database design, atomic domain and Nor 3NF, BCNF). Relational Algebra and calculus: introduction, Selection and projection, se Joins, Division, syntax, semantics. Op ungrouping, relational comparison. Calculus, computational capabilities. Constraints, Views and SQL: What is constraints, Integrity constraints, Views: data independence, security, updates of between tables and views SQL: data function, Null Values, nested sub que Triggers. 	v of data, keys, res of good malization (11 Relational t operations, r perators, group culus: Tuple calculus vs s constraints, Introduction on views, co definition, a pries, Joined	integrity relational NF, 2NF, algebra: enaming, oing and relational algebra, types of to views, mparison aggregate relations.	2 2 1		

7	Transaction management and Concurrency control:	2
	Transaction management: ACID properties, serializability and	
	concurrency control, Lock based concurrency control (2PL,	
	Deadlocks), Time stamping methods, optimistic methods,	
	database recovery management.	
	Text Books	
1.	Elamsri, Navathe, Somayajulu and Gupta, Fundamentals of Datab	base Systems, 6th
	Edition, Pearson Education, 2011.	
2.		
	Rob, Coronel, "Database Systems", Seventh Edition, Cengage Lea	rning.
	References	
2.	A Silberschatz, H Korth, S Sudarshan, "Database System and Cond	cepts", fifth
	Edition McGraw-Hill,	

National Institute of Technology Srinagar					
Course TitleProjectSemester8th					
Department	Computer Science &	Course Code CSP460			
	Engineering				
Credits	12	L	Т	Р	
Course Type	Practical	0	0	12	
	Course Obice	4:			

Course Objectives

The aim of the Final Year Project is to enhance the student's knowledge and skills in solving problem through structured project research in order to produce a competent and productive engineer.

Learning Outcomes

Upon completion of Final Year Project, student should be able to:

- Identify and describe the problem and scope of project clearly.
- Collect, analyze and present data into meaningful information using relevant tools.
- Select, plan and execute a proper methodology in problem solving.
- Work independently and ethically.
- Present the results in written and oral format effectively
- Identify basic entrepreneurship skills in project management

Course Synopsis

Final Year Project (FYP) is the individual project, which takes place over the two semesters. It is a mandatory subject for students to be awarded with Bachelor Degree. In the FYP, students are expected to undergo research studies which relate to the major course offered in the faculty.

The final year project consists of two parts; the first part FYP 1 is a prerequisite to the second part, FYP 2.

These two parts of FYP are under subject code CSE-705 and CSE-801 respectively.

RINAGAR KASHMIB						
Department of Computer Science & Engineering National Institute of Technology Srinagar						
Course Title	Course TitlePractical Training & TourSemester8th					
Department	Computer Science &	Course Code	e CSI461			
	Engineering			-		
Credits	01	L	Τ	Р		
Course Type	Lab	0	0	2		
	Course Obje	ctives				
Practical training aimed at the prof areas of the organ to all parts of the field instructor. responsibility is t Field courses (pr institution or any The overall goat • To get th • To bring environr • To provi • To gain • To gain • To apply • To integ • To incre • To gain • To comp • To provi	Course or product - is defined as an integrative hands-dessional preparation and training of a shization in which they work. Practical training in the student always works However, the student is engaged if the student's. The student is engaged if the student's professional student's professional still in the student is engaged if the student's professional stills are the student's professional stills	comes comes	rience in a sup should be expo learning oppor and appropriate a particular ac sually at an ind on, and skills in a e, in organizati	ervised setting osed to various tunities related e help from the ctivity, so the ustry, research real working onal setting.		
 To allow or other To expension 	 To allow students to participate in practical lab work, meetings, conferences, trainings or other learning opportunities To experience responsible interaction with professionals 					
• To get fe	eedback from field to class.	51 01 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0				

Computer Science & Engineering

Detailed Syllabus Electives

Department of Computer Science & Engineering					
National Institute of Technology Srinagar					
Course '	Title	Simulation and Modelling	Semester		
Departn	nent	Computer Science &	Course Code	CST0	01
~		Engineering			
Credits		03	L	<u> </u>	<u> </u>
Course '	Гуре	Theory	3	0	0
T 1 1		Course Objec	tives		
The obje	ctives o	of this course are to:			
• 11	ntroduc	e students to the simulation and mo	delling techniqu	ies	
• P	rovide	students with opportunities to deve	lop basic simu	lation and	modelling skills
W	with resp	pect to carrying out research proje	ects using any	simulation	method on the
C	ompute	r.			
A.C		Learning Outo	comes		
After the	course	the student should be able to	1		
• L	Define b	asic concepts in modelling and simi	ilation		
• (Classify	various simulation models and give	practical exam	ples for each	ch category
• (Construc	et a model for a given set of data and	l motivate its v	alidity	
• A	nalyze	output data produced by a model ar	nd test validity	of the mode	el
		Course Syno	psis		
In this c	ourse st	tudents study the representation an	d simulation o	f physical	systems using a
range of	mathen	natical formulations. Case studies a	re used to illust	trate a varie	ety of modelling
techniqu	es. The	students learn to develop typical	mathematical r	nodels and	utilise them to
predict th	he beha	viour of common industrial and eng	ineering system	18.	
	1	Course Outline /	Content		
Unit		Topics	. 1		Week
1.	Mathe	ematical Model, types of Math	iematical mod	lels and	1
2	proper	rties	Dentennin en ur	- 1-1	1
2.	Procee	dure of modeling, Graphical method	: Barterning m		1
5.	Dasic Ammo	optimization, Basic probability. Mo	me-Carlo sinu	Tation	<u> </u>
4.	Appro	saches to differential equation: Heur	i metnoù		<u> </u>
5.	model	stability theory: Bernoulli Thais, C	lassical and co	ntinuous	1
6.	Case s	studies in problems of engineering a	nd biological so	ciences	1
7.	Gener	al techniques for simulating continu	ous random va	riables	2
8.	simula	ation from Normal and Gamma distr	ributions		2
9.	simula	ation from discrete probability distri	butions		2
10.	simula	ating a non – homogeneous Poisso	on Process and	queuing	2
system					
		Text Book	S		
1.	Frank	R. Giordano, William P. Fox,F	irst Course in	Mathema	tical Modeling,
	Cenga	lge Learning			
2.	1. A.	M.Law and W.D.Kelton, Simulatio	n Modeling and	l Analysis,	T.M.H. Edition.
References					

MAGAR KASHMISO	
1.	A. C. Fowler, Mathematical Models in Applied Sciences, Cambridge University
	Press.
2.	S.M. Ross, Simulation, India Elsevier Publication

Department of Computer Science & Engineering National Institute of Technology Srinagar						
Course T	itle	Graph Theory	Semester			
Denartme	ent	CSE	Course Code	Course Code CS7)
Credits	ciit	03	L	T		P
Course T	vne	Theory	3	0		0
course 1	Course Objectives					
• To	learn th	he basic terminology and results con	cerning graph	S.		
• To) learn n	roof techniques and algorithms invo	olving graphs.			
• To	b learn h	ow to apply computer programs to	study graphs.			
• To	provide	e an acquaintance with mathematica	al notation used	d to exp	ress p	hysical and
Na	atural la	WS.		1	1	5
• To	learn a	bout open problems in graph theory	<i>.</i>			
		Learning Outco	omes			
Upon com	pletion	of this course, students will be able	to do the follo	wing:		
• Ha	ave a str	ong background of graph theory w	hich has divers	e appli	cation	s in the areas
of	comput	er science.				
• So	lve prob	plems using basic graph theory.				
• De	etermine	whether graphs are Hamiltonian a	nd/or Eulerian.			
• So	olve pro	blems involving vertex and edg	e connectivity	, plana	arity	and crossing
nu	mbers.					
• M	odel rea	l world problems using graph theor	у.			
		Course Synop	sis			
Graph Ter	rminolo	gy; Types of graphs; Trees and its	types; Spanni	ng Tree	es;A	lgorithms for
MST; Pla	inar and	l Dual Graphs; Matrix representat	ion of Graphs	; Coloi	ring, (Covering and
partitionin	ng; Grap	h theoretic Algorithms.	N			
T T 1 /		<u>Course Outline / C</u>	Content			
Unit	T (1		• • • •	<u> </u>		Week
1.	Introd	uction: Graph Terminology, In	ncidence and	Degree	е,	2
	Isolated	a vertex, pendant vertex and Null	Graph, Isom	orpnisn	1, .1	2
	walks,	Paths and Circuits, Connected	Graphs, Disco	onnecte	a	
	graphs Lomilt	and Components, Euler Graphs,	ling colormon	roblon	5,	
	Konige	berg bridge problem. Three utility i	ning salesinan j	problem	1,	
2	Troos	Properties of Trees, Distance and C	antres in a tree	Roote	d	
۷.	and R	inary Trees Spanning Trees A	loorithms for	, Koute findin	α σ	3
	minimal spanning tree: Kruskal's algorithm Prim's algorithm					
	Cut-se	ts and Cut-Vertices: Cut-sets. A	ll cut-sets in	a granl	n.	
	Fundar	nental Circuits and cut-sets, connec	ctivity and separate	arability	, /.	
	Networ	rk Flows, 1-isomorphism. 2-isomor	phism.		, ,	
3.	Planar	and Dual Graphs: Planar Grar	ohs. Kuratows	ki's tw	0	
	graphs.	Kuratowski's Theorem. Detection	of planarity. G	eometri	c	3
	dual Combinatorial dual					

MAGAR KASHM					
	Matrix Representation of Graphs: Incidence matrix, Circuit				
	matrix, Cut-set matrix, path matrix and Adjacency matrix.				
4.	Coloring, Covering, and Partitioning: Chromatic number,				
	Chromatic partitioning, Chromatic polynomial, Matching,	2			
	Coverings, The Four Color problem.				
5.	Directed Graphs: Types of digraphs, Euler Digraphs, Trees with				
	directed edges, Matrix representation of digraphs, Tournaments,	2			
	Acyclic digraphs and decyclization.				
6.	Graph theoretic Algorithms: Shortest path algorithms,	2			
	Dijkstra's algorithm, Warshall - Floyd algorithm, Depth-First				
	search in a graph, Breadth – first search in a graph.				
	Text Books				
1.	NarsinghDeo, Graph Theory with Applications to Engineering	and Computer			
	Science, PHI.				
2.	R.J. Wilson, Introduction to Graph Theory, Fourth Edition, Pearson	Education, 2003			
	References				
1.	Douglas B. West, "Introduction to Graph Theory", Prentice Hall of	India, 2005			
2.	S.Even. Graph Algorithms, Computer Science Press, 1979				
2.	S.Even. Graph Algorithms, Computer Science Press, 1979				

Department of Computer Science & Engineering National Institute of Technology Srinagar						
Course Title	Digital Signal Processing	Semester				
Department	Computer Science & Engineering	Course Code	CST003	CST003		
Credits	03	L	Т	Р		
Course Type	Theory	3	0	0		
Course Objectives						

This course includes:

- To develop methods for processing discrete-time signals.
- To understand the processes of A-D and D-A conversion.
- To acquire some familiarity with digital filters in terms design and implementation and to become familiar with how various types of filters affect signal characteristics.
- To understand the discrete Fourier transform and discrete spectral analysis.
- To become familiar with some applications of digital processing.

Learning Outcomes

After completion of course students will be able to:

- Be able to perform FIR AND IIR filters by hand to meet specific magnitude and phase requirements.
- Perform Fourier transform and inverse Fourier transform using definitions, tables of standard transforms and properties.
- Design and implement digital filters by hand and by using Matlab.
- Use computers and Matlab to create, analyse and process signal and to simulate and analyse systems sound and image synthesis and analysis.

Course Synopsis

Digital Signal Processing discusses analysis and representation of discrete-time signal systems, including discrete-time convolution, difference equations, the z-transform, and the discrete-time Fourier transform. The course proceeds to cover digital network and non recursive (finite impulse response) digital filters. Digital Signal Processing focuses on digital filter design and a discussion of the fast Fourier transform algorithm for computation of the discrete Fourier transform.

Course Outline / Content					
Unit	Topics	Week			
1.	Discrete Time Signals And Systems :Representation of discrete				
	time signal - classifications - Discrete time - system - Basic				
	operations on sequence – linear – Time invariant – causal – stable	2			
	– solution to difference equation – convolution sum – correlation				
	– Discrete time Fourier series – Discrete time Fourier transform.				

RINAGAR KASHMIBU					
2.	Fourier And Structure Realization: Discrete Fourier transform				
	– properties – Fast Fourier transform – Z-transform – structure				
	realization – Direct form – lattice structure for FIR filter – Lattice	3			
	structure for IIR Filter.				
3.	Filters: FIR Filter – windowing technique – optimum equiripple				
	linear phase FIR filter – IIR filter – Bilinear transformation				
	technique - impulse invariance method - Butterworth filter -	3			
	Tchebycheff filter.				
4.	Multistage Representation: Sampling of band pass signal – anti				
	aliasing filter – Decimation by an integer factor – interpolation by				
	an integer factor – sampling rate conversion – implementation of	3			
	digital filter banks – sub-band coding – Quadrature mirror filter –				
	A/D conversion – Quantization – coding – D/A conversion –				
	Introduction to wavelets.				
5.	Digital Signal Processors: Fundamentals of fixed point DSP				
	architecture – Fixed point number representation and computation				
	– Fundamentals of floating point DSP architecture – floating point				
	number representation and computation – study of TMS 320 C	3			
	54XX processor – Basic programming – addition – subtraction –				
	multiplication – convolution – correlation – study of TMS 320				
	F2XXX processor – Basic programming – convolution –				
	correlation.				
	Text Books				
1.	John G. Proakis, Dimitris, G. Manolakis, "Digital Signal Proce	ssing: Principles,			
	Algorithms and Applications", PHI.				
2.	S.Salivahanan, A.Vallavaraj and C.Gnanapriya, "Digital Signal Pr	ocessing", TMH,			
	2000.				
3.	A.V. Oppenheim and R.W.Schafer, Englewood, "Digital Sig	nal Processing",			
	Prentice-Hall Inc, 1975. 4.				
1.	B.Venkatramani&M.Bhaskar, "Digital Signal Processors architectu	ure, programming			
	and applications",TMH, 2002.				
References					
1.	Rabiner L.R and C.B Gold,"Theory and Applications of Digital Si	gnal Processing",			
	Prentice Hall of India,1987.				
2.	Leudeman L.C, "Fundamentals of Digital signal processing",	Harper & Row			
	Publication, 1986.				

Department of Computer Science & Engineering								
Course Title Multimedia Technology Semester								
Denartm	ent	Comput	er Science	&	Course Co	de C		
Depui ini	ciit	Enginee	ring	~			51001	
Credits		03			L	7	Г	Р
Course T	vne	Theory			3)	0
Course 1	JPC	111001	(Course Objecti	ives		-	0
• To	provi	de the f	foundation	knowledge o	f multimed	ia comr	outing.	e.g. media
ch	aracteris	stics. con	npression	standards. mu	ltimedia rei	oresentat	ion. da	ata formats.
m	ıltimedi	a technol	ogy develo	pment.			,	,
• To	provide	e program	ming train	ing in multimed	lia computing	g, multin	nedia sv	ystem design
an	d imple	mentation	is.	0	1 4	, , , , , , , , , , , , , , , , , , ,	-	, U
-	•		L	earning Outco	omes			
Upon con	pletion	of this co	ourse, the st	udents will be	able to do the	e followi	ng:	
• Sh	ould be	e able to	take into	considerations	in multime	edia tech	niques	design and
im	plement	tation.					-	-
• Sh	ould ha	ve unders	tood the ch	aracteristics of	human's vis	ual syste	m, hum	nan are audio
sy	stem.							
• Sh	ould be	able to de	sign and de	velop multime	dia systems a	ccording	to the 1	requirements
of	multim	edia appli	cations.					
• Pr	ogram n	nultimedi	a data and	be able to desig	n and impler	nent med	dia appl	lications.
				Course Synop	sis			
Basics of	Multim	edia Syst	ems; Archi	tecture and its	components;	Data ac	quisitio	on, sampling,
quantizati	on and	compres	sion of au	dio and speecl	h; Image an	d video	represe	entation and
compression standards; Fundamentals of Multimedia Communication and Networking;								
Hypermedia Presentation; Multimedia Information Systems.								
Course Outline / Content								
Unit				Topics			_	Week
1.	Introd	uction 1	to Multin	nedia System	s: Archited	cture ar	nd	4
	compo	nents,	multimedia	distributed	processing	mode	el,	1
2	synchronization, orchestration and quality of service architecture.							
2.	Audio and Speech: Data acquisition, sampling and quantization,						2	
	human speech production mechanism, digital model of speech						cn	2
	Production, analysis and synthesis, psycho-acoustics, low bit rate							
2	speech compression, MPEG audio compression.							
5.	Images and Video: Image acquisition and representation,						2	
	standarda: Bi lavel image compression standards IDEC and						Ĺ	
	MDEC							
	MIFEU	•						

4.	Multimedia Communication: Fundamentals of data			
	communication and networking, bandwidth requirements of	3		
	different media; Real time constraints: Audio latency, video data			
	rate; Multimedia over LAN and WAN, multimedia conferencing.			
5.	Hypermedia Presentation: Authoring and publishing, linear and			
	nonlinear presentation, structuring information, different	3		
	approaches of authoring hypermedia documents, hypermedia data			
	models and standards.			
6.	Multimedia Information Systems: Operating system support for			
	continuous media applications, limitations of OS, new OS			
	support, media stream protocol, file system support for continuous	3		
	media, data models for multimedia and hypermedia information,			
	content based Retrieval of unstructured data.			
Text Books				
1.	Li, Z.N. and Drew, M.S., "Fundamentals of Multimedia", Pearson	Education.		
2.	Hillman, D., "Multimedia Technology and Application", Galgotia	Publication.		
References				
1.	Steinmetz, R., "Multimedia Computing, Communication and	l Applications",		
	Pearson Education.			
2.	Buford, J., "Multimedia Systems", Addison Wesley.			

Р
P
P
Р
Р
0
ence in logic ogramming. to procedural
alvsis covers
am.
18.
stracking and
d for natural
ms.
Properties of
Resolution in
er Evaluation
Week
2
2
3
2
2

5.	Prolog Concepts: Programming in Prolog (overview), Meta level	
	programming and Meta interpreters. Nondeterministic	2
	programming, incomplete data structure, second order	
	programming in Prolog. Logic grammars: definite clause	
	grammar, A grammar interpreter.	
6.	Lazy and Eager Evaluation Strategies: Evaluation strategies,	3
	Lazy evaluation: evaluation order and strictness of function,	
	programming with lazy evaluation, interactive functional	
	program, delay of unnecessary computation, infinite data	
	structure, eager evaluation and reasoning.	
	Text Books	
1.	John Kelly, "The Essence of Logic", Prentice-Hall India.	
2.	SarojKaushik, "Logic and Prolog Programming", New Age Interna	ational ltd.
3.	TasamiHagiya and Philip waddle, "Functional and Logic Pro	gramming", 8th
	Edition, 2006.	
	References	
1.	TestsuoIda, Atsushiohori and Masato Takichi, "Functiona	and Logic
	Programming", 2006.	
2.	Chang, C.L and Lee R.C.T, "Symbolic Logic and Mechanical th	eorem proving",
	Academic Press, New York, 2006.	
3.	J.W. Lloyed, Springer Verlog, "Foundation of logic programming"	, New York, 2/E,
	1987.	

Department of Computer Science & Engineering					
Course Tit	In Embedded Systems	<u>noiogy Srinag</u> Semester	ar		
Course II	Lindedded Systems	Semester			
Departme	nent Computer Science & Course Code CST006		6		
	Engineering				
Credits	03	L	Т	Р	
Course Ty	pe Theory	3	0	0	
	Course Object	ives			
The aim	of this course to provide the student	with a deta	uiled unders	tanding of to	
Microcontr	ollers and Embedded systems. The c	ourse covers	fundamenta	lls, The 8051	
Architectur	e, Assembly Language Programming, In	struction set,	Serial Com	nunication and	
Interfacing	Learning Outer				
- To	Learning Outer		ded musees	and their	
• 10 app	lications.	oners enideud	led process	ors and their	
• Fos	ter ability to understand the internal a	architecture ar	nd interfacin	g of different	
per	pheral devices with Microcontrollers.				
• Fos	ter ability to write the programs for micro	controller.			
• Fos	ter ability to understand the role of embed	lded systems i	n industry.		
• Eee	ton ability to understand the design concer	nt of omboddo	d avatama		
• F08	ter admity to understand the design conce	pt of embedde	a systems.		
	Course Synop	osis			
Introductio	n to real time systems, The 8051 Ar	chitecture, M	emory organ	nization, 8051	
Assembly	Language Programming, Instruction	set, 8051	Serial C	ommunication,	
Microcontr	oller Interfacing, Basic concept of PIC m	crocontroller.			
Unit		Jontent		Woolz	
	ntroduction: Concept of Real time S	veteme Chall	ences in	VV EEK	
	mbedded System Design Introduction to	o Microcontro	llers and		
	mbedded Processors Microcontrollers su	rvey four hit	eight hit	2	
	ixteen bit thirty two bit Microco	ontrollers Co	omparing	2	
N	dicroprocessors and Microcontrollers.	Overview of t	he 8051		
f	amily.				
2. 7	The 8051 Architecture: Hardware, Oscilla	ator and clock,	program	1	
с	ounter, data pointer, registers, stack and	stack pointer	; special		
f	unction registers.	•	-		
3. N	femory organization: Program memory	, data memory	y, Input /	2	
0	Output Ports, External memory counter and	l timer, serial d	ata Input		
/	output, Interrupts.				
4. 8	051 Assembly Language Programming	: Structure of A	Assembly	2	
1	anguage Assembling and running an 805	1 program, Ac	ldressing		
n	nodes, Accessing memory using various a	ddressing mod	les.		

CAR KAC		
5.	Instruction set: Arithmetic operations and Programs, Logical	2
	operations and Programs, Jump and Call instructions and	
	Programs, I /O Pot Programs, Single bit instructions and	
	Programs, Timer and counter and Programs.	
6.	8051 Serial Communication: Connection to RS-232, Serial	2
	Communication Programming, Interrupts Programming.	
7.	Microcontroller Interfacing: Key Board, Displays, Pulse	2
	Measurement, D / A and A/D conversion, Stepper Motor-	
8.	Basic concept of PIC microcontroller: Microcontroller	1
	Architecture, PIC16F.	
	Text Books	
1.	The 8051 Microcontrollers and Embedded Systems : Muhammed A	Ali Mazidi
2.	The 8051 Microcontrollers Architecture, Programming & Applicat	ions Kenneth J.
	Ayala.	
	References	
1.	Design with PIC Microcontroller: John Petman	

		Department of Computer Scie National Institute of Techr	nce & Engineering		
Cours	se Title	Advanced Iava and Android	Semester		
Cours		Programming	Semester		
Denai	rtment	Computer Science & Engineering	Course Code	CST0	07
Credi	ts	03	L	T	<u> </u>
Cours	se Type	Theory	3	0	0
Cours	se rype	Course Object	S S	0	U
Build	Android ann	s from scratch using Android Studie	and Iava Programming I	Inload vor	ir anns
to Go	ogle Play and	reach Millions of Android users N	Take Money from your ar	ns hv disn	laving
ads	ogie i lay and	reach withous of Android users iv	lake woney nom your ap	ps by disp	naying
aus.		Learning Outco	meg		
Upon	successful co	mpletion of this class student will l	be able to:		
opon	Lise the Jay	a programming language to build A	ndroid anns		
	Use the day	a programming language to build A	lonmont onvironmont		
•	Describe th	a life evalue of A stivition. Application	and Enormants		
•	Describe in	e me cycles of Activities, Application	ons and Fragments		
•	Utilize Sen	sors like Gyroscopes, Acceleromete	rs and GPS to add orienta	tion and Ic	ocation
	to their app	S CIME	11		
•	Send and re	ceive SMS messages programmatic	ally		
•	Package an	d prepare their apps for distribution	on the Google Play Store.		
G 11		Course Synop	sis		
Collec	ction Interfac	es; Multithreading; Networking; Jav	a Database Connectivity	(JDBC).	
		Course Outline / C	Content		
Ini		Topics			
t		Topics			wee k
t	Collections:	Collection Interfaces, Concret	e Collections, The C	ollections	k wee
t 1	Collections: Framework	Collection Interfaces, Concret	e Collections, The C	ollections	k wee
t 1	Collections: Framework Multithread	Collection Interfaces, Concret	e Collections, The C	ollections ing on s	wee k 2
t 1	Collections: Framework Multithread ingle object	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm	e Collections, The C it, Multiple Thread action unication, Thread group	ollections ing on s	wee k 2
t 1	Collections: Framework Multithreac ingle objec priorities, Da	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread	e Collections, The C ; it, Multiple Thread act unication, Thread group	ollections ing on s , Thread	k k 2
t 1	Collections: Framework Multithread ingle objec priorities, Da Networking	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread	e Collections, The C it, Multiple Thread act unication, Thread group	ollections ing on s , Thread	vee k 2
t 1	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread : ressing, Inet , Factory Method	e Collections, The C i, it, Multiple Thread action nunication, Thread group s, Instance Methods, TCP	ollections ing on s , Thread	2
t 1 2	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread : ressing, Inet , Factory Method L, URL Connection, TCP/IP Server	e Collections, The C ; it, Multiple Thread act unication, Thread group s, Instance Methods, TCP Sockets, Datagram.	ollections ing on s , Thread /IP Client	wee k 2 2 3 3
t 1	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread : ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be	e Collections, The C it, Multiple Thread action unication, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a J	ollections ing on s , Thread /IP Client avaBean,	wee k 2 2 3 3
t 1	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread : ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Sec	e Collections, The C ; it, Multiple Thread action nunication, Thread group s, Instance Methods, TCP Sockets, Datagram. e a JavaBean, Creating a L ession bean, Stateless Sess	ollections ing on s , Thread /IP Client avaBean, ion bean,	vee k 2 3
t 1 2	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean.	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread : ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se	e Collections, The C it, Multiple Thread action unication, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a J ession bean, Stateless Sess	ollections ing on s , Thread /IP Client avaBean, ion bean,	k 2 3
t 1 2	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. Java Databa	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread : ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC):	e Collections, The C it, Multiple Thread action nunication, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a J ession bean, Stateless Sess	ollections ing on s , Thread /IP Client avaBean, ion bean,	k 2 3
t 1 2	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. Java Databa	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC): ta from Multiple Tables: Joining, M	e Collections, The C it, Multiple Thread action unication, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a J ession bean, Stateless Sess fanipulating Databases wi	ollections ing on s , Thread /IP Client avaBean, ion bean, th JDBC,	k 2 2 3
t 1 2	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. Java Databa Merging Dat Prepared Sta	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC): ta from Multiple Tables: Joining, Matements, Transaction Processing, St	e Collections, The C it, Multiple Thread action unication, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a J ession bean, Stateless Sess fanipulating Databases wi ored Procedures C.	ollections ing on s , Thread /IP Client avaBean, ion bean, th JDBC,	k 2 2 3
t 1 2	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. Java Databa Merging Da Prepared Sta Servlets: So	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread : ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC): ta from Multiple Tables: Joining, M tements, Transaction Processing, St ervlet Overview and Architecture,	e Collections, The C it, Multiple Thread activities unication, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a J ession bean, Stateless Sess lanipulating Databases wi ored Procedures C. Interface Servlet and th	ollections ing on s , Thread /IP Client avaBean, ion bean, th JDBC, ne Servle	vee k 2 3 3
t 1 2 3	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. Java Databa Merging Da Prepared Sta Servlets: So t	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC): ta from Multiple Tables: Joining, M tements, Transaction Processing, St ervlet Overview and Architecture, Life C	e Collections, The C it, Multiple Thread action unication, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a J ession bean, Stateless Sess fanipulating Databases with ored Procedures C. Interface Servlet and the ycle,	ollections ing on s , Thread /IP Client avaBean, ion bean, th JDBC, ne Servle Handling	vee k 2 3 3
t 1 2	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. Java Databa Merging Dat Prepared Sta Servlets: So t HTTP get D	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC): ta from Multiple Tables: Joining, Mathements, Transaction Processing, St ervlet Overview and Architecture, Life CC Requests, Handling HTTP post R	e Collections, The C it, Multiple Thread action unication, Thread group s, Instance Methods, TCP Sockets, Datagram. e a JavaBean, Creating a J ession bean, Stateless Sess fanipulating Databases with ored Procedures C. Interface Servlet and the ycle, equests, Redirecting Red	ollections ing on s , Thread /IP Client avaBean, ion bean, th JDBC, ne Servle Handling juests to	k ee k 2 2 3 3 3
t 1 2	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. Java Databa Merging Da Prepared Sta Servlets: So t HTTP get D Other Resou	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC): ta from Multiple Tables: Joining, M tements, Transaction Processing, St ervlet Overview and Architecture, Life C Requests, Handling HTTP post R arces, Session Tracking, Cookies, S	e Collections, The C i, it, Multiple Thread activation, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a L ession bean, Stateless Sess fanipulating Databases wito ored Procedures C. Interface Servlet and the cycle, equests, Redirecting Rece ession Tracking with Http	ollections ing on s , Thread /IP Client avaBean, ion bean, th JDBC, th Servle Handling juests to Session.	k 2 3 3
t 1 2 3	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. Java Databa Merging Da Prepared Sta Servlets: So t HTTP get D Other Reson	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC): ta from Multiple Tables: Joining, M tements, Transaction Processing, St ervlet Overview and Architecture, Life C Requests, Handling HTTP post R arces, Session Tracking, Cookies, S Smart Phone Application Develop	e Collections, The C it, Multiple Thread action unication, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a J ession bean, Stateless Sess fanipulating Databases witored Procedures C. Interface Servlet and the cycle, equests, Redirecting Rece ession Tracking with Http oment. Android Architect	ollections ing on s , Thread /IP Client avaBean, ion bean, th JDBC, th Servle Handling juests to Session. ure, User	k ee k 2 2 3 3 3 3
t 1 2 3	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. JavaBean Pr Entity bean. Java Databa Statistica Statistica S	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC): ta from Multiple Tables: Joining, M tements, Transaction Processing, St ervlet Overview and Architecture, Life C Requests, Handling HTTP post R arces, Session Tracking, Cookies, S Smart Phone Application Develop rchitecture, Activities and Intents,	e Collections, The C it, Multiple Thread action unication, Thread group s, Instance Methods, TCP Sockets, Datagram. e a JavaBean, Creating a J ession bean, Stateless Sess fanipulating Databases with ored Procedures C. Interface Servlet and the ycle, equests, Redirecting Rece ession Tracking with Http oment. Android Architect Threads, Services, Rece	ollections ing on s , Thread /IP Client avaBean, ion bean, th JDBC, th JDBC, ne Servle Handling juests to Session. ure, User ivers and	k ee k 2 2 3 3 3 3
t 1 2 3	Collections: Framework Multithread ingle objec priorities, Da Networking Internet Add Sockets, UR Enterprise JavaBean Pr Entity bean. Java Databa Merging Da Prepared Sta Servlets: So t HTTP get D Other Reson Introduction Interface An Alerts, User	Collection Interfaces, Concret ling: Creating thread and running t, Synchronization, Thread comm aemon Thread, Life Cycle of Thread ressing, Inet , Factory Method L, URL Connection, TCP/IP Server Java Bean: Preparing a Class to be operties, Types of beans, Stateful Se ase Connectivity (JDBC): ta from Multiple Tables: Joining, M tements, Transaction Processing, St ervlet Overview and Architecture, Life C Requests, Handling HTTP post R arces, Session Tracking, Cookies, S Smart Phone Application Develop rchitecture, Activities and Intents, Interface layouts, user interface ev	e Collections, The C it, Multiple Thread action unication, Thread group s, Instance Methods, TCP Sockets, Datagram. a JavaBean, Creating a J ession bean, Stateless Sess anipulating Databases with ored Procedures C. Interface Servlet and the cycle, equests, Redirecting Read ession Tracking with Http oment. Android Architect Threads, Services, Rece ents, UI Widgets, Notific	ollections ing on s , Thread /IP Client avaBean, ion bean, th JDBC, th JDBC, ne Servle Handling juests to Session. ure, User ivers and ation and	wee k 2 3 3 3 3 3

5	Hardware interface-Camera, Sensors, Telephony, Bluetooth, Near Field
	communication, Working with Data Storage, Using Google maps, Animation and 3
	Content Providers. Network Communication, Services, Publishing your App.
	Text Books
1	Core and Advanced Java, Black Book, Dreamtech Press
2	Java SE8 for Programmers (3rd Edition) (Deitel Developer Series) by Paul Deitel and
	Harvey Deitel
3	Head First Android Development, By Dawn Griffiths and David Griffiths, OReilly.
	References
1	"Advanced Java 2 Platform HOW TO PROGRAM" by H. M.Deitel, P. J. Deitel, S. E. Santry
	– Prentice Hall
2	"Beginning Java [™] EE 6 Platform with GlassFish 3 From Novice to Professional" by
	Antonio Goncalves– Apress publication
3	"Android Programming for Beginners", by John Horton.
•	

Department of Computer Science & Engineering					
Course	T;4lo	National Institute of Tech	nology Srinaga	ar	
Doporto	nont	Computer Science &	Semester Course Code	CST	008
Departin	liem	Engineering	Course code C51008		
Credits		03	L	Т	Р
Course '	Туре	Theory	3	0	0
	- , P -	Course Objec	tives	Ŭ	
This cou	rse will	provide an understanding of the con	cepts, issues, a	ind proces	s of designing
highly in	itegrated	d SoCs following systematic hardwa	re/software co-	design &	co-verification
Principle	es using	state of the art synthesis and verific	ation tools and	design flo	OWS.
		Learning Outc	omes		
Upon co	mpletio	n of the course, the student shall be	able to:		
• L	Jndersta	and hardware, software, and interfac	e synthesis with	n emphasi	s on issues in
11	nterface	design.			
• []	Describe	e examples of applications and system	ns developed u	ising a co-	design approach
771	. 1	Course Syno	psis	1	
The ince	ssant di	rote various (hitherte discrete) con	anononte such	electronic	rocossor DSPs
dedicate	d hardu	rate various (intifecto discrete) con	and interfaces t	as inicio o I/O dev	vices and off-chin
storage	Most e	electronic systems today - cell ph	ones iPods se	et-top hor	kes digital TVs
automob	iles - c	ontain at least one such "System-o	n-chin". Desig	ning Syst	em-on-chips is a
highly co	omplex	process. Before entering the tradition	onal VLSI impl	lementatio	on process (RTL.
logic &	physica	l design), design teams need to perfe	orm the challen	iging task	s of developing a
function	al specit	fication, partitioning and mapping of	functions onto	hardware	e components and
software	, desig	gn of communication architectu	re to interco	onnect t	he components,
functiona	al/perfo	rmance/power analysis and validat	ion, and more.	. This co	urse will present
students	with a	n insight into the earlier stages of t	he System-on-	chip desig	gn process (what
happens	before	you get down to RTL, gates, tra	insistors, and	wires). In	addition to the
conceptu	al foun	dations, this course will also involve	e significant ha	nds-on as	signments and/or
a project	t that w	vill give students an exposure to s	tate-of-the-art	design m	ethodologies and
boing die	s. This concerned	by Burdue ECE and CS	ded Systems C	curriculun	i that is currently
	scusseu	Course Outline /	Content		
Unit			content		Week
1.	Intro	duction: Architecture of the present-	lav SoC - Desig	n issues	,, cen
	of Sol	C- Hardware-Software Codesign -	Core Libraries	– EDA	1
	Tools				
2	Desig	n Methodology for Logic Cores.	SoC Design	Flow -	
۷.	midel	ines for design rause Design pr	SUC Design	and firm	2
	guidel	Design process for hard same	votom Into anoti-		2
	cores -	– Design process for hard cores – Sy	stem integratio)11.	

AGAR KASH						
3.	Design Methodology for Memory and Analog Cores:					
	Embedded memories - design methodology for embedded	-				
	memories – Specification of analog circuits – High speed circuits.	2				
4.	Design Validation: Core-Level validation – Core Interface					
	verification - SoC design validation.	1				
5.	Core and SoC Design Examples : Microprocessor Cores – Core					
	Integration and On-chip bus – Examples of SoC.	2				
6.	Configurable Processors: A Software View: Processor					
	Hardware/Software Cogeneration, The Process of Instruction	2				
	Definition and Application Tuning. The Basics of Instruction					
	Extension d. The Programmer's Model .Processor Performance					
	Factors. Example: Tuning a Large Task, Memory-System Tuning					
	h. Long Instruction Words.					
7.	Configurable Processors: A Hardware View : Application					
	Acceleration: A Common Problem. Introduction to Pipelines and Processors Hardware Blocks to Processors d Moving from	2				
	Hardwired Engines to Processors Designing the Processor	2				
	Interface Novel Roles for Processors in Hardware Replacement					
	Processors, Hardware Implementation, and Verification Flow					
8.	Advanced Topics in SOC Design: Pipelining for Processor	2				
	Performance, Inside Processor Pipeline Stalls, Optimizing					
	Processors to Match Hardware d. Multiple Processor Debug and					
	Trace and Issues in Memory Systems.					
1	Text Books	2000				
<u> </u>	RochitRajsuman, 'System-on-a-Chip: Design and Test', Artech Ho	buse, 2000.				
2.	Steve Furber, ARM System-on-Chip Architecture, 2nd ed,	Addison-wesley				
	Professional, 2000.	004				
3.	D. Black, J. Donovan, SystemC: From the Ground Up, Springer, 2	004.				
1	References	Thin: Daviage &				
1.	Components' Kluwer 2004	linp. Devices a				
	Components, Kluwer, 2004.					
2.	Laung-Terng wang, Charles E. Stroud, Nur A. Touba, 'Syst Architectures', Morgan Kaufmann, 2007	em-on-Cnip lest				
3.	Harris, D.M. and Harris S. L., Digital Design and Computer Arch	nitecture, Morgan				
	Kaufmann, 2007.					
4.	Pong P. Chu, RTL Hardware Design Using VHDL: Coding	g for Efficiency,				
	Portability, and Scalability, John Wiley & Sons.					

Department of Computer Science & Engineering						
		National Institute of Tech	nology Srinag	gar		
Course 7	ſitle	Advanced Internet Technologies	Semester			
Departn	Department Computer Science & Course Code CS		e CST	009		
		Engineering				
Credits		03	L	Т		P
Course 7	Гуре	Theory	3	0		0
		Course Object	tives			
This cour	rse incl	udes:				
• T	o provi	de an in-depth understanding of sele	ected Internet p	protocols		
• T	o gain i	more advanced modelling, analysis a	and programm	ing skills.		
• T	o provi	de some breadth of understanding of	f selected com	puter netv	vorki	ng topics.
		Learning Outc	omes			
After cor	npletio	n of course students will be able to:				
			-1	1		
• (reate so	opinisticated web applications for dep	ployment to pr			
• D	escribe	the components that make up a wet	b based applica	ation.		
• Ir	ntroduc	e security features to web application	ns.			
		Course Syno	psis			
The subj	ect pro	ovides knowledge and skills in adv	vanced interne	et technol	ogies	s particularly
related to	server	-side internet programming and busi	iness-to-busine	ess system	s. It	covers topics
relevant	to adv	anced internet programming inclu	ding Web 2.0), HTML	, XF	ITML, CSS,
Javascrip	ot, Doci	iment object modelling, .NET, C#, e	etc			
TT • /		Course Outline /	Content		1	
Unit	T /			· • ·		Week
l.	Intro	luction to the Internet: Brief overv	iew of Internet	t, Internet		1
	and ro	buting protocols, Web Server admin	nistration, Clie	ent Sever		
	implei	mentation, Cyber law, Search	Engine Opt	imization		
2	Techn	iques, Web Based Systems.	. 1			1
2.	Web	2.0: Search, content networks, u	iser-generated	content,		1
	bloggi	ing, social networking, social n	nedia, tagging	g, social		
	bookn	harking, rich Internet applications,	web services,	location-		
	based	services, Web 2.0 monetization and	business mode	els, future		
2	of the	web.		1 '		1
3.	Mark	up Languages (HTML, XHTM	IL): HIML,	aynamic		1
	HIMI	L, AHIML syntax, headings, lir	iking, images	, special		
	charac	eters and horizontal rules, lists,	tables, forms,	ınternal		
	linkin	g, Meta elements.				

MAGAR KASHMILL		
4.	Cascading Style Sheets (CSS): Separation of content and	2
	presentation, inline styles, embedded style sheets, conflicting	
	styles, linking external style sheets, positioning elements,	
	backgrounds, element dimensions, box model and text flow,	
	media types, building a CSS drop-down menu, user style sheets.	
5.	JavaScript: Client side scripting, control statements, functions,	1
	arrays, objects, events.	
6.	Document object model: Objects and collections, Extensible	2
	Markup Language (XML) and RSS: Advantages and applications,	
	structuring data, XML namespaces, Document Type Definitions	
	(DTDs), XML vocabularies, RSS. Other advanced internet	
	technologies: including HTML5, JSON and JQuery.	
7.	Introduction to .NET: Overview of the .NET Framework -	1
	Common Language Runtime – Framework Class Library -	
	Understanding the C# Compiler.	
8.	Basics of C#: Working with Variables - Making Decisions.	1
	Classes and Objects: Methods – Properties - Interface- Partial	
	class- Null and Casting Handling Exceptions.	
9.	Windows and Dialogs: MDI – Dialogs. Lists: List Box - Tree	1
	view control - Menus and Toolbars – Delegates and Events	
	Generics	
10	Data Access With Net: ADO NET overview - Commands - Data	1
10.	Reader - XMI. Schemas - Populating a dataset Net Programming	1
	with SOL Server: Reading and writing streamed Xml - converting	
	ADO Net to Xml data	
11	ASP NET Web Forms and Controls: Web Forms Controls -Data	1
11.	Binding and Data Source Controls – Validation Controls-Master	1
	and Content pages. The Asp Net Application Environment:	
	Configuration Files - ASP NET Application Security - Caching	
12	Website Creation: Creation and hosting of websites including	1
12.	dete connectivity	1
	Text Books	
1	Daital H M and P. I. Daital Internet & World Wide Web. How	to Program 1/2
1.	Prentice Hall, ISBN 0131752421, 2008.	to 110grain, 4/e,
2.	J. Miller, V. Kirst and Marty Stepp, Web Programming Step by S	tep, Step by Step
	Publishing: 2nd edition (2012).	,
3.	Stephen C. Perry, Core C# and .NET. Prentice Hall, New Jersey.	
4	Peter Wright Beginning Visual C# 2005 Express Edition:	From Novice to
	Professional Apress	
	References	
1	http://www2.sta.uwi.edu/~anikov/comp3400/links.htm	
2	http://www.cs.utsa.edu/~cs4413	
3	http://www2.sta.uwi.edu/~anikov/comp3500/lectures.htm	
<u> </u>	Mastering Computer Networks: An Internet I ah Manual" I Liebe	herr M Fl Zarki
	Addison-Wesley 2003	1011, 101. DI Zaiki,
5	A Rodriguez I Cotroll I Karos D Deschlam TCD/ID Tytemial and	Technical
5.	A.Kounguez, J.Gaueni, J.Karas, K.Peschkenn, ICP/IP IUtorial and	rechnical
	Overview, IDIVI Reubook (available over the Net)	

Department of Computer Science & Engineering						
National Institute of Technology Srinagar						
Course 7	Title	Wireless Communication	Semester			
Departn	nent	Computer Science &	Course Code	e CST	Т010	
-		Engineering				
Credits		03	L	Т	Р	
Course 7	Гуре	Theory	3	0	0	
		Course Objec	tives		·	
An in-de	epth und	derstanding of the wireless channel	and the relate	ed impairr	nents (multipath,	
fading), s	small-sc	cale and large-scale propagation effe	cts ,Understand	ling of the	design of cellular	
systems,	Detaile	d discussion of Multiple Access (TI	DMA/CDMA/	OFDM), A	antenna diversity,	
MIMO, Y	Wireles	s Channel Capacity, Exposure to cu	urrent and eme	erging wire	eless and cellular	
systems						
		Learning Outc	omes			
Learning	g outcon	nes of the course are:				
• D	Describe	and differentiate four generations o	f wireless stan	dard for ce	ellular networks.	
• D	Determir	he the type and appropriate model	of wireless fa	ding chan	nel based on the	
S	ystem p	arameters and the property of the w	ireless medium	1.		
• D	Design w	vireless communication systems with	h key 3G and 4	4G technol	ogies.	
		Course Syno	psis			
The cou	rse ena	bles a student to understand vari	ous concepts	related to	antennas, radio	
propagat	ion, cell	lular and communication and ad-hoo	c networks			
		Course Outline /	Content			
Unit		Topics			Week	
1.	Overv	iew of Cellular Systems and evoluti	on 2g/3G/4G/5	5G	1	
2.	Wirele	ess Propagation effects and Channel	Models		1	
3.	Multip	oath fading, Shadowing, Fading mar	gin, Shadowin	g margin	2	
4.	Cellula	ar Concepts – Frequency reuse, C	ochannel and	Adjacent	2	
	channe	el Interference,				
5.	C/I, H	Iandoff, Blocking, Erlang Capacity			1	
6.	Wirele	ess propagation Part 1 - Link budge	et, Free-space	path loss,	2	
	Noise	figure of receiver				
7.	Wirele	ess propagation			1	
8.	Anten	na Diversity			1	
9.	Wirele	ess Channel Capacity			1	
10.	CDMA	A , MIMO, OFDM			2	
		Text Book	S			

AGAR KAST	тат		D ' ' 1	1.0.	· · · · · · · · · · · · · · · · · · ·			
1.	1. T. S. Rappaport, "Wireless Communications – Principles and Practice" (2nd edition) Pearson, 2010							
2. Goldsmith, "Wireless Communications," Cambridge Univ Press, 2005								
	D.f							
1	IGI	References	McCross Hill					
1.	J. U. F	n & Mohan "Modern Winsloss Comm	victiona" D		1			
2.		liash "Wireless Communications"	Wiley 2005		1			
5.	A. MC	blisch, wheless Communications,	whey, 2005					
		Doportment of Computer Sci	once & Engin	ooring				
		National Institute of Tech	nology Sringe	eering oar				
Course '	Title	Fault Tolerant Computing	Semester	5.01				
Denartn	nent	Computer Science &	Course Code	CST)11			
Departin	iciit	Engineering	Course Cour		J 11			
Credits		03	L	T	Р			
Course '	Type	Theory	3	0	0			
course .	турс	Course Object	tives	0	0			
• T s • T • T	o exam ystem fa o discu o exar	nine the concepts and techniques for ault tolerant. ss the importance of fault tolerance is mine testing techniques and al	or redundant of in the design of gorithms in	lesigns, wh f safety cri hardware,	nich can make a tical systems. , software and			
C	ommun	Ications.	omas					
After cor	mpletio	n of this course the students should h	ve able to:					
	Inpletion Ivolain t	the fundamentals and design process	of fault tolers	nt evetame				
	Indersta	and the issues of reliability and its eva	lustion in the	line systems	, mputer systems			
• (mucisia	Course Synor			Simputer systems.			
Basic co Architect wireless/	Basic concepts; Fault-Tolerant Design Techniques; reliability and availability models; Architecture of fault tolerant computers; Software fault tolerance; fault tolerance in wireless/mobile networks and Internet.							
Unit		Topics			Week			
1.	Funda	amental Concepts: Definitions of	fault tolerar	ce, fault	2			
classification, fault tolerant attributes and system structure.								
2. Fault-Tolerant Design Techniques: Information redundancy, hardware redundancy, and time redundancy					2			
3.	 hardware redundancy, and time redundancy. 3. Dependability Evaluation Techniques: Reliability and availability models: (Combinatorial techniques, Fault-Tree models, Markov models). Performability Models. 							
4.	Archi Gener systen	tecture of Fault-Tolerant Com al-purpose systems, high-availabil ns, critical systems.	puters (case ity systems,	study): long-life	2			

5	Software Foult Televanese Software foults and their	2			
5.	Soltware Fault Tolerance: Soltware faults and their	3			
	manifestation, design techniques, reliability models. Fault				
	Tolerant Parallel/Distributed Architectures: Shared bus and shared				
	memory architectures, fault tolerant networks.				
6.	Recent topics in fault tolerant systems: Security, fault tolerance	2			
	in wireless/mobile networks and Internet.				
Text Books					
1.	Fault Tolerant Systems by I. Koren and C.M. Krishna				
References					
1.	1. Design and Analysis of Fault-Tolerant Digital Systems Barry W. Johnson				

Department of Computer Science & Engineering							
	National Institute of Technology Srinagar						
Course 7	ſitle	Image Processing	Semester				
Departm	lent	Computer Science & Engineering	Course Code CST		ST012		
Credits		03	L	Т	Р		
Course 7	Гуре	Theory	3	0	0		
		Course Objec	tives				
To learn	and u	understand the fundamentals of digi	tal image proc	cessing, an	d various image		
Transform	ns, In	nage Enhancement Techniques, Ima	ge restoration	Techniqu	es and methods,		
image co	mpres	sion and Segmentation used in digita	l image proces	sing.			
		Learning Outc	omes				
Upon co	mplet	ion of this course, students will b	e familiar wi	th basic in	mage processing		
technique	es for	solving real problems. Student will	also have suff	icient expe	ertise in both the		
theory of	two-	dimensional signal processing and its	wide range of	f application	ons, for example,		
image res	storati	on, image compression, and image an	nalysis.				
		Course Syno	psis				
This cour	se is a	in introduction to the fundamental con	cepts and tech	niques in ba	asic digital image		
processin	ig and	their applications to solve real life pro-	oblems. The to	pics covere	ed include Digital		
Image Fu	ındam	entals, Image Transforms, Image Enl	hancement, Re	storation a	nd Compression,		
Morphole	ogical	Image Processing, Nonlinear In	nage Processi	ng, and I	Image Analysis.		
Applicati	on ex	amples are also included.					
		Course Outline /	Content				
Unit		Topics			Week		
1.	Intro	oduction: Digital Image Processing,	Steps in Digit	al Image	2		
	Processing, Components of image processing System, Image						
	sensing and acquisition, sampling and quantization, relationships						
	between pixels.						
2.	Imag	ge enhancement techniques: Spat	ial domain, F	requency	2		
	doma	ain and using Fuzzy techniques. In	tensity Transf	ormation			

NAGAR KASHMIN		
	Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters. Filtering in the Frequency Domain.	
3.	Image Restoration and Reconstruction: A Model of the Image Degradation/Restoration Process, Noise Models, Restoration in the Presence of Noise Only-Spatial Filtering, Periodic Noise Reduction by Frequency Domain Filtering Linear, Position- Invariant Degradations, Inverse Filtering, Wiener Filtering, Constrained Least Squares Filtering, Geometric Mean Filter.	2
4.	Color Image Processing: Color Models, Color Transformations, Image Segmentation Based on Color.	2
5.	Wavelets and Multiresolution Processing: Background, Multiresolution Expansions, Wavelet Transforms in One Dimension	2
6.	Image Compression and Segmentation: Fundamentals, Image Compression Models, Compression Methods, Point, Line, and Edge Detection, Thresholding, Region-Based Segmentation.	2
7.	Pattern Recognition: Introduction, importance, Features, Feature vectors, and classifiers, Supervised, unsupervised and semi- supervised Learning, Bayes Decision Theory, Bayesian classification for Normal Distributions, The Naïve - Bayes Classifier, The Nearest Neighbor Rule.	2
	Text Books	
1.	Rafael C.Gonzalez and Richard E.Woods, "Digital Image Pro Edition, Pearson Education.	ocessing", Third
2.	SergiosTheodoridis, KonstantinosKoutroumbas, Pattern Recognitio	on.
	References	
1.	Pratt, W. K, "Digital Image Processing".	
2.	Anil K. Jain, "Fundamentals of Digital Image Processing", Prentice 2007.	e-Hall India,

Department of Computer Science & Engineering						
		National Institute of Tech	nology Srinag	ar		
Course 7	Fitle	System Design using HDL	Semester			
Departn	nent	Computer Science & Engineering	Course Code	e C	ST013	
Credits		03	L	Г	ר	Р
Course 7	Гуре	Theory	3	C)	0
		Course Object	tives			
This cou	rse ins	structs the students in the use of VH	DL ((Very Hig	gh Spee	d Integ	rated Circuit
Hardwar	e Desc	cription Language) for describing the	behaviour of o	digital s	system	s. VHDL is a
standardi	ized de	esign language used in computer/ semi	iconductor indu	ustry. T	his cou	rse will teach
students	the us	se of the VHDL language for repres	sentation of di	gital si	gnals,	use of IEEE
standard	logic	package/library, design description,	design of arith	nmetic,	combi	national, and
synchron	ious se	equential circuits.				
		Learning Outc	omes			
• L	earn tl	he IEEE Standard 1076 Hardware De	scription Lang	uage (V	HDL)	
• B	e able	to model complex digital systems a	t several level	of abst	raction	s; behavioral
a	nd stru	ctural, synthesis and rapid system pro-	ototyping.			
• B	e able	to develop and simulate register-leve	el models of hie	erarchic	al digi	tal systems.
• D	Develo	p a formal test bench from informal s	ystem requiren	nents.	-	-
• B	e able	to design and model complex digital	system indepe	ndently	or in a	a team.
		Course Syno	psis			
Design a	nd ev	aluation of control and data structur	res for digital	system	s. Hare	dware design
language	s are	used to describe and design both	n behavioral a	ind reg	gister t	ransfer level
architect	ures a	nd control units with a microprogra	mming empha	isis. Co	ver ba	sic computer
architect	ure, m	emories, digital interfacing, timing	and synchroniz	zation,	and m	icroprocessor
systems.	systems.					
Course Outline / Content						
Unit		Topics				Week
1.	Intro	oduction: VHDL description of co	ombinational n	etwork	s,	
	Mode	eling flip-flops using VHDL, V	HDL models	s for	a	

KASHMING		
	multiplexer, Compilation and simulation of VHDL code, Modeling a sequential machine, Variables, Signals and constants, Arrays, VHDL operators, VHDL functions, VHDL procedures, Packages and librarias, VHDL model for a counter	2
2	Packages and fibraries, viibL model for a counter.	
2.	memories, Programmable logic arrays (PLAs), Programmable array logic (PLAs), Other sequential programmable logic devices (PLDs), Design of a keypad scanner.	2
3.	Design Of Networks For Arithmetic Operations: Design of a	
	serial adder with accumulator, State graphs for control networks, Design of a binary multiplier, Multiplication of signed binary numbers, Design of a binary divider.	1
4.	Digital Design with SM Charts: State machine charts, Derivation	
	of SM charts, Realization of SM charts. Implementation of the dice game, Alternative realization for SM charts using microprogramming, Linked state machines.	2
5.	Designing With Programmable Gate Arrays And Complex	
	Programmable Logic Devices: Xlinx 3000 series FPGAs,	
	Designing with FPGAs, Xlinx 4000 series FPGAs, using a one-	2
	hot state assignment, Altera complex programmable logic devices	
	(CPLDs), Altera FELX 10K series COLDs.	
6.	Floating - Point Arithmetic: Representation of floating-point numbers, Floating-point multiplication, Other floating-point operations.	1
7.	Additional Topics In VHDL: Attributes, Transport and Inertial	
	delays, Operator overloading, Multi-valued logic and signal	
	resolution, IEEE-1164 standard logic, Generics, Generate	2
	statements, Synthesis of VHDL code, Synthesis examples, Files	
	and Text IO.	
8.	VHDL Models For Memories And Buses: Static RAM, A	2
	simplified 486 bus model, interfacing memory to a	2
	Taxt Books	
1	Digital Systems Design Using VHDL by Charles H Roth Ir and L	izy Kurian John
1.	2nd Edition, Thomson.	Lizy Kurian John,
2.	The Student's Guide to VHDL by Peter J. Ashenden, Morgan Kauf	mann.
	References	
1.	'Fundamentals of Digital Logic with VHDL Design', by S. Brown	and Z. Vranesic,
	Third edition, McGraw Hill, 2009.	

Department of Computer Science & Engineering National Institute of Technology Srinagar							
Course Title Real Time Systems Semester							
Department	Computer Science &	Course Code	CST014	CST014			
	Engineering						
Credits	03	L	Т	Р			
Course TypeTheory3				0			
	Course Objectives						

This course includes:

- Abstract models of timed computation and the analysis of scheduling algorithms.
- Understand the motivation, theoretical background, and some of the work that has been done in the field of real-time systems.

Learning Outcomes

After completion of course students will be able to:

- Explain fundamental principles for programming of real time systems with time and resource limitations.
- Describe the foundation for programming languages developed for real time programming.
- Account for how real time operating systems are designed and functions.
- Use real time system programming languages and real time operating systems for real time applications.
- Analyse real time systems with regard to keeping time and resource restrictions.

Course Synopsis						
This course includes: Theory, algorithmic and protocol concepts, mechanisms, and						
implementations of real-time computer systems; Real-time scheduling, real-time						
synchronization, real-time operating system kernels, and real-time programming languages;						
Design and analysis of real-time resource management algorithms, their implementations in						
production operating system kernels, and real-time application development.						

Course Outline / Content				
Unit	Topics	Week		
1.	Real Time Systems: Concept of Real Time System, Performance			
	measures of Real Time System, Real Time Application. Real time			
	computing - Concepts; Structure of a real time system -			
	Characterization of real time systems and tasks - Hard and Soft			
	timing constraints - Issues in real time computing, Design	3		
	Challenges - Performance metrics - Prediction of Execution Time			
	: Source code analysis, Micro-architecture level analysis, Cache			
	and pipeline issues- Programming Languages for Real-Time			
	Systems.			
2.	Task Assignment and Scheduling: Different task model,			
	Scheduling hierarchy, Offline versus Online Scheduling, Clock	2		
	Drives. Model of Real Time System,			
3.	Scheduling: Hierarchy scheduling of Periodic Task -			
	Assumptions, fixed versus dynamic priority algorithms,			
	schedulability test for fixed priority task with arbitrary deadlines.	3		

CAR KAO		
	Scheduling of A-periodic and Sporadic Tasks. Scheduling for	
	applications having flexible constrains, Scheduling Real Time	
	Tasks in Multiprocessor and Distributed Systems.	
4.	Resources and Resource Access Control: Handling Resource	
	sharing and dependency among real time tasks - Assumptions on	
	resources and their usage, resource contention, resource access	3
	control (Priority Ceiling Protocol, Priority Inheritance protocol,	
	Slack Based Priority Ceiling Protocol, Pre-emption Ceiling	
	Protocol).	
5.	Communication and Databases: Real Time Communication	
	(hard and soft real time communication, traffic scheduling	3
	disciplines, QoS guarantees), Real Time Databases (Optimistic vs	
	Pessimistic concurrency control protocols).	
	Text Books	
1.	C.M. Krishna, Kang G. Shin, Real Time Systems, International 1	Edition, McGraw
	Hill Companies.	
2.	Jane W.S. Liu, Real-Time Systems, Pearson Education India, 2000).
	References	
1.	Philip A. Laplante and Seppo J. Ovaska, "Real-Time Syste	ems Design and
	Analysis: Tools for the Practitioner'' IV Edition IEEE Press, Wiley	y. 2011

Department of Computer Science & Engineering						
		National Institute of Tech	nology Srinag	ar		
Course	Title	Unix & Shell Programming	Semester			
Departn	epartment Computer Science & Course Code CS		CST	015		
		Engineering				
Credits		03	L	Т	Р	
Course	Гуре	Theory	3	0	0	
	Course Objectives					
To prove	ide kno	wledge about Unix operating syste	m working prin	nciples, its	s file system and	
program	ming fo	r inter-process communication. It al	so gives an unde	erstanding	for using various	
system c	alls.					
		Learning Out	comes			
By the e	nd of th	is course, the student will be able to):			
• [Develop	text data processing applications us	sing Unix comn	nands and	filters;	
• [Design a	nd develop text based user interface	e components;			
• [Jndersta	and user management, network man	agement and ba	ckup utili	ties.	
		Course Syno	opsis			
Common	n comm	ands; Permissions; Command line	structure; Trap	oping exit	codes; Catching	
interrupt	s; Unix	system calls; Signal and Interrupts;	Variables and	error reco	very.	
		Course Outline /	Content			
Unit		Topics			Week	
1.	File a	and common commands - Shell	l - More abo	ut files-		
	Direct					
	- Pern	3				
	family					
	scanni	ing and processing language - files a	and good filters			
2.	Comn	nand line structure - Metachara	cters - Creati	ng new		
	comm	ands - Command arguments and	parameters -	program		
	output	t as arguments – Shell variables - N	fore on I/O redi	rection -		
	loop i	n shell programs - Bundle - Settir	ng shell attribut	es, Shift	3	
	comm	and line parameters - Exiting a	command or the	he shell,		
	evalua	ting arguments - Executing comm	and without in	voking a		
	new p	rocess - Trapping exit codes – Cond	ditional express	ions.		
3.	Custo	mizing the cal command, Functions	of command, W	/hile and		
	Until	loops - Traps - Catching interru	pts - Replacing	g a file-	3	
	Overw	vrite - Zap - Pick command – News	command - Ge	t and Put		
	trackii	ng file changes.				
4.	Standa	ard input and output – Program arg	uments - file ac	ccess - A		
	screen	at a time printer - On bugs and deb	ugging - Examp	ples-Zap	-	
	pick - Interactive file comparison program - Accessing the 2					
	environment - Unix system calls - Low level I/O, File system					
	Direct	ories and modes, Processors, Signa	I and Interrupts.			
5.	Progra	am development - Four function ca	lculator - Varia	bles and		
	error	recovery – Arbitrary variable nam	nes, Built in f	unctions,	2	
	Comp	ilation into a machine, Control flow	and relational o	perators,	3	
	Functi	ions and procedures - Performance	e evaluation- N	ls macro		
	packa	ge – Trott level – Tbl and eqnprepr	ocessors- Manu	al page -		
	Other	document preparation.				

Text Books					
1.	The Design of the Unix Operating System, Maurice J. Bach, First Edition, Pearson				
	Education, 1999.				
2.	Unix and shell Programming Behrouz A. Forouzan, Richard F. Gilberg. Thomson.				
3.	Your UNIX the ultimate guide, Sumitabha Das, TMH, 2 nd Edition.				
	References				
1.	UNIX for programmers and users, 3rd edition, Graham Glass, King Ables, Pearson				
	Education.				
2.	UNIX programming environment, Kernighan and Pike, PHI. / Pearson Education.				
3.	The Complete Reference UNIX, Rosen, Host, Klee, Farber, Rosinski, Second Edition, TMH.				

Department of Computer Science & Engineering						
National Institute of Technology Srinagar						
Domontre		Computer Science &	Semester Course Code		27016	
Departn	Department Computer Science & Course Code CST		\$1010			
C 1'4		Engineering	T	T		D
Credits	T	03	<u> </u>	1		P
Course	Гуре	Theory	3	0		0
		Course Object	tives	. 1.	. 1	1 .
	o devel	lop an understanding of the basics of	nigh speed ne	etworkin	g tech	nologies.
• 1	o apply	the concepts learnt in this course to	optimize perf	ormanc	e of hig	gh-speed
n	etworks	S.				
	1	Learning Outc	omes			
After con	mpletio	n of this course, students should be a	ible to:			
• [Demons	trate the knowledge of network plan	ning and optin	nzation		
• L	Design a	and configure networks to support nu	imber of applic	cations.		
TT' 1	1 /	Course Syno	psis	<u> </u>		1 TOD 1
High spe	ed netv	vorks; Frame Relay Networks; High	Speed LANS;	Queum	g Mod	els; TCP and
ATM co	ngestio	n control; protocols for QoS support				
T T •4		Course Outline /	Content		1	**7 *
	TT' 1		. 1 4	1		Week
1.	High	speed networks, Frame Relay Ne	tworks, Asyn	chronou	IS	4
	transfe	er mode, AIM Protocol Archit	ecture, ATM	logica	al	
	Conne	ection, ATM Cell, ATM Service Cat	egories, AAL.			2
2.	High S	Speed LANS.			_	<u> </u>
3.	Queui	ng Models, Single Server Queues,	Effects of Co	ngestio	1,	4
	Conge	estion Control, Traffic Management,	Congestion C	Ontrol 1	n	
1	Раске	a Switching Networks, Frame Relay	Congestion Co	Ontrol.	1	1
4.		and ATM congestion control, integr	area and Diffe		a	4
	servic	es, integrated services architecture	approach, con	iponent	5,	
	Servic	Toyt Book	JII.			
1	Rehro	uz A Forouzan Data Communicat	on and Netw	orking	Third	Edition Tata
1.	McGr	aw_Hill 2003	Ion and Netwo	orking,	i iii u	Luition, Tata
Wittiam stallings "ISDN and broadband ISDN with frame relay and ATM?" Decrease						
2.	2. Witham stammes, ISDN and Oroaddand ISDN with frame relay and ATM, Pearson Education Asia, Fourth Edition, 2001					
References						
1.	Indrew S. Tanenbaum, Computer Networks, Fourth Edition, Prentice Hall India 2002					
2.	 Zooz Tom Sheldon, Encyclopedia of Networking and Telecommunication, Tata McGraw Hill, 2001 					

Department of Computer Science & Engineering						
	National Institute of Tec	hnology Srina	gar			
Course T	itle Advanced Algorithms	Semester	0.0000	17		
Departmo	ent Computer Science &	Course Cod	e CSTC	1017		
	Engineering			D		
Credits	03	L	<u> </u>			
Course T	ype Theory	3	0	0		
This same	Course Obje	ctives	and of the m	a at farry da an da a		
and brings algorithms of ideas increasing design in f approache	s students up to a level where they ca s. Thematically, the biggest difference f such as randomness, approximation, gly important in most applications. We face of uncertainty, approaches to handle es, etc.	n read and und rom undergrad high dimensio will encounter big data, hand	erstand res algorithms onal geom notions su ling intracta	earch papers in is extensive use etry, which are ch as algorithm ability, heuristic		
	Learning Out	comes				
• Us • Pro • De • Se • De	the course, the student must be able as a suitable analysis method for any give ove correctness and running-time bounce esign new algorithms for variations of p lect appropriately an algorithmic paradition effine formally an algorithmic problem.	to: ren algorithm ls roblems studied gm for the prob	l in class lem at hand	d		
	Course Syn	onsis				
Algorithm competitiv increment programm and financ of Comple	a analysis techniques: worst-case and ve, approximation. Basic algorithm al, divide-and-conquer, dynamic ning. Examples from graph theory, lines ce. Approximation Algorithms, Linear P exity.	d amortized, a design techn programming, ar algebra, geor rogramming, O	iques: gre randomi netry, oper ptimizatior	e, randomized, eedy, iterative, ization, linear rations research, n, P, NP Classes		
T T •/	<u>Course Outline</u>	Content		**7 *		
	Topics			Week		
1.	 Analysis of Algorithms :Review of algorithmic strategies, asymptotic analysis: upper and lower complexity bounds. Identifying differences among best, average and worst Case Behaviours. Big O, little O, omega and theta notations, Standard complexity classes. Empirical measurements of performance. Time and space trade-offs in algorithms. Analysing recursive algorithms using recurrence relations 					
2.	2. Fundamental Computing Algorithms: Numerical algorithms. 2					
	Sequential and binary search algorithms. Quadratic sorting algorithms and O (n log n) sorting algorithms. Algorithms on graphs and their complexities using Greedy Approach for – Prim's and Kruskal's Algorithm for minimum spanning tree, Single source shortest path Algorithm, all pair shortest paths in Graph – Bellman Ford Algorithm, Floyd Warshall Algorithm					
3.	Approximation Algorithms: Introc Algorithms for – Vertex Cover, Sur	luction, Appro	oximation TSP, Job	3		

	scheduling, Knapsack Problems. Probabilistically good			
	algorithms, Polynomial Time Approximation.			
4.	Linear Programming :Introduction, initial basic feasible	4		
	solution. Feasibility of a system, Simplex Algorithm. Standard			
	and Slack forms, Formulation of problems as linear programs,			
	Checking Feasibility of System using B – Rule Algorithm.			
	Optimization. KKT Algorithm. Expectations: Introduction,			
	Moments, Expectations of functions of more than one random			
	variable.			
5.	Computational complexity: Complexity measures, Polynomial	2		
	versus non-polynomial time complexity; NP hard and NP			
	complete classes.			
1.	Kishore S. Trivedi, "Probability & Statistics with Reliability	, Queuing, and		
	Computer Science Applications" PHI			
2.	Cormen, Leiserson, Rivest, "Algorithms", PHI			
3.	Bressard, "Fundamentals of Algorithms", PHI			
	References			
1.	Steven S Skiena, "The Algorithm Design Manual" - Springer Pub	olications		
2.	Knuth, "The Art of Programming", Addison Wesley Vol I and II			
3.	Michael T Goodrich, "Algorithm Design" WILEY Publications.			

Department of Computer Science & Engineering National Institute of Technology Srinagar						
Course '	Fitle	Reconfigurable Computing	Semester	,ui		
Departn	nent	Computer Science &	Course Code CST		018	
•		Engineering				
Credits		03	L	Т	Р	
Course 2	Гуре	Theory	3	0	0	
		Course Objec	tives			
		Learning Outc	comes			
Students digital de VHDL.	will ga esign on	in fundamental knowledge and un FPGAs through class lectures. Stu	derstanding of idents will also	f principles to learn the	s and practice in programming in	
		Course Syno	psis			
Reconfig	gurable	Computing Hardware; Programm	ing Reconfig	urable Sys	stems; Mapping;	
Designs	to Reco	nfigurable Platforms; Application I	Development:	CORDIC A	Architectures for;	
FPGA C	omputin	ng; FPGA Applications.				
	1	Course Outline /	Content			
Unit		Topics			Week	
1.	Reconfigurable Computing Hardware:Device Architecture,2					
	Reconfigurable Computing Architectures, Reconfigurable					
	Computing Systems, Reconfiguration Management.					
2.	Progra	amming Reconfigurable Systems	: Compute Mo	odels and	3	
	System	n Architectures, Programming F	PGA Applica	ations in		
	VHDL, Compiling C for Spatial Computing, Stream					
	Computations Organized for Reconfigurable Execution,					
	Programming Data Parallel FPGA Applications Using the					
	SIMD/Vector Model, Operating System Support for					
	Reconfigurable Computing.					
3.	Mapp	ing Designs to Reconfigurable I	Platforms: Te	chnology	3	
	Mappi	ng, FPGA Placement Placement	t for Genera	l-purpose		
	FPGA	s, Data-path Composition, Specify	ving Circuit L	ayout on		
	FPGA	s, Retiming, Re-pipelining, an	d C-slow I	Retiming,		
	Config	guration Bit-stream Generation	, Fast Co	mpilation		
	Techni	iques				
4.	Applic	cation Development: Implement	ing Application	ons with	3	
	FPGA	s, Instance-specific Design, Precisi	on Analysis f	or Fixed-		
	point	Computation, Distributed A	Arithmetic,	CORDIC		
	Archite	ectures for FPGA Computing	g, Hardware/	Software		
	Partitio	oning				
5.	Case	Studies of FPGA Applicat	ions: SPIHT	Image	3	
	Compr	ression, Automatic Target Rec	ognition Syst	tems on		
	Recont	figurable Devices, Boolean Satisfia	bility: Creatin	g Solvers		

and house				
	Optimized for Specific Problem Instances, Multi-FPGA Systems:			
	Logic Emulation, Finite Difference Time Domain: A Case Study			
	Using FPGAs, Network Packet Processing in Reconfigurable			
	Hardware			
	Text Books			
1.	Scott Hauck and Andre DeHon, "Reconfigurable Computing – The Theory and			
	Practice of FPGA-based Computation", ELSEVIER 2008			
References				
1.	Christophe Bobda "Introduction to Reconfigurable Computing: Architectures			
	Algorithms, and Applications" SPRINGER 2007.			
2.	JariNurmi, "Processor Design: System-On-Chip Computing for ASICs and FPGAs" SPRINGER 2008.			

KASHMUSU						
Department of Computer Science & Engineering						
National institute of 1 ecnnology Srinagar Course Title Computer Vision						
Course	Computer Vision	Semester	CCT	010		
Departn	lent Computer Science & Engineering			019 D		
Credits			<u> </u>	P		
Course	Type Theory	3	0	0		
Te interes	Course Object	uves	4			
10 intro	luce students the fundamentals of image for	ormation; 10 in	itroduce st	udents the major		
ideas, in	ion for various issues in the design of some	i and pattern r	abiast real	i; To develop an		
appreciation	rovide the student with programming experi	ionaa from imr	object reco	ognition systems;		
and obje	recognition applications	ience nom mit	nementing	, computer vision		
	Leorning Out	omos				
After cor	Dearling Out	comes				
	lontify basic concents, terminology, theory	ias models or	d mothod	a in the field of		
• 10	ientify basic concepts, terminology, theor	ies, models al	ia methoa	is in the field of		
C	omputer vision.					
• E	bescribe known principles of human visual	system.				
• D	escribe basic methods of computer vision	related to mult	i-scale rep	resentation, edge		
d	etection and detection of other primitives, s	tereo, motion a	and object	recognition.		
• S	uggest a design of a computer vision syster	n for a specific	problem.			
	Course Syno	nsis	1			
Compute	r Vision plays a very important role in field	s such as Mach	ine and R	obot Intelligence.		
They pro	vide the means for the machine or robot to i	nteract intellige	ently with	the outside world		
through	visual perception. Vision is undoubtedly th	e most powerfi	ul of all se	enses and enables		
robots to	perform very flexible tasks such as movir	g around autor	nomously	in a factory floor		
or outdo	ors. The applications are plentiful and ve	ry challenging	. Face rec	cognition, human		
activity	interpretations, human-computer interaction	on, quality ins	pection o	f mass-produced		
parts, rol	oot/missile/vehicle guidance, medical imag	ing and comput	ter vision-	aided surgery are		
some of t	he applications. The objective of this course	e is to prepare s	tudents for	r working in such		
intelligent automation fields.						
	Course Outline /	Content				
Unit	Topics			Week		
1.	Introduction: History about computer	vision, introdu	iction to	1		
	vision, computer graphics, image pr	ocessing, hun	nan and			
	computer vision.	· · ·				
2.	Image Formation Models:Monocul	ar imaging	system,	1		
	Orthographic & Perspective Projection	, Camera mo	odel and			
	Camera calibration, Binocular imaging sy	stems.		1		
3.	Recognition Methodology: Conditionin	g, Labeling, G	frouping,	1		
4	Extracting and Matching.	[D'1.4'	1		
4.	Morphological Image Processing:	Introduction,	Dilation,	1		
	Erosion, Opening, Closing, Hit-or-	-Miss transic	ormation,			
	Morphological algorithm Operations	on grou coole	images,			
	Thinning Thickoning Design growing m	n gray-scale	mages,			
5	Imming, Inckening, Region growing, R	rgion shrinking		1		
5.	anage Representation and Description	puon: kepre	semation	1		
	schemes, boundary descriptors, kegion d	escriptors.				

NAGAR KASHMILSU		
6.	Binary Machine Vision: Thresholding, Segmentation, Connected	2
	Component labeling, Hierarchai segmentation, spatial clustering,	
	Split & merge, Rule-based Segmentation, Motion-based	
	segmentation.	
7.	Area Extraction: Concepts, Data-structures, Edge, Line-Linking,	
	Hough transform, Line fitting, Curve fitting (Least-square fitting).	
8.	Region Analysis: Region properties, External points, spatial	
	moments, mixed spatial gray-level moments, Boundary analysis:	
	Signature properties, Shape numbers.	
9.	Facet Model Recognition: Labeling lines, Understanding line	2
	drawings, Classification of shapes by labeling of edges,	
	Recognition of shapes, Consisting labeling problem, Back-	
	tracking Algorithm Perspective Projective geometry, Inverse	
	perspective Projection, Photogrammetry - from 2D to 3D.	
10.	Image matching: Intensity matching of ID signals, Matching of	2
	2D image, Hierarchical image matching, 2D representation,	
	Global vs. Local features.	
	General Frame Works for Matching: Distance relational	
	approach, ordered structural matching, View class matching,	
	Models database organization.	
11.	General Frame Works: Distance -relational approach, Ordered -	1
	Structural matching, View class matching, Models database	
	organization.	
12.	Knowledge Based Vision: Knowledge representation, Control	1
	strategies, Information Integration.	
13.	Object recognition: Hough transforms and other simple object	1
	recognition methods, Shape correspondence and shape matching	
	Principal component analysis, Shape priors for recognition	
	Text Books	
1.	"Computer and Robot Vision", Robert Haralick and Linda Shapiro,	Addison Wesley.
2.	"Computer Vision: A Modern Approach", David A. Forsyth, Jean	Ponce.
3.	"Introductory Techniques for 3D Computer Vision", E. Trucco and	A.Verri, PHI.
	References	
1.	"Image Processing, Analysis, and Machine Vision", Milan Sonka, Vac	lav Hlavac, Roger
	Boyle, Thomson Learning.	-
2.	"Robot Vision", by B. K. P. Horn, McGraw-Hill.	

NAGAR KASHMIB					
		Department of Computer So National Institute of Tec	cience & Enginee hnology Srinaga	ring r	
Course 7	ſitle	Advanced Computer Network	Semester		
Departm	lent	Computer Science &	Course Code	CST02	20
		Engineering			
Credits		03	L	Т	P
Course 7	Гуре	Theory	3	0	0
		Course Obje	ctives		
The objectopics in	ctive for the co	or this course is to give students hontext of a number of different to	ands-on exposure ools/environments	to emerg that mig	ging networking ght be used for
networkin	ng rese	arch.		-	-
		Learning Out	comes		
In genera	l terms	, the course will deliver the follow:	ing learning outco	mes:	
• T	o iden	tify and discuss the concepts un	nderlying IPv6 p	rotocol, a	and their main
cł	naracter	ristics and functionality;	7 8 1	,	
• T	o unde	erstand the principles and fund	ctionality of mo	bile IP.	explaining its
СС	oncretiz	ation in IPv6; to understand th	e needs of optin	nization c	of the mobility
m	echani	sms and description of some exter	sions that aim to	reduce ha	andover latency
ar	nd requ	irements from terminals;			
• T	o expla	ain and exemplify current QoS are	chitectures and m	lechanism	s, and the QoS
su	ipport o	challenges in future networks;			, ,
• T	o under	stand and explain the design issues	in transport servi	ces in face	e of applications
ar	nd servi	ices requirements;	1		11
• T	o under	rstand theoretical and practical con	cepts behind the c	design of r	multiconstained
ar	oplicati	ons and services;	1	0	
• T	o discu	uss relevant management issues a	nd devise adequa	te networ	rk management
SC	olutions	S:	1		
• T	o identi	fy and assess possible research opr	ortunities and diff	ficulties w	vithin the course
SC	cope.				
	1	Course Syn	opsis		
This cour	rse will	focus on advanced networking to	pics by studying	a combin	ation of classic
research j	papers	as well as current and emerging top	bics in computer n	etworking	g and by doing a
number of	of hand	ls-on lab assignments. Specific for	ocus areas will in	nclude clo	oud computing,
network	manag	ement, network measurement, so	oftware defined r	networkin	g and network
architectu	ires. As	s such the course is suitable for Ma	asters and PhD stu	idents wis	shing to explore
or engage	e in net	working related research.			0 1
00		Course Outline	' Content		
Unit		Topics			Week
	Intro	luction to Computer Networks			
	Review	w – Computer networks and	l layered archit	tecture.	
1.	Async	hronous Transfer Mode: ATM la	yered model, sw	itching	2
and switching fabrics, network layer in ATM, QOS, and LAN					
emulation.					
	Trans	port Layer			
2.	Eleme	ents of transport protocols; Internet	transport protocol	s: TCP	2
	and U	DP, TCP connection management,	congestion contro	ol.	
3.	Appli	cation Layer			3

CAR KAS			
	Network application architectures: Client-server, P2P and hybrid;		
	Application layer protocols: DNS, FTP, TFTP, TELNET, HTTP		
	and WWW, SMTP and electronic mail; Network management and		
	SNMP.		
	Wireless and Mobile:		
	Wireless and Mobile Networks: Wireless links and network		
4.	characteristics, 802.11 wireless LANs, mobility management,	3	
	addressing and routing, mobile IP, WAP, mobility in cellular		
	networks.		
	Multimedia Networking:		
5.	Streaming audio and video, RTSP, jitter removal and recovery		
	from lost packets; Protocols for real-time interactive applications:	2	
	RTP, RTCP, SIP, H.323; Content distribution networks;		
	Integrated and differentiated services, RSVP.		
	Introduction to Network Security		
6	Cryptography, symmetric and public-key algorithms, digital	2	
6.	signatures, communication security, authentication protocols, E-	Z	
	mail security, PGP and PEM.		
	Text Books		
1.	Kurose, J. F. and Ross, R.W, Computer Networking, Pearson Education	ation	
	References		
1.	Comer, D.E. and Droms, R.E, Computer Networks and Internets, Prentice-Hall.		
2.	Walrand, J. and Varaiya, P, High Performance Communication Networks, Morgan		
	Kaufmann.		

Department of Computer Science & Engineering National Institute of Technology Sringgar					
Course '	Title	Advanced Computer Graphics	Semester	,ui	
Departn	nent	Computer Science & Engineering	Course Co	de CST(021
Credits		03	L	T	P
Course '	Гуре	Theory	3	0	0
	- 7 P -	Course Objecti	ves		
This cou	rse is a	computer graphics class at the gradu	ate level. Th	e course m	ainly consists of
lectures	coverin	g recent research results, ranging from	om mesh prod	cessing, sin	nulation. to non-
photorea	listic r	endering necessary basic mathema	atical and c	omputation	tools will be
introduce	ed whe	n needed. Everyone will be expect	ed to compl	ete one or	two individual
project(s), prese	ent one paper related to a chosen res	earch topic (as a team).	and complete a
(team) p	roject.	1 1	1	,,	1
		Learning Outco	mes		
Students	comple	eting this course are expected to be ab	ole to:		
• T	Jndersta	and the basics of geometry processing			
• [Jndersta	and and work with advanced renderin	g methods su	ch as radios	sitv.
• [Design r	programs for advanced animation met	hods.		
• 1	Indersta	and issues of modern graphics researc	h		
	1140154	Course Synon	sis		
This con	irse cov	vers advanced topics in computer su	raphics We	will focus	on two specific
question	s: How	to create photo-realistic renderings	and how to	create phy	sically plausible
animatio	ns? To	answer the first question, we will	first discuss	and analy	ze the classical
ravtracin	g algor	ithm. With an understanding of the li	mitations of 1	avtracing.	we will look at a
more pri	ncipled	way of image synthesis based on the	physics of lig	transpor	t. After studying
the basic	physic	al quantities of light transport and corr	responding lo	cal illumina	ation models, we
will deri	ve the	global rendering equation as a mode	el for image	synthesis.	We then discuss
Monte C	Carlo m	ethods for evaluating this integral e	quation leadi	ng to seve	ral Monte Carlo
rendering	g algori	thms such as path tracing or photon n	napping. In th	ne second p	art of the course
we will	study c	concepts and algorithms for the anim	nation of sol	ids and flu	ids, and discuss
principle	s of pe	rformance-driven character animatio	n. Starting w	ith simple	particle systems
and mas	s-spring	g networks, we will discuss numeric	cal time integ	gration met	hods commonly
applied :	for con	nputer animation. Rigid body simula	ation and ela	istic materi	als will also be
covered.	We the	en look at how the approximate solution	ons of the Nav	vier-Stokes	equations can be
compute	d to si	mulate fluid flow. Finally, we study	y advanced	methods for	or animating 3D
character	rs based	l on recorded performances.			
Course Outline / Content					
Unit		Topics			Week
1.	Adva	nced Rendering Techniques: Pho	otorealistic r	endering,	3
	Global Illumination, Participating media rendering, Ray tracing,				
	Monte Carlo algorithm, Photon mapping.				
2.	Textu	re Synthesis and Image Proces	ssing: Envir	onmental	2
	mappi	ing, Texture synthesis, anisotropic im	age smoothin	g.	
3.	Volur	ne Rendering: Volume graphics	overview,	Marching	3
	cubes.	, Direct volume rendering.			
4.	Surfa	ces and Meshes: Subdivision, Distand	ce fields and l	evel sets.	2

5.	Physically-based Modeling: Stable fluid solver, Lattice	2
	Boltzmann method.	
6.	Individual Project	2
	Text Books	
1.	James D. Foley, Andries van Dam, Steven K. FeinerandJohn F. H	ughes, Computer
	Graphics: Principles & Practices, Addison Wesley, 2nd edition in G	С, 1995.
2.	Alan H. Watt and Mark Watt, Advanced Animation and Rende	ring Techniques:
	Theory and Practice, Addison-Wesley, 1992.	
	References	
1.	Matt Pharr and Greg Humphreys, Physically based rendering, Mo	organ Kaufmann,
	2004	
2.	Tomas Moller and Eric Haines Real-Time Rendering A K Peters	Ltd, 2nd edition,
	2002.	

Department of Computer Science & Engineering National Institute of Technology Srinagar					
Course Title	Advanced Database Management	Semester			
	Systems				
Department	Computer Science &	Course Code CST022			
_	Engineering				
Credits	03	L	Т	Р	
Course Type	Theory	3	0	0	
	Course Objec	tives			

Effective collection, analysis, and maintenance of data is key to achieve rapid progress in almost all disciplines of science and engineering. In this course, we will cover the core principles and techniques of data and information management. The potential topics covered in class include processing and optimization of declarative queries, transactions, crash recovery, data stream systems, Advanced Application Development, Web data management (e.g., Internet and intranet search engines), information integration (e.g., semi structured data and XML), and data mining.

Learning Outcomes

- Master the basic concepts and appreciate the applications of database systems.
- Master the basics of SQL and construct queries using SQL.
- Be familiar with a commercial relational database system (Oracle) by writing SQL using the system.
- Be familiar with the relational database theory, and be able to write relational algebra expressions for queries.
- Mater design principles for logical design of databases, including the E-R method and normalization approach.
- Be familiar with basic database storage structures and access techniques: file and page organizations, indexing methods including B-tree, and hashing.
- Master the basics of query evaluation techniques query optimization.
- Be familiar with the basic issues of transaction processing and concurrency control.

Course Synopsis

Network, hierarchical, and relational, and entity-relationship models; data definition, manipulation languages, and conversion among these models; relational database design theory, efficient query evaluation, elementary query optimization techniques. Semi-Structured Data, Introduction to XML. Performance Tuning, Performance Benchmarks, Standardization, E-Commerce, HADOOP.

Course Outline / Content				
Unit	Topics	Week		
1.	Physical Database Design & Tuning: Database workloads,	3		
	physical design and tuning decisions, Need for Tuning Index			
	selection: Guideline for index selection, Clustering & Indexing			
	Tools for index selection Database Tuning: Tuning indexes,			

AGAR KASH		
	Tuning Conceptual schema Tuning Queries &views, Impact of	
	Concurrency, Benchmarking.	
2.	Advanced Transaction Processing: Transaction Processing	2
	Monitors, Transactional Workflow, Real time transaction System,	
	Long duration Transactions, Transaction Management in Multi-	
	databases, Distributed Transaction Management, Main Memory	
	Databases, and Advanced Transaction Models.	
3.	Semi-Structured Data and XML: Semi-Structured Data,	4
	Introduction to XML, XML hierarchical Model, DTD & XML	
	schema, XML Namespace, XML query & Transformation:	
	Xpath, XSLT, XQuery, Storage of XML data, XML	
	Technologies: DOM &SAX Interfaces X pointer, Xlink, XHTML,	
	SOAP, WSDL, UDDI, XML database Application.	
4.	Emerging Trends in Databases: Introduction, Motivation,	2
	Temporal databases, Spatial & geographic databases, Multimedia	
	Databases, Mobility & personal Databases.	
5.	Advanced Application Development: Performance Tuning,	3
	Performance Benchmarks, Standardization, E-Commerce, Legacy	
	Systems, Large-scale Data Management with HADOOP, Semi	
	structured database COUCHDB: Introduction, Architecture and	
	principles, features.	
Text Books		
1.	Database system Concept by Silberschatz and Korth 6th Edition	
2.	Distributed Databases principles & systems by Stefano Ceri, Giuseppe Pelagatti	
3.	Database Systems, Thomas Connolly, Carolyn Begg, Pearson 4th Edition	
References		
1.	Web Data Management, Abiteboul, Loana, Philippe et.al Cambridge publication.	
2.	Database Management Systems by Raghu Ramakrishnan and Johannes Gehrke	

Department of Computer Science & Engineering							
	National Institute of Technology Srinagar						
Course 7	Title Advan	ced Computer	Semester				
	Archit	ecture					
Departm	ent Compu	iter Science &	Course Code	e CST()23		
	Engine	eering					
Credits	03		L	Т	P		
Course 7	Type Theory	/	3	0	0		
		Course O	bjectives				
Basic und	lerstanding of C	Computer Architecture, I	Multi-Threading an	d Multi-Co	ore programming		
concepts.	The student	should be made to: U	Inderstand the mid	cro-archite	ctural design of		
processor	s. Learn about	the various techniques	used to obtain perf	formance i	mprovement and		
power sa	vings in curren	t processors	-		-		
		Learning (Outcomes				
At the er	nd of the cours	se, the student should b	be able to: Evaluat	e performa	ance of different		
architectu	ares with resp	ect to various parame	eters Analyze perf	ormance of	of different ILP		
technique	es Identify cach	e and memory related is	ssues in multi-proc	essors			
1	J	Course S	vnopsis				
An overview of computer architecture, which stresses the underlying design r				ng design p	rinciples and the		
impact of these principles on computer performance. General topics include			de Thread Level				
Parallelis	m & Multi-Co	ore Architecture, memo	ory organization. s	vstem orga	anization, thread		
level para	allel processing	and Multi-Core Progra	mming.		,		
	<u> </u>	Course Outlin	ne / Content				
Unit		Topics			Week		
	Modern Com	puter Architectures					
	Introduction.	Fundamentals of RISC	C. CISC. Instruction	on Level			
1.	Parallelism(II	P) – Concepts and C	hallenges. Branch	ing with	2		
	Prediction I	Dynamic Scheduling:	Hazards and S	olutions	-		
	Measuring Per	rformance of ILP. Limit	tations of ILP.	oracions,			
	Thread Level	Parallelism & Multi-	Core Architecture				
	Thread Level	Parallelism Simultanec	ous Multi-Threadin	σ Multi-			
	Processor Arc	hitecture: Types Limit	ations: Evolution	of Multi-			
2	Core Archi	tecting with Multi-	Core: Homogeno	us and	3		
2.	heterogeneous	cores Shared recourses	s shared busses and	loptimal	5		
	resource shari	ng strategies Performan	ce Evaluation of M	ulti-Core			
Processors							
	Processors						
	Processors.	lule Design					
3	Processors. Memory Moo	lule Design	mory address man	Memory	3		

KASHMI		
	techniques. Types of cache's: Look through, look aside, write through, write around, unified Vs Split, multilevel, cache levels. Shared memory multiprocessors, Synchronization, small-scale symmetric multiprocessors on a snoopy bus, cache coherence on snoopy buses, Scalable multiprocessors, Directory-based cache coherence, Interconnection network, Memory consistency models, Software distributed shared memory.	
4.	Multi-Threading Concepts Fundamentals of Multi-threaded programming, Concurrency vs Parallelism, Threading design concepts for developing an application, Correctness Concepts: Critical Region, Mutual exclusion, Synchronization, Race Conditions. Performance Concepts: Simple Speedup, Computing Speedup, Efficiency, Granularity, Load Balance. Multithreading in hardware, Chip multiprocessing, current research and future trends.	3
5.	Multi-Core Programming Introduction to OpenMP, OpenMP directives, Parallel constructs, Work-sharing constructs, Data environment constructs, Synchronization constructs, Extensive API library for finer control, benchmarking multi-core architecture: Bench marking of processors. Comparison of processor performance for specific application domains.	3
	Text Books	
1.	John L. Hennessy and David A. Patterson – Quantative Appro Architecture 5th edition, Morgan Kaufmann, 2011.	oach – Computer
2.	Shameem Akhter and Jason Roberts, —Multi-Core Programming, Press, 2006.	, 1st edition, Intel
	References	
1.	Vincent. P. Heuring, Harry F. Jordan —Computer System design 2nd edition, Pearson, 2003.	and Architecture
2.	Apman, Gabriele Jost, Ruud van van der Pas, —Using OpenMP Memory ParallelProgramming (Scientific and Engineering C edition, MIT Press, 2007.	: Portable Shared omputation), 1st
3.	H. J. Siegel.Interconnection Network for Large Scale Parallel Pro- Hill, 1990.	cessing, McGraw

		National Institute of Ta	cience & Engine	ering	
Course	[: 4]	Advanced Compilation	Somestor	ar	
Course	liue	Techniques	Semester		
Doportr	ont	Computer Science &	Course Code	CST	024
Departin	lent	Engineering	Course Coue	CSI	024
Credits		03	T	Т	р
Course 7	Type	Theory	3	0	0
Course	rype	Course Obi	octivos	0	0
Ruilt un	on has	ic compiler knowledge this of	CUIVES	omniler	architecture and
technique	es incl	uding control flow analysis on	imization pipeli	ned archi	itecture garbage
collection	n etc.		inization, pipen	neu uren	licetule, guleuge
concentor		Learning Ou	tcomes		
After cor	npletio	n of this course, students will be	able to:		
• U	Indersta	inding of the challenges involve	ed in compilatio	n (seman	tic gan between
ir	put and	l output languages, compiler effi	ciency and code	nuality)	sup setween
• 1	Indersta	inding of the phases involved	in compilation	and kn	owledge of the
te	chniqu	es applied.		, und m	o wiedge of the
• A	bility to	o understand design decisions in	modern compile	rs and to i	ustify these.
• A	bility 1	to develop and apply modifica	tions to standard	t compile	ation techniques
W	hereve	r this is necessary.		. compin	anon woundade
• A	bility to	o analyse compilation tasks and t	o apply standard	compilat	ion techniques.
		Course Syr	onsis	compilat	
This cou	rse incl	udes the basic concepts related t	o compiler, its a	rchitectur	e . Control Flow
Analysis	. St	atic-single assignment. Scalar	optimization.	Instruct	ion scheduling.
Performa	ince ev	valuation, Data dependence a	nalysis, Loop t	ransform	ations, Garbage
collection	n and A	dvanced Topics.	5 / 1		<i>, U</i>
		Course Outline	/ Content		
Unit		Topics			Week
1.	Intro	luction: Compiler structure, arch	itecture and com	pilation,	
	source	es of improvement.			2
2.	Contr	ol flow analysis: Basic block	ks & loops. Da	ta flow	
	analys	is and optimizations: bit vector	rs, iterative fram	eworks,	2
	interva	al analysis, reaching definition	ons, liveness, a	common	
	subex	pression elimination, constant pr	opagation. More	control	
	flow a	nalysis: dominators, control depe	endence.		
3.	Static	-single assignment: Static-sing	gle assignment,	constant	
	propag	gation. Scalar optimization: loop	o invariant code	motion,	2
	comm	on subexpression elimination,	strength reduction	on, dead	
4	code e	elimination, loop optimizations, e	tc.	1 1 1	2
4.	Instru	action scheduling: Pipelined are	cnitectures, delay	/ed-load	2
	archite	tion live renge enlitting	er allocation: c	coloring,	
5	Dorfor	mon, nve range spinning.	mal analyzia.	offorto	2
э.	flow:	nensitive flow consitive	anan ananysis: side	Alion	Ĺ
	110W-1	is alias analysis method resolut	istants, infining	. Allas	
	anarys	and analysis, include resolution	ion. Scarching, Il	rmation	
l	and the				
4.	comm code e Instru archite allocat	on subexpression elimination, a elimination, loop optimizations, e action scheduling: Pipelined are ectures, list scheduling. Registe tion, live range splitting.	strength reduction ttc. chitectures, delay ter allocation: c	ved-load coloring,	2

OAN KAO		
	Supervised, unsupervised-learning, and stream mining.	
6.	Data dependence analysis: Dependence testing, dependence	1
	graphs.	
7.	Loop transformations: Interchange, tiling, fusion, distribution,	1
	splitting Just-in-time compilation: fast global optimization.	
8.	Garbage collection: Automatic memory management and data	2
	locality.Optimal Integrated Code Generation with OPTIMIST	
	Text Books	
1.	Compilers by Alfred V. Aho, Monica S Lam, R Sethi, Jeffrey D). Ullman
2.	Mapping and Compilation: Methods and Techniques by K. K. Ra	ampal
	References	
1.	https://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?advar	cedcachingppt
2.	David Bacon, Susan Graham, Oliver Sharp: Compiler Transform	nations for High-
	Performance Computing. ACM Computing Surveys, December	1994, Volume 26
	Issue 4. Preprint	
3.	David A. Padua and Michael J. Wolfe: Advanced compiler optin	nizations for
	supercomputers.	

National Institute of Technology Srinagar Course Title Principles of Cryptography Semester Department Computer Science & Engineering Course Code CST025 Credits 03 L T P Course Type Theory 3 0 0 Course Objectives This course is intended to provide a theoretically sound foundation in cryptography as used in network security. We shall learn about basic cryptographic tool like encryption and message authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic primitives, and how they are used in higher-level network security protocols. Learning Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information and communication systems. Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses m	MAGAR KASHMUS	Department of Computer Se	cience & Engin	eering	
Course Title Principles of Cryptography Semester Department Computer Science & Engineering Course Code CST025 Credits 03 L T P Course Type Theory 3 0 0 This course is intended to provide a theoretically sound foundation in cryptography as used in network security. We shall learn about basic cryptographic tool like encryption and message authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic primitives, and how they are used in higher-level network security protocols. Currening Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols to achieve these goals, and validate the security of designed prim		National Institute of Tec	hnology Srinag	gar	
Department Computer Science & Engineering Course Code CST025 Credits 03 L T P Course Type Theory 3 0 0 This course is intended to provide a theoretically sound foundation in cryptography as used in network security. We shall learn about basic cryptographic tool like encryption and message authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptography: To establish knowledge and understanding of how cryptographic techniques are used to establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, e., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography. Basics of Asymmetric 2 Key Cryptography, Hardness of Functions. 2 3.	Course	Fitle Principles of Cryptography	Semester		
Engineering I T P Course Type Theory 3 0 0 Course Objectives This course is intended to provide a theoretically sound foundation in cryptography as used in network security. We shall learn about basic cryptographic tool like encryption and message authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic primitives, and how they are used in higher-level network security protocols. To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish haveledge and understanding of how cryptographic techniques, are used to establish security in modern information- and communication systems. Curve Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, students will see the inner-working of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for	Departn	nent Computer Science &	Course Code	e CSTO	025
Credits 03 L T P Course Type Theory 3 0 0 This course is intended to provide a theoretically sound foundation in cryptography as used in network security. We shall learn about basic cryptographic tool like encryption and message authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic private-key and both we are used in higher-level network security protocols. To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Curyetography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryptoin, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, theat suddents will see the inner-working of cryptography. Basics of Asymmetric 2 Key Cryptography. Mat		Engineering			1
Course Type Theory 3 0 0 Course Objectives This course is intended to provide a theoretically sound foundation in cryptography as used in network security. We shall learn about basic cryptographic tool like encryption and message authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic primitives, and how they are used in higher-level network security protocols. Learning Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Curse Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security of designed primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, fro	Credits	03	L	Т	Р
Course Objectives This course is intended to provide a theoretically sound foundation in cryptography as used in network security. We shall learn about basic cryptographic tool like encryption and message authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic primitives, and how they are used in higher-level network security protocols. Learning Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Curyptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underginning. In this course, students will see the inner-working of cryptography. Basics of Asymmetric 2 Key Cryptography: Key Cryptography: 1 Introduction to Cryptography: 2 Mathematical Background for Cryptography: 2 Mathematical	Course	Гуре Theory	3	0	0
This course is intended to provide a theoretically sound foundation in cryptography as used in network security. We shall learn about basic cryptographic tool like encryption and message authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic primitives, and how they are used in higher-level network security protocols. Learning Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key areement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of sustend hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryptography, Hardness of Functions. 2 Course Outline / Content Untreduction to Cryptography: <t< td=""><td></td><td>Course Obje</td><td>ectives</td><td></td><td></td></t<>		Course Obje	ectives		
network security. We shall learn about basic cryptographic tool like encryption and message authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic primitives, and how they are used in higher-level network security protocols. Learning Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information - and communication systems. Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Introduction to Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography. As Stream ciphers and	This cou	rse is intended to provide a theoretically s	ound foundatior	n in cryptog	raphy as used in
authentication, in the "private-key" and "public-key" settings, with a focus on mathematical definitions of security, "provably secure" constructions based on fundamental cryptographic primitives, and how they are used in higher-level network security protocols. Learning Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security golas, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryptior, to message authentication codes, to hash functions, to digital signature, sec. Course Outline / Content Unit Introduction to Cryptography: Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Mathematical Background for Cryptography: Number Theory, GCD, Groups, Sings, Fields, Properties, Chinese Remainder Theorem. 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. DES and Alternatives, AES.	network	security. We shall learn about basic cryp	tographic tool li	ke encrypti	ion and message
definitions of security, "provably secure" constructions based on fundamental cryptographic primitives, and how they are used in higher-level network security protocols. Learning Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Course Synopsis Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security of designed primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signature, etc. Curyptography, Hardness of Functions. 2 Outline / Content Unit Mathematical u	authentio	ation, in the "private-key" and "public-k	ey" settings, wi	th a focus	on mathematical
Drimitives, and how they are used in higher-level network security protocols. Learning Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1 Introduction to Cryptography: 2 2 Mathematical Background for Cryptography: 2 3 Classical Cryptography: 2 3 Cl	definitio	ns of security, "provably secure" constru-	ctions based on	fundament	al cryptographic
Learning Outcomes To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryptom, to message authentication codes, to hash functions, to digital signatures, etc.	primitive	es, and how they are used in higher-level r	etwork security	protocols.	
To provide a basic introduction to central aspects of symmetric and asymmetric cryptography. To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topography. Hardness of Functions. 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key Cryptography. 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2. Cryptographic Hash Functions and MAC. 2. Public Key Cryptography, RSA Cryptosystem and Factoring Integers.		Learning Out	tcomes		
To establish knowledge and understanding of how cryptographic techniques are used to establish security in modern information- and communication systems. Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryptography. Herdness of Functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1. Introduction to Cryptography: Basics of Asymmetric 2 Key Cryptography, Hardness of Functions. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography. 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2	To provi	de a basic introduction to central aspects of	of symmetric and	l asymmetr	ic cryptography.
Course Synopsis Course Synopsis Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1 Introduction to Cryptography: Basics of Asymmetric 2 Key Cryptography, Hardness of Functions. 2 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography. 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. <td>To estab</td> <td>lish knowledge and understanding of h</td> <td>ow cryptograph</td> <td>nic techniq</td> <td>ues are used to</td>	To estab	lish knowledge and understanding of h	ow cryptograph	nic techniq	ues are used to
Course SynopsisCryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc.UnitTopicsWeek1.Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions.22.Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC.26.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2	establish	security in modern information- and com	munication syst	ems.	
Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1. Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions. 2 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography. 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptography, Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring		Course Syn	opsis		
the increasingly sensitive information involved in modern digital systems. Nowadays, core cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1. Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions. 2 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography. 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2	Cryptog	aphy provides important tools for ensuring	g the privacy, a	uthenticity,	and integrity of
cryptographic tools, including encryption, message authentication codes, digital signature, key agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1. Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric 2 Key Cryptography, Hardness of Functions. 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2. 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key Cryptography. 4. 5. Cryptographic Hash Functions and MAC. 5. Cryptographic Hash Functions and MAC. 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers.	the incre	asingly sensitive information involved in	n modern digita	l systems.	Nowadays, core
agreement protocols, etc., are used behind millions of daily on-line transactions. In this course, we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1. Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions. 2 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2	cryptogr	aphic tools, including encryption, message	authentication	codes, digit	al signature, key
 we will unveil some of the "magic" of cryptography. Modern Cryptography uses mathematical language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1. Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions. 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography.	agreeme	nt protocols, etc., are used behind millions	of daily on-line	transaction	s. In this course,
language to precisely pin down elusive security goals, design primitives and protocols to achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc.Course Outline / ContentUnitTopicsWeek1.Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions.22.Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC. 226.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2	we will u	inveil some of the "magic" of cryptograph	y. Modern Cryp	tography us	ses mathematical
achieve these goals, and validate the security of designed primitives and protocols using mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryptior, to message authentication codes, to hash functions, to digital signatures, etc.Course Outline / ContentUnitTopicsWeek1.Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions.22.Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC. 226.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2	language	to precisely pin down elusive security	goals, design p	primitives a	and protocols to
mathematical proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc.Course Outline / ContentUnitTopicsWeek1.Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions.22.Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC. 226.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2	achieve	these goals, and validate the security of	f designed prim	nitives and	protocols using
cryptography, it is essential to understand its mathematical underpinning. In this course, students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1. Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions. 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key Cryptography. 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 5. Cryptographic Hash Functions and MAC. 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers.	mathema	itical proofs based on clearly stated h	ardness assump	tions. The	refore, to learn
students will see the inner-working of cryptography for several core cryptographic tools, from encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1. Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions. 2 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography. 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2	cryptogr	aphy, it is essential to understand its m	athematical un	derpinning.	In this course,
encryption, to message authentication codes, to hash functions, to digital signatures, etc. Course Outline / Content Unit Topics Week 1. Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions. 2 2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography. 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2	students	will see the inner-working of cryptograph	y for several con	e cryptogra	aphic tools, from
Course Outline / ContentUnitTopicsWeek1.Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions.22.Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC.26.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2	encrypti	on, to message authentication codes, to ha	sh functions, to	digital sign	atures, etc.
UnitTopicsWeek1.Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions.22.Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC. 226.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2		Course Outline	/ Content		
1.Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions.22.Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC. 226.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2	Unit	Topics			Week
Basics of Symmetric Key Cryptography, Basics of Asymmetric Key Cryptography, Hardness of Functions.22.Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC.26.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2	1.	Introduction to Cryptography:			
Key Cryptography, Hardness of Functions.2.Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.3.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key Cryptography.4.Stream ciphers and Block Ciphers: DES and Alternatives, AES.5.Cryptographic Hash Functions and MAC.6.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.		Basics of Symmetric Key Cryptography	y, Basics of As	ymmetric	2
2. Mathematical Background for Cryptography: Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem. 2 3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2		Key Cryptography, Hardness of Function	ns.		
Number Theory, GCD, Groups, Rings, Fields, Properties, Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC.26.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2	2.	Mathematical Background for Cryptogra	phy:		
Chinese Remainder Theorem.23.Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key Cryptography.24.Stream ciphers and Block Ciphers: DES and Alternatives, AES.25.Cryptographic Hash Functions and MAC.26.Public Key Cryptography, RSA Cryptosystem and Factoring Integers.2		Number Theory, GCD, Groups, Rings, F	Fields, Properties	8,	
3. Classical Cryptography: Introduction to Some simple cryptosystems and their Cryptanalysis. Shannon's Theory, Secret vs. Public Key 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2		Chinese Remainder Theorem.			2
Introduction to Some simple cryptosystems and their 2 Cryptanalysis. Shannon's Theory, Secret vs. Public Key 2 Cryptography. 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2	3.	Classical Cryptography:			
Cryptanalysis. Shannon's Theory, Secret vs. Public Key 2 Cryptography. 2 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2		Introduction to Some simple cryptosyste	ms and their		
Cryptography. Cryptography. 4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 2 5. Cryptographic Hash Functions and MAC. 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers.		Cryptanalysis. Shannon's Theory, Secret	vs. Public Key		2
4. Stream ciphers and Block Ciphers: DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2		Cryptography.	-		
DES and Alternatives, AES. 2 5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2	4.	Stream ciphers and Block Ciphers:			
5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2		DES and Alternatives, AES.			
5. Cryptographic Hash Functions and MAC. 2 6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers. 2					2
6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers.	5.	Cryptographic Hash Functions and MAC			
6. Public Key Cryptography, RSA Cryptosystem and Factoring Integers.					2
Integers.	6.	Public Key Cryptography, RSA Cryp	tosystem and	Factoring	
		Integers.		0	

		2
7.	Discrete Logarithm Problem in Prime Fields, Generalized	
	Discrete Logarithm Problem. Attacks against Discrete	2
	Logarithm Problem. Public Key Cryptosystems based on the	
	Discrete Logarithm Problem.	
8	Elliptic Curve Cryptosystems. Digital Signatures.	1
	Text Books	
1.	Hans Delfs, Helmut Knebl, "Introduction to Cryptography,	Principles and
	Applications", Springer Verlag.	
2.	Wenbo Mao, "Modern Cryptography, Theory and Practice", Pearso	on Education
	References	
1.	A Graduate Course in Applied Cryptography by Dan Boneh and V	ictor Shoup
2.	Introduction to Modern Cryptography (2nd edition) by Jonathan Ka	atz and Yehuda
	Lindell	
3.	Handbook of Applied Cryptography by A. Menezes, P. Van Oorsc	hot, S. Vanstone.
4.	O. Goldreich, Foundations of Cryptography, CRC Press.	

Department of Computer Science & Engineering

National Institute of Technology Srinagar

Course Title	Neural Networks	Semester				
Department	Computer Science & Engineering	Course Code	CST026			
Credits	03	L	Т	Р		
Course Type	Theory	3	0	0		

Course Objectives

- To introduce major deep learning algorithms, the problem settings, and their applications to solve real world problems.
- To understand the role of neural networks in engineering, artificial intelligence, and cognitive modelling.
- To provide knowledge in developing the different algorithms for neural networks

Learning Outcomes

- After completion of this course the students should be able to:
- Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.
- Implement deep learning algorithms and solve real-world problems.

Course Synopsis

Basics of ANN-Mathematical model-Applications; Single Layer Perceptron; Multi Layer Perceptron; Associative Memory; Recurrent neural networks; Boltzmann machine; Self-organizing feature maps; Fuzzy neural networks, Genetic algorithms.

Course Outline / Content

Unit	Topics	Week
1.	Introduction to neural networks: Biological and Artificial neurons,McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm and Convergence, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Network Architectures.	2

2.	Multilayer networks:Sigmoid Neurons, Gradient Descent(GD) , Feedforward Neural Networks, Representation Power of Feedforward Neural Networks,Back propagation (BP) , Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Recurrent networks and unsupervised learning, Hopfield network - energy; stability; capacity,Boltzmann machine, Kohonen'sself organizing feature maps.	3
3.	Associative memory: Auto associative memories, Hetero associative memories, performance measures, associative memory models, Applications of associative memories.	2
4.	Convolutional Neural Networks: Visualizing Convolutional Neural Networks, Guided Backpropagation,Fooling Convolutional Neural Networks.	2
5.	Neuro Evolution: Introduction to Neuro evolution, Weight evolution, Topology evolution, Learning rule evolution, Deep Neuro Evolution. Neuro evolution uses and introduction to evolutionary algorithms to build Neural networks	3
	Text Books	
1.	Limin Fu." Neural Network in Computer Intelligence", Tata M Edition.	cGraw-Hill 2003
2.	Gene Sher, "handbook of Neuro evolution", Springer, Edition 1.	
	References	
1.	James A. Freeman David M. Skapura, "Neural Networks: Algorith Applications, And Programming Techniques". Pearson Publication	ms, 1,Edition 1
2.	Ke-lin du, M.N.S Swamy, "Neural networks and statistical learning edition.	g", Springer 2014

KASI	Department of Computer Se	cience & Engin	eering		
	National Institute of Tec	hnology Srinag	gar		
Course '	Fitle Pervasive Computing	Semester	~~~~		
Departn	ient Computer Science &	Course Code	e CST02	27	
~	Engineering				
Credits		L	T	P	
Course '	Type Theory	3	0	0	
	<u>Course Obje</u>	ectives			
The cour	se is about the emerging discipline of Perv	asive Computin	g, also knov	vn as Ubiquitous	
Computi	ng, Everywhere Computing and Invisible	e Computing. T	he key eler	nent here is the	
omnipres	sence of information devices. These dev	ices can be em	bedded into	cars, airplanes,	
ships, bi	kes, posters, signboards, walls and even c	clothes. This cou	irse focuses	on independent	
informat	ion devices including mobile phones, smai	t phones, and la	ptops (PCs),	and the services	
made ava	allable by them. It includes human-comput	er interaction us	ing several t	ypes of elements	
including	text, speech, and handwriting.				
T1 1		tcomes			
The obje	ctive of this course is:	1			
• 1	o study the pervasive computing and its a	pplications.			
• 1	o study the pervasive computing web base	ed applications.			
• 1	o study voice enabling pervasive computi	ng.			
• 1	o study PDA in pervasive computing.				
• T	o study user interface issues in pervasive	computing.			
	Course Syn	opsis			
The cou	rse aims at providing a sound concep	tual foundation	in the are	a of Pervasive	
Computi	ng aspects. The course attempts to provid	le a balanced tr	eatment of t	he mechanisms	
and envi	ronments of pervasive computing and init	iates senior CS	students to	the state-of-the-	
art in the	area. At the end of this course, students s	hould be able to	conceptuali	ze, analyze and	
design se	elect classes of pervasive computing system	ms.			
	Course Outline	/ Content			
Unit	Topics			Week	
	Introduction to Pervasive Computing:				
	Past, present, future; the pervasive	computing ma	rket, m-		
1	Business, Challenges and future of Perva	isive Computing	, , ,	2	
1.	Application Examples of Pervasive Co	I, Airline	3		
	Check-in and booking, Sales force	k-in and booking, Sales force automation, Healthcare,			
	Tracking, Car Information Systems, Em				
	Device Technology for PervasiveComp	uting :			
2.	Hardware, Human-machine interfaces,	Biometrics, C	operating	3	
	Systems, Java for pervasivedevices, Outlook				
	Device Connectivity: Protocols, Securit	y, Device Mana	gement		
	Developing will Applications:	1	1		
3.	Developing WML Applications: WML	accuments, dev	eloping a	2	
	WML application, WML tags, registr	ation wivil 118	and and		
4	MIDD Drogramming: JOME MIDD	noor interform	MIDD	C	
4.	application developing a MIDD appl	ication MIDD	Classos:	2	
	application, developing a milliop appl	ication, MIDP	Classes.		

MAN KAO		
	MIDlet class, MIDP GUI classes, MIDlet high-level events, low-	
	level APIs and event handling.	
	Advanced MIDP Programming :	
5.	Network programming, MIDP database programming, MIDlet	2
	provisioning, Bluetooth application.	
	Developing VoiceXML Applications Developing VoiceXML	
6	Applications: VoiceXML applications, VoiceXML TAGS,	2
0.	ECMAScript – Java Card Application: Java card VM, APDUs,	Z
	java card API, host applications.	
	Text Books	
1.	JochenBurkhardt, Dr. Horst Henn, Stefan Hepper - Pervasive Com	puting
	Technology and Architecture of Mobile Internet Applications – Pea	arson Education,
	2005.	
2.	JochenBurkhardt, Horst Henn, Stefan Hepper, Thomas Schaec&	Klaus Rindtorff:
	Pervasive Computing: Technology and Architecture of Mobile Inter	met Applications,
	Pearson Education, New Delhi, 2006.	
	References	
1.	Dan Harkey, Shan Appajodu, Mike Larkin – Wireless Java Program	mming for
	Enterprise Applications WileyPublishing, Inc., 2001.	
2.	StefenPoslad: Ubiquitous Computing: Smart Devices, En	vironments and
	Interactions, Wiley, Student Edition, 2010.	
3.	A. Genco, S. Sorce: Pervasive Systems and Ubiquitous Compu	ting, WIT Press,
	2012.	
4.	Guruduth S. Banavar, Norman H. Cohen, ChandraNarayanas	wami: Pervasive
	Computing: An Application-Based Approach, Wiley Interscience,	2012.

Department of Computer Science & Engineering						
	National Institute of Tecl	nnology Srinag	ar			
Course TitleDistributed and ParallelSemester						
	Computing					
Department	Computer Science &	Course Code CST028				
	Engineering					
Credits	03	L	Т	Р		
Course Type	Theory	3	0	0		
	Course Object	ctives				

To provide knowledge on principles and practice underlying in the design of distributed systems.

Learning Outcomes

By the end of the course, the students will be able to:

- Layout foundations of Distributed Systems;
- Introduce the idea of middleware and related issues;
- Understand in detail the system level and support required for distributed system;
- Understand the issues involved in studying data and design of distributed algorithms.

Course Synopsis

overview of parallel computing; Pipelined computations; communication technologies; clock synchronization; proof of correctness; complexity analysis; Distributed operating systems; algorithms for implementing DSM; load balancing; fault-tolerant models; Research issues in distributed systems.

Course Outline / Content			
Unit	Topics	Week	
1.	An overview of parallel computing, Languages and programming environments. Message passing computing Partitioning and		
	divide-and-conquer strategies, Pipelined computations, Synchronous computations, Load balancing and termination detection Programming with shared memory	2	
2.	Algorithms and applications Components of distributed systems, Communication technologies, communication services.	1	
3.	Distributed algorithms and protocols: examples of distributed algorithms, clock synchronization, logical and vector clocks, election algorithms, consensus algorithms, proof of correctness, complexity analysis.	2	
4.	Distributed operating systems: system models, file services, name services, process synchronization and coordination, case studies.	2	
5.	Distributed shared memory: algorithms for implementing DSM, coherence protocols.	1	
6.	Distributed resource management: load sharing, load balancing, resource monitoring	2	
7.	Failure recovery and fault tolerance: check-pointing, recovery, fault-tolerant models and protocols	2	
8.	Research issues in distributed systems, real-time protocols, standardization issues, cluster and grid computing.	2	
	Text Books		

ONIN INAC			
1.	George Coulouris, Jean Dellimore and Tim KIndberg, "Distributed Systems		
	Concepts and Design", Pearson Education.		
2.	Distributed and Cloud Computing: Clusters, Grids, Clouds, and the Future Internet		
	(DCC) by Kai Hwang, Jack Dongarra& Geoffrey C. Fox.		
3.	Ajay D. Kshemkalyani and MukeshSinghal, "Distributed Computing – Principles.		
4.	Andrew S. Tanenbaum and Maarten van Steen. "Distributed Systems: Principles and		
	Paradigms" (DSPD), Prentice Hall		
2.	Principles of Parallel Programming, by Calvin Lin and Larry Snyder, Addison-		
	Wesley.		
References			
1.	MukeshSinghal and N. G. Shivaratri, "Advanced Concepts in Operating Systems"		
2.	Parallel Programming: Techniques and Applications Using Networked Workstations		
	and Parallel Computers, by Barry Wilkinson, Michael Allen. Prentice Hall.		
3.	Joshy Joseph and Craig Fellenstein, "Grid Computing", IBM Press.		
4.	Algorithms and Systems", Cambridge University Press		
5	Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers,		

Department of Computer Science & Engineering					
Course	Titla	Cloud Computing	Somostor	gar	
Donartn	nont	Computer Science &	Course Code		20
Departin	lient	Engineering	Course Cour		23
Credits		03	Т	т	р
Course '	Typo	Theory	<u> </u>	0	I
Course	туре	Course Objec	tives	0	0
This cou	irse wi	ll introduce various aspects of clu	ud computin	g including	fundamentals
managen	nent iss	sues security challenges and future	research tren	ds This wi	ll help students
(both UC	F and P	G levels) and researchers to use and	explore the cl	oud comput	ing platforms
	s und r	Learning Outc	omes	oud comput	ing plutorino.
This cou	rse offe	rs a good understanding of cloud co	mputing conce	pts and prep	pares students to
be in a p	osition	to design cloud based applications for	or distributed s	systems.	
		Course Syno	psis		
The cour	se prese	ents a top-down view of cloud compu	iting, from app	lications an	d administration
to progra	amming	and infrastructure. Its main focus i	s on parallel p	rogramming	g techniques for
cloud co	mputing	g and large scale distributed systems	which form t	he cloud inf	rastructure. The
topics in	clude: c	overview of cloud computing, cloud	systems, para	llel processi	ng in the cloud,
distribute	ed stora	age systems, virtualization, securit	y in the cloud	d, and mult	ticore operating
systems.	Studer	nts will study state-of-the-art solut	ions for cloud	d computing	g developed by
Google,	Amazo	n, Microsoft, Yahoo, VMWare, etc.	Students will a	lso apply w	hat they learn in
one prog	rammir	ng assignment and one project execu	ted over Amaz	zon Web Se	rvices.
	T	Course Outline /	Content		
Unit		Topics			Week
1.	Cloud	Computing Basics:			
	Cloud	d Computing Overview; Charact	eristics; App	lications;	1
	Intern	et and Cloud; Benefits; Limitations;	Challenges.		
2.		Computing Services and Deployi	nent Models:		
	Infras	structure as a Service; Platform as a	Service; Soft	ware as a	2
	Servic	e; Private Cloud; Public Cloud; Con	nmunity Cloue	d; Hybrid	
2	Cloud		T		
3.	Cloud	Computing vs Other Computing	I echnologies	:	1
	toohn	view of Grid, Peer-to-Peer, Pervasive	e and Utility C	omputing	1
4		sing the Cloud:	iparison betwe		
4.	Acces	sing the Cloud:	a. Aaaaaa Ma	honisma	2
	Woh	Applications Web ADIs Web Brow	s, Access Met	manisins.	2
5	Cloud	Storage and Cloud Standards			
5.		jew. Storage as a Service.	loud Storage	Issues	2
	Challe	enges. Standards	ioua Diorage	100000,	2
6	Secur	ity Issues:			
0.	Securi	ing the Cloud Securing Data Es	tablishing ide	ntity and	2
	preser	ice.		und	-
7.	Devel	oping Applications:			2

	Major Players in Cloud Business; Overview of Service Oriented			
	Architecture; Tools for developing cloud services and			
	applications.			
8.	Practice Cloud IT Model:			
	Analysis of Case Studies when deciding to adopt cloud			
	computing architecture. How to decide if the cloud is right for your			
	requirements. Cloud based service, applications and development	2		
	platform deployment so as to improve the total cost of ownership			
	(TCO).			
Text Books				
1.	Anthony T. Velte, Toby J. Velte, and Robert Elsenpeter: Clou	d Computing: A		
	Practical Approach, McGraw Hill, 2010.			
2.	Kai Hwang, Jack Dongarra& Geoffrey C. Fox .: Distributed and C	loud Computing:		
	Clusters, Grids, Clouds, and the Future Internet (DCC)			
	References			
1.	RajkumarBuyys, James Broberg, AndrzejGoscinski (Editors) : C	loud Computing:		
	Principles and Paradigms, Wiley, 2011.			
2.	Barrie Sosinsky : Cloud Computing Bible, Wiley, 2011.			
3.	Judith Hurwitz, Robin Bloor, Marcia Kaufman, FernHalper : Clou	d Computing for		
	Dummies, Wiley, 2010.			
4.	BorkoFurht, Armando Escalante (Editors) : Handbook of Cl	loud Computing,		
	Springer, 2010.			
	Springer, 2010.			

Department of Computer Science & Engineering					
Course	Fitlo	Software Project Management	Somester		
Denartn	ant	Computer Science &	Course Code	CST)3()
Departin	ient	Engineering	Course Coue		550
Crodite		03	T	T	D
Course	Fyno	Theory	3	<u> </u>	0
Course .	гурс	Course Object	tives	0	0
This incl	udes:				
• R	lesolve	the process of managing software fi	com convention	al to mode	ern.
• A	nalyze	the architecture of a model based so	oftware and the	process fl	ow.
• D	Describe	the process automation, process n	nanagement, ch	ange man	agement, quality
n	nanager	nent, monitoring and control.	6	0	
	<u> </u>	Learning Out	comes		
At the en	d of the	e course, the student will be able to:			
• D	Develop	the model from the conventional so	oftware product	to the mo	dern.
• A	nalyze	and design the software architecture	e.		
• H	Iave an	exposure for organizing and manag	ing a software	project.	
• A	apply, a	nalyze, design and develop the soft	ware project.		
• D	Design v	various estimation levels of cost and	effort.		
• A	cauire	the knowledge of managing, econo	mics for conve	ntional. m	odern and future
S	oftware	projects.		,	
		Course Syno	psis		
The Syst	tem Pr	oject Management (SPM) is focus	sed on tools for	or plannin	g and managing
complex	project	ts and the issues associated with co	mplex projects	. This cou	rse discusses the
ways in	which]	projects that are already underway	can be monitor	ed and tra	cked in terms of
cost, sch	edule a	and technical progress. Various risk	k management	techniques	s for identifying,
tracking	and mi	tigating risks are discussed. Further	the course disc	usses poin	ters to important
resources	s for p	roject management, project manage	ement software	e tools as	well as a list of
empirica	l factor	s that are known to affect project su	ccess and failu	e.	
		Course Outline /	Content		
Unit		Topics			Week
1.	Proje	ct Management: The managemen	t spectrum, the	e people,	
	the pr	oduct, the process, the project, the V	V5HH principle	e, critical	1
	practi	ces.	• • .•		1
2.	Metri	cs for Process and Project: Met	rics in the pro	cess and	1
	projec	t Domains, software measurement	s, metrics for	software	
	quant	y, megrating metrics within softwa	are process, me	errics for	

	development and web engineering projects, the make/buy decision.	
4.	Project Scheduling: Basic concepts, project scheduling, defining a task set and task network, scheduling, earned value analysis. Risk Management: Reactive V/S proactive Risk Strategies, software risks, Risk identification, Risk projection, risk refinement, risk mitigation, monitoring and management, the RMMM plan.	2
5.	Quality Planning: Quality Concepts, Procedural Approach to Quality Management, Quantitative Approaches to Quality Management, Quantitative Quality Management Planning, Setting the Quality Goal, Estimating Defects for Other Stages, Quality Process Planning, Defect Prevention Planning.	2
6.	Quality Management: Quality Concepts, Software Quality assurances, software reviews, formal technical reviews, Formalapproaches to SQA, Statistical Software Quality assurances.	1
7.	Change Management: Software Configuration Management, The SCM repository, SCM Process, Configuration Managementfor Web Engineering.	1
8.	Project Execution And Closure: Reviews. The Review Process, Planning, Overview and Preparation, Group Review Meeting, Rework and Follow-up, One-Person Review, Guidelines for Reviews in Projects, Data Collection, Analysis and Control Guidelines, Introduction of Reviews and the NAH Syndrome.	2
9.	Project Monitoring and Control: Project Tracking, Activities Tracking, Defect Tracking, Issues Tracking, Status Reports, Milestone Analysis, Actual Versus Estimated Analysis of Effort and Schedule, Monitoring Quality, Risk-Related Monitoring. Project Closure: Project Closure Analysis.	2
	Text Books	
1.	Walker Rayce: "Software Project Management A Unified Framew Pearson Education, 2005.	ork", 1st Edition,
	References	
1.	Richard H.Thayer: "Software Engineering Project Management", 2 Computer Society, 1997.	2 nd Edition, IEEE
2.	Shere K.D: "Software Engineering and Management", 1st Edition 1988.	on, Prentice Hall,

	Department of Computer Science & Engineering					
		National Institute of Tech	nology Srina	gar		
Course	litle	Big Data	Semester		T 0 2 1	
Departn	nent	Computer Science &	Course Cod	e CS	S1031	
C l'4		Engineering	т			D
Credits	T	03				<u> </u>
Course Type Theory 5 0						0
This say		Course Objec	data Tha fa an		o 10 4 10 1	
toohnigu	rse look	s at concepts, technologies for big	data. The locu	is will be	on the	e processing
of big da	es allu a	cloud and virtualization will also h	anery of analy	yues . II	ie inte	reonnection
01 big ua	lla with	L opening Out	e studied.			
After con	moletion	of this course students will be at	le to:			
	Indorata	nd how to process big data on platf	ormathat can b	ondla the	vorio	ty valoaity
• (nd volu	ne of data by using a family of cor	onnents that t	equire in	teorat	ion and data
σ	overnan	ce	iiponents that i	equite in	tegrat	ion and data
§	Familiar	with the skills necessary for ut	ilizing to han	dle a va	rietv	of big data
	nalytics	and to be able to apply the analytic	es techniques o	on a varie	tv of a	polications
u	indi y ties	Course Syno	nsis		<i>ty</i> 01 t	ipplications.
This cou	rse will	cover important topics related to b	ig data includi	ng Introd	luction	n of big data
concepts	. Exami	ning big data types. Class Model.	Study of diffe	erent patte	erns. (Case studies
and mer	morv n	anagement. Big Data NFR's,	concept of d	istributed	com	puting and
virtualiza	ation in	big data.	·····			-F
		Course Outline /	Content			
Unit		Topics				Week
1.	Data E	conomy, Data Analytics, Data Sc	ience, Traditic	onal Data		
	Proces	sing Technologies, Large databas	es and their e	volution.		2
	Big I	Data technology and trends, B	ig Data Intro	oduction,		
	Charac	cteristics, Methodological Chall	enges and P	Problems,		
	Examp	ble Applications.				
2.	Exami	ning Big Data types – Defini	ng structured	data –		
	explor	ing sources and understanding role	of relational of	latabases		2
	in big	data. Defining unstructured data-	exploring sou	irces and		
	unders	tanding role of CMS in data mana	gement.			
3.	Provid	ing Structure to Unstructured Da	ata, Identificat	tion, De-		2
	identif	ication and Reidentification. Unto	logies and Sei	mantics -		2
	Classi	fication, Classes with Multiple Pai	ents, Choosin	g a Class		
	Model	, extensible Mark-up Language.				2
4	Introdu	4. Introduction to Meaning, Namespaces and the Aggregation of 2				
4.	Meaningful Assertions, Data Integration and Software					
4.	Interoperability, Immutability and Immortality Application					
4.	Interop	ngful Assertions, Data Integr perability, Immutability and Im	ation and mortality Ap	plication		
4.	Archit	ngful Assertions, Data Integration perability, Immutability and Immecture.	ation and mortality Ap			2
4.	Archit Ingesti	ngful Assertions, Data Integra berability, Immutability and Im- ecture. on and Streaming Pattern, Sto by Discovery and Analysis F	ation and mortality Ap rage Patterns,	plication Access		2
4.	Archit Ingesti Patterr	ngful Assertions, Data Integr perability, Immutability and Im- ecture. on and Streaming Pattern, Sto as, Discovery and Analysis F as Deployment Patterns C	ation and mortality Ap rage Patterns, Patterns, Visu	Access alization		2
4.	Archit Archit Ingesti Patterr Patterr	ngful Assertions, Data Integra berability, Immutability and Im- ecture. on and Streaming Pattern, Sto as, Discovery and Analysis F as, Deployment Patterns. , C eration made to the Map-Reduce	ration and mortality Ap rage Patterns, Patterns, Visu ase Studies.	Access alization Special earching		2
2.	Charac Examp Exami explor in big unders Provid identif Classif Model Introdu	cteristics, Methodological Chall ble Applications. ning Big Data types – Defini ing sources and understanding role data. Defining unstructured data- tanding role of CMS in data mana ing Structure to Unstructured Da ication and Reidentification. Onto fication, Classes with Multiple Par , extensible Mark-up Language. action to Meaning, Namespaces a	enges and F ng structured of relational of exploring sou gement. ata, Identificat logies and Ser rents, Choosin	Problems, data – databases urces and tion, De- mantics - g a Class gation of		2 2 2 2 2

	Information extraction and feature selection. Supervised-	
	unsupervised-learning, and stream mining.	
6.	Big Data Computational limitations. Big Data Emerging	1
	technologies.	
7.	Big Data NFR's., Data Privacy and Ethics, The privacy	1
	landscape, Preferences, Personalization and Relationships,	
	Rights and Responsibility, Can data be anonymized.	
8.	Need of distributed computing for Big Data, Virtualization and	2
	how it supports distributed computing, Cloud and Big Data,	
	Introduction to tools used for big data.	
	Text Books	
1.	Big Data: A Revolution That Will Transform How We Live, Wo	rk, and Think by
	Viktor Mayer-Schönberger, Kenneth Cukier	
2		
∠.	Big Data, Big Analytics: Emerging Business Intelligence and An	alytic Trends.
2.	Big Data, Big Analytics: Emerging Business Intelligence and An by Michael Minelli, Michele Chambers, AmbigaDhiraj	alytic Trends.
2.	Big Data, Big Analytics: Emerging Business Intelligence and An by Michael Minelli, Michele Chambers, AmbigaDhiraj References	alytic Trends.
1.	Big Data, Big Analytics: Emerging Business Intelligence and An by Michael Minelli, Michele Chambers, AmbigaDhiraj References https://www.slideshare.net/nasrinhussain1/big-data-ppt-31616290	alytic Trends.
1. 2.	Big Data, Big Analytics: Emerging Business Intelligence and An by Michael Minelli, Michele Chambers, AmbigaDhiraj References https://www.slideshare.net/nasrinhussain1/big-data-ppt-31616290 https://www.ntnu.no/iie/fag/big/lessons/lesson2.pdf	alytic Trends.
1. 2. 3.	Big Data, Big Analytics: Emerging Business Intelligence and An by Michael Minelli, Michele Chambers, AmbigaDhiraj References https://www.slideshare.net/nasrinhussain1/big-data-ppt-31616290 https://www.ntnu.no/iie/fag/big/lessons/lesson2.pdf https://www.planet-	alytic Trends.

Manure of Manure MAGARI KASHMURI				
Department of Computer Science & Engineering National Institute of Technology Srinagar				
Course Tit	le Cyber Laws & Forensics	Semester		
Departmen	It Computer Science & Engineering	Course Code	CST032	
Credits	03	L	Т	Р
Course Ty	pe Theory	3	0	0
	Course Objec	ctives		
To maintain	an appropriate level of awareness, know	wledge and skill	required to	minimize the
occurrence	and severity of incidents related to forer	nsics and cyber l	aw.	
	Learning Out	comes		
After comp	leting the course you will be able to:			
• Inter	rpret and appropriately apply the laws a	nd procedures a	ssociated wit	th identifying,
acqu	uiring, examining and presenting digital	evidence.		
• Crea	ate a method for gathering, assessing and	l applying new a	and existing l	egislation and
indu	stry trends specific to the practice of dig	gital forensics.		
• Emp	ploy fundamental computer theory in the	e context of com	puter forensi	cs practices.
• Adh	ere to the ethical standards of the profess	sion and apply th	ose standard	s to all aspects
of th	e study and practice of digital forensics	•		
• Usir	ng the scientific process, apply the	principles of e	effective dig	ital forensics
inve	stigation techniques.			
	Course Syno	psis		
As the name	e suggests, Cyber Law encapsulates the	legal issues rel	ated to use o	t the Internet.
11 law cove	ers mainly the digital information (incl	uding informati	on security a	and electronic
commerce)	aspects and it has been described as p	aper laws for a	a paperiess e	environment.
in coverel	mornation recimology Act 2000 has t	hed to assimilat	e legal princi	pies available
in several s	such laws (relating to information tech	nformation tech	nology law '	The Act gives
legal validit	ty to electronic contracts recognition (of electronic sig	notures This	s is a modern
legislation	which makes acts like backing data	theft spreading	g of virus	identity theft
defamation	(sending offensive messages) pornogra	phy child porne	g or virus, i	er terrorism a
criminal off	fence. It is less a distinct field of law that	n intellectual pro	operty or con	tract law, as it
is a domain	covering many areas of law and regula	tion. Some lead	ling topics in	clude internet
access and	usage, privacy, freedom of expression	and jurisdictio	n. Our cours	se is specially
designed to make the participant an expert of Cyber Law Fundamentals and Digital Forensics				
This is mad	le possible by discussing the in-depth co	ncepts of compu	iters and net	works, Cyber-
crime and C	Cyber Terrorism, the hacking techniques	used by terroris	st communiti	es, encryption
standards th	hey use and other algorithms as well	l. Concepts of	Internet Sec	urity, Digital
Signature and Electronic Payment System, Digital Law, Law of Intellectual Property.				
	Course Outline /	Content		
Unit	Topics			Week
1. I r	ntroduction to Forensics and Cyber (Crime: Fundame	entals of	
c	omputer, Internet Technology, E-Gov	ernance & E-I	Business	

Umt	Topics	WCCK
1.	Introduction to Forensics and Cyber Crime: Fundamentals of	
	computer, Internet Technology, E-Governance & E-Business	
	,crime, criminology, origin, source, recent trends. Emergence of	
	information based society, economic, administration, social,	2
	dependence of use of information, accession, threats, civil society	
	and global society, Overview of computer forensics and	
	Investigative Techniques, Computer forensic tools, activities of	
	forensic investigations and testing methodology.	

NAGAR KASHMIDU		
2.	Types and Categories of Cyber Crime: Personal, Business, Financial, Office Security, Cyber Crime – Complete transparency,	
	hacking/cracking, denial of service, IP piracy, phrasing, hetaerism	2
	etc. Cyber Attack – cyber attackers.	
3.	Role of Computers and Internet in Cyber crime, penetration	
	testing and auditing : Computer as witness, evidence, act,	
	defining evidence, computer forensics, computer storage, media	
	of electric record for use of course of law. Customers and legal	
	agreements, Router penetration testing, Firewalls penetration	
	testing, Intrusion detection system penetration testing, Wireless	
	networks penetration testing, Password cracking penetration	3
	testing, Social engineering penetration testing, Application	
	penetration testing, Policies and controls testing. Penetration	
	testing report and documentation writing, Policies and procedures	
	Security Policies-checklist.	
4.	Cyber Security: The concept of cyber security, meaning, scope	2
	and the frame work, basic structure development and	
	management, Rules, Regulations, Act, Legislation - Meaning,	
	Scope, Difference between Rules.	
5.	Need for a Cyber Act: The Indian Context, Need for a Cyber Act	3
	, Information Technology Act , Scope and further Development ,	
	Information Technology Act (Amendment), coverage of Cyber	
	Security and Cyber Crime Indian cyber Laws vs. cyber laws of	
	U.S.A, similarities, scope and coverage, Effectiveness.	
6.	Laboratory work: Consists of gathering information, evidence	2
	with tools like WinHex, Metasploit and Social Engineering	
	toolkit.	
	Text Books	
1.	Cyber Forensics: from Data to Digital Evidence, Albert J. Marce	lla Jr., Wiley,1 st
	Edition,2012	
2.	Hack I.T Security Through Penetration Testing, T. J. Klevinsky	y, Scott Laliberte
	and Ajay Gupta, Addison-Wesley, 1st Edition,2002	
3.	Computer Forensics: Cybercriminals, Laws, And Evidence, Ma	rie-Helen Maras,
	Jones & Bartlett Learn ,1st Edition ,2011.	
	References	
1.	Computer Forensics: Investigating Network Intrusions and Cyber C	rime, EC Council
	Press Series, Cengage Learning, 2010	
2.	James, S.H. and Nordby, J. J "Forensic Science - An Introduction	to Scientific and
	Investigative Technique", CRC Press, USA (2003).	

Department of Computer Science & Engineering				
	National Institute of Tech	nology Srinag	gar	
Course Title	Expert Systems	Semester		
Department	Computer Science &	Course Code	e CST033	3
	Engineering	-		
Credits	03	L	T	P
Course Type	0	0		
	Course Objec	tives	11	. 11
This course de	als with concepts, methods, and app	lications of de	cision model	ing to address
various market	ting issues. Unlike conventional ca	apstone, busin	ess courses	that focus on
understanding	into developing specific operational	models for im	proved decisi	on-making - a
skill in increasi	ng demand in corporations today. M	ethodology use	ed to transfer t	he knowledge
of a human exp	ert into an intelligent program that ca	n be used to so	ve problems of	or give advice
	Learning Outo	comes	tre problems (<u>i give daviec.</u>
After completin	ig this course, the student should be	able to:		
Apply t	he methodology to transfer human ki	nowledge into	an expert syst	em.
Apply k	nowledge representation.	0	1 5	
• Design	a knowledge base.			
Implem	ent a rule-based expert system.			
Evaluat	e Expert System tools.			
Provide	you with understanding of the role	of Artificial In	ntelligence, E	xpert Systems
and Dec	vision Models in managerial decision	-making.	U ,	1 5
Develop	abilities to apply, build and modify	decision mode	els to solve rea	al problems
Explore	the issues involved in the design a	nd developme	nt of Artificia	al Intelligence
Based D	Decision Support Systems and discuss	the role these	systems play i	n the business
environ	ment.			
	Course Syno	psis		
Introduction to	Expert Systems, Knowledge Repre	sentation, Infe	erence Metho	ds, Reasoning
under Uncertai	nty, Inexact Reasoning, Design of	Expert Syste	ms. Machine	learning and
database minin	g.	<u>C</u>		
TT	Course Outline /	Content		West
	I opics	duction Form	und and	<u>vveek</u>
1. Over	view. Background, general muo	uccion. Form	value allu	2
confi	guration diagnosis and business rule	s	selection,	
2 Rule	-hased expert systems: Logic and I	nferences: Pro	ositional	3
2. Logic	c. First Order Logic. Soundness and	Completeness.	Forward	5
and b	backward chaining. Uncertainty, fuzz	v logic and be	elief nets.	
Expe	rt System Shells.	5 8		
3. Othe	r expert system paradigms: PIES e	kample system	(Pan and	2
Tene	nbaum) OOPs, frames, Case-based re	asoning and he	elp desks,	
Reco	mmender systems (CDNow Cas	e Study). So	cheduling	
(Stee	Imaking example: Dorn and Slany).			
4. Build	ling expert systems: CLUES examp	ole system (Ta	lebzadeh,	3
Mano	lutianu and Winner), Building exper	t systems Disc	ussion of	
shells	s. Knowledge Management (Wiki we	b case study)		

5.	Machine learning and data-base mining: AI-Agents. State	4					
	Space Search: Depth First Search, Breadth First Search, DFID.						
	Heuristic Search: Best First Search, Hill Climbing, Beam Search.						
	Randomized Search: Simulated Annealing. Data Mining Decision						
	Trees, Neural Networks, Text Mining, Web mining Current trends						
	in AI.						
	Text Books						
1.	The Engineering of Knowledge-based Systems, A.J. Gonzalez ar	nd D. D. Dankel,					
	Prentice Hall, 1993.						
2.	A Guide to Expert Systems, Donald A. Waterman, Pearson publica	tions.					
3.	Introduction to Knowledge Systems, Stefik M., Morgan Kaufmann	l.					
	References						
1.	Giarratano J., Riley G., Expert Systems, Principles and Pro	gramming, PWS					
	Publishing Company	-					

Department of Computer Science & Engineering						
Course	Fitle	National Institute of Tech Mobile Computing	nology Srinag	ar		
Donorth	ant	Computer Science &	Course Code CST		024	
Departin	lent	Engineering	Course Coue	CSI	J34	
Crodits		2			D	
Course '	Γνηρ	Theory	3	<u> </u>	0	
Course	турс	Course Objec	tives	0	0	
To study	the d	etails of lower layers of mobile a	rchitectures in	the cont	ext of pervasive	
computir	ng and r	mobile applications.		the cont	ext of pervusive	
		Learning Out	omes			
By the er	nd of th	is course, the student will be able to	:			
• U	Jndersta	and algorithm/protocols, environment	nts and commu	nication s	vstems in mobile	
C	omputii	ng;			,	
• H	lave an	understanding of MANETs:				
• E	valuate	the performance of TCP protocols	n Wireless Net	works wit	h mobile nodes.	
		Course Syno	psis			
Introduct	tion to N	MC; System architecture; Localizatio	on and calling; I	Motivation	for a specialized	
MAC; D	HCP; T	CP; power aware and context-aware	computing; Co	ommunica	tions asymmetry;	
Wireless	Applic	ation Protocol-WAP.				
		Course Outline /	Content			
Unit		Topics			Week	
1.	Mobil	e Computing (MC): Introduc	tion to MC	, novel	1	
	applic	ations, limitations, and architecture.				
2.	GSM:	: Mobile services, System archite	cture, Radio i	nterface,		
	Protocols, Localization and calling, Handover, Security, and New 2					
	data se	ervices.				
3.	Wirel	ess Medium Access Control: Moti	vation for a sp	ecialized		
	MAC	(Hidden and exposed terminals, N	lear and far te	rminals),	2	
	SDM/	A, FDMA, TDMA, CDMA.				
4.	Mobil	le Network Layer: Mobile IP (Goa	ls, assumptions	, entities	2	
	and te	erminology, IP packet delivery, ag	gent advertisen	hent and	2	
	discov	very, registration, tunnelling	and encap	sulation,		
5	Mobil	La Transport Lavor Traditional	TCD Indira	ot TCD		
5.	Spoon	ing TCP Mobile TCP East re	transmit/fast	ct ICP,	2	
	Transi	mission /time-out freezing Sel	ective retrans	mission	Z	
	Transa	action oriented TCP	cenve retrains	5111551011,		
6	Datah	ase Issues: Hoarding techniques	caching inv	alidation		
0.	mecha	nisms, client server computing v	vith adaptation	. power	2	
	aware	and context-aware computing, tran	sactional mode	ls. querv	-	
	proces	ssing, recovery, and quality of service	e issues.			
7.	Data 1	Dissemination: Communications as	ymmetry, class	sification		
	of new	data delivery mechanisms, pushes t	ased mechanis	ms, pull-	2	
	based	mechanisms, hybrid mechanis	ms, selective	tuning		
	(index	ing) techniques.		C		
8.	Mobil	e Ad hoc Networks (MANETs)	Wireless Ap	plication	1	
	Protoc	col-WAP.				

OAK KAO						
	Text Books					
1.	Reza B"Far, "Mobile Computing Principles and Designing and Developing Mobile					
	Applications with UML and XML", Cambridge University Press, 2004.					
2.	JochenBurkhardt, et.al." Pervasive Computing, Technology and Architecture of					
	Mobile Internet Applications", Addison Wesley, 2002.					
	References					
1.	UweHansmann, LotharMerk, Martin S. Nicklous, Thomas Stober, "Principles					
	of Mobile Computing," Springer International, 2005.					
2.	Yi Bing Lin, "Wireless and Mobile Networks Architecture", John Wiley and Sons,					
	2000.					
3.	Tomasz Imielinski et.al, "Mobile Computing", Kluwer Academic Press, 1996.					
4.	UweHansmann, "Pervasive Computing Handbook. The Mobile World", IEE					
	publication 2002.					

Department of Computer Science & Engineering							
National Institute of Technology Srinagar							
Course T	itle Green Computing	Semester					
	Computer Science &	Course Code	e CST0	35			
Departm	ent Engineering						
Credits	03	Ĺ	T	<u> </u>			
Course 'I	ype Theory	3	0	0			
т ·	Course Objec	tives	•	• • • • • • •			
To acquir	e knowledge to adopt green computing pra	ctices to minin	nize negativ	e impacts on the			
tools that	ent, skill in energy saving practices in the	the the second sec	and to und	lorstand how to			
minimize	equipment disposal requirements	iprint by user,		leistand now to			
mmmze	Learning Out	omes					
By the en	d of this course, the student will beable to:	lomes					
• G	ve an account of the concept green IT:						
	we an account of any ironmental name	vag on IT vage					
• 0	ve an account of environmental perspectiv	/es on 11 use;					
• G	ve an account of standards and certification	ons related to s	ustainable I	l'products;			
• D	escribe green IT in relation to technology;						
• R	elate green IT to sustainable development;						
• Ev	valuate IT use in relation to environmental	perspectives;					
• D:	scuss how the choice of hardware and s	oftware can fa	acilitate a m	ore sustainable			
op	eration;						
• U	se methods and tools to measure energy co	nsumption.					
	Course Syno	psis					
Virtualiza	tion; Tele-computing; thin clients; E	mbedded con	nputing ar	d networking;			
Sustainab	le technology; Profiling Energy Usages; G	reen Networkin	ng; Data cen	tre management			
architectu	re; Green Cellular Networking.	~					
T T •/	<u>Course Outline /</u>	Content		**7 *			
	Topics	· . · · · · · · · · · · · · · · · · · ·		Week			
1.	Industry Approaches	initiatives-Gov	/ernment,				
	Virtualization: Green maturity mod	al for virtu	alization	3			
	Virtualization level: Level 0. Level 1. Level	el 2. Level 3.	anzanon,	5			
2.	Terminal servers . Power manageme	nt. Operating	system				
	support, Power supply, Storage, video	card, Displa	ay. Web,				
	temporal and spatial data mining mat	erials recyclin	ng, Tele-	3			
	computing. Thin clients: Introduction	on of thin	clients,				
	Characteristics of thin clients, Thin client	variants.					
3.	Middleware support for green computing	g, Tools for me	onitoring,				
	HPC computing, Green Mobile, Emb	edded compu	ting and				
	networking, Management frameworks, St	andards and m	etrics for				
	computing green.		D	A			
	Environmentally Sustainable Infl	rastructure	Design:	4			
	infrastructure environment	emgence, deco	mposing				
	inirastructure environment.						

MAGAR KASHMILL		
	Profiling Energy Usages for Efficient Consumption: Profiling	
	energy usages for the application. Profiling energy usages for the	
	operating system and Extra energy usages profile.	
4.	Green Networking: Where to save energy in wired networking,	
	Taxonomy of green networking research: Adaptive link rate,	
	Interface proxying, Energy ware infrastructure, Energy ware	4
	application.	
	Efficient-Efficient Data Canters: Reason for over power	
	consumption in data centers, Data center management architecture	
	in greener perspective.	
	Green Cellular Networking: Survey, Measuring greenness	
	metrics, Energy saving in base stations, Research issues,	
	Challenges, Future generation wireless systems, Wireless sensor	
	network for green networking.	
	Text Books	
1.	Bud E. Smith, "Green Computing: Tools and Techniques for Saving	g Energy, Money,
	and Resources", Auerbach Publications.	
2.	Toby Velte, Anthony Velte, Robert Elsenpeter, "Green IT: Reduce"	Your Information
	System's Environmental Impact While Adding to the Bottom Line?	", MC-Graw Hill.
3.	Jason Harris, "Green Computing and Green IT Best Practices on	Regulations and
	Industry Initiatives, Virtualization, Power Management, Materia	ls Recycling and
	Telecommuting", Emereo Publishing.	
	References	
1.	John Lamb, "The Greening of IT-How Companies Can Make a I	Difference for the
	Environment", Pearson Education.	
2.	Greg Schulz, "The Green and Virtual Data Center", CRC Press.	
3.	F. Richard Yu, Xi Zhang, Victor C.M. Leung, "Green Com	munications and
	Networking", CRC Press.	
3.	Daniel Minoli, "Designing Green Networks and Network Operation	ons: Saving Run-
	the-Engine Costs", CRC Press.	

WAGAR KASHMOO		Department of Computer	Science & Engin	neeri	ng		
Course	Title	Introduction to Robotics	Semester	gar			
Departr	nent	Computer Science &	Course Cod	e	CST03	36	
Caralita	Engineering				Т	D	
Credits	Type	Theory			I	P	
Course	Type	Course Of	niectives				
• 1	o intro	duce the functional elements of I	Robotics.				
• 7	To impa	rt knowledge on the direct and it	verse kinematics				
• 7	To intro	duce the manipulator differential	motion and contr				
• 7	To educe	ate on various path planning tech	niques	01.			
	To intro	duce the dynamics and control of	f manipulators				
• 1		duce the dynamics and control of	i manipulators.				
		Course Outlir	ne / Content				
Unit		Topics				Week	
1.	BASI	C CONCEPTS :					
	Brief	history-Types of Robot–Technol	logy-Robot classif	ficati	ons		
	and sp	pecifications-Design and control	issues- Various			3	
	manip	oulators – Sensors - work cell - P	rogramming lang	uages	5.		
2	DIDE	CT AND INVEDSE KINEMA	TICS				
۷.	DIRECT AND INVERSE KINEWATICS: Mathematical representation of Robots - Position and orientation				tion		
	– Homogeneous transformation-Various joints- Representation					3	
	using	the DenavitHattenberg paramete	ers -Degrees of fre	edon	n-	-	
	Direct kinematics-Inverse kinematics- SCARA robots-						
	Solva	bility – Solution methods-Closed	l form solution.				
3	MAN	IPULATOR DIFFERENTIAL	MOTION AND)			
5.	STAT	TICS :					
	Linear	r and angular velocities-Manipul	ator Jacobian-Pris	smati	c		
	and ro	otary joints-Inverse -Wrist and a	rm singularity - St	tatic			
	analys	sis - Force and moment Balance.				4	
A	DATT						
4.	PAIF Defini	1 PLANNING : ition-Ioint space technique-Use (of n-degree polyn	omia	1_		
	Cubic	polynomial-Cartesian space tech	hnique - Parametr	ic	1-	4	
	descriptions - Straight line and circular paths - Position and						
	orientation planning.						
5	DYNA	AMICS AND CONTROL:				2	
		ngian mechanics-2DOF Manipu	lator-Lagrange Eu	iler			
	tormu	lation-Dynamic model – Manipu	lator control prot	olem-			
	Linear control schemes-PID control scheme-Force control of						
	10000	Text B	ooks				

HAGAR KASH						
1.	R.K.Mittal and I.J.Nagrath, Robotics and Control, Tata McGraw Hill, New					
	Delhi,4th Reprint, 2005.					
2.	JohnJ.Craig ,Introduction to Robotics Mechanics and Control, Third edition,					
	Pearson Education,					
3.	M.P.Groover, M.Weiss, R.N. Nageland N. G.Odrej, Industrial Robotics, McGraw-					
	Hill Singapore, 1996.					
	References					
1.	AshitavaGhoshal, Robotics-Fundamental Concepts and Analysis', Oxford					
	University Press, Sixth impression, 2010.					
2.	K. K.AppuKuttan, Robotics, I K International, 2007.					
3.	Edwin Wise, Applied Robotics, Cengage Learning, 2003.					
4.	B.K.Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied					
	Publishers, Chennai, 1998					
5.	R.D.Klafter, T.A.Chimielewski and M.Negin, Robotic Engineering–An Integrated					
	Approach, Prentice Hall of India, New Delhi, 1994.					
6.	S.Ghoshal, "Embedded Systems & Robotics" – Projects using the 8051					
	Microcontroller", Cengage Learning, 2009.					

MAGAR KASH		Department of Comput	er Science & Engin	eerin	ng	
Course T	Title	Data Analytics	Semester	gar		
-						~~
Department		Computer Science &	Course Code	e	CST037	
Credite		Engineering	T		т	D
Course T	Credits L				1	1
	урс	Course	Ohiectives			
• Be	e expo	sed to big data	objectives			
• Le	earn th	e different ways of Data Analy	vsis			
• Be	e famil	iar with data streams	, 515.			
• Le	earn th	e mining and clustering				
• Be	e famil	iar with the visualization				
	c runni	iai with the visualization				
		Course Out	line / Content			
Unit		Topics	5			Week
1.	INTR	ODUCTION TO BIG DATA			1	
	Introd	uction to Big Data Platform –	Challenges of conve	entior		2
	systen	ns - web data – Evolution of A	Analytic scalability,	analy	tic	3
	processes and tools, Analysis vs reporting - Modern data analytic					
	tools,	Stastical concepts: Sampling (instributions, resamp	ning,		
	statist	ical interence, prediction error	••			
2.	DATA	A ANALYSIS:				
	Regre	ssion modeling, Multivariate a	analysis, Bayesian m	odeli	ng,	
	infere	nce and Bayesian networks, S	upport vector and ke	rnel	0,	3
	metho	ds, Analysis of time series: lir	hear systems analysis	s,		
	nonlin	ear dynamics - Rule inductior	n - Neural networks:	learn	ing	
	and ge	eneralization, competitive lear	ning, principal comp	onen	t	
	analys	is and neural networks; Fuzzy	logic: extracting fur	zzy		
	model	s from data, fuzzy decision tre	ees, Stochastic searcl	h		
	metho	ods.				
3.	MINI	NG DATA STREAMS:	Stream data madal a	md		
	arabit	acture Stream Computing St	Stream data model a			
	Filtori	ng strooms Counting disting	t alamanta in a straa	eann -	_	
	Fetim	ating moments – Counting distinct	eners in a window –	III –		1
	Decay	ving window - Realtime Analy	tics $Platform(RT\Delta P)$	n (4
	applic	ations - case studies - real time	e sentiment analysis	stoc	k	
	marke	t predictions.	e sentiment anarysis,	, 5100	n.	
4.	FREC	DUENT ITEMSETS AND C	LUSTERING:			
	Minin	g Frequent itemsets - Market l	based model – Apric	ori		
	Algor	ithm – Handling large data set	s in Main memory –	Lim	ited	4
	Pass a	lgorithm – Counting frequent	itemsets in a stream	_		
	Cluste	ring Techniques – Hierarchica	al – K- Means – Clu	sterin	ıg	
	high d	limensional data – CLIOUE ar	nd PROCLUS – Free	quent	Č I	

	pattern based clustering methods – Clustering in non-euclidean			
	space – Clustering for streams and Parallelism.			
5	FRAMEWORKS AND VISUALIZATION: Map Reduce – Hadoop, Hive, Map R – Sharding – NoSQL Databases - S3 - Hadoopistributed file systems – Visualizations - Visual data analysis techniques, interaction techniques; Systems and applications.	2		
	Text Books			
1.	Michael Berthold, David J. Hand, Intelligent Data Analysis, Spring	ger, 2007.		
2.	AnandRajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.			
	References			
1.	Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunit Streams with advanced analystics, John Wiley & sons, 2012.	ies in Huge Data		
2.	Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007 I Data Glossary, O"Reilly, 2011.	Pete Warden, Big		
3.	Jiawei Han, MichelineKamber "Data Mining Concepts and Techni Edition, Elsevier, Reprinted 2008.	ques", Second		

NAGAR KASHMIBU								
		Department of Computer S National Institute of Tee	cience & Engi chnology Srin	neering agar				
Course 7	Гitle	Computational Biology	Semester					
Departn	ient	Computer Science &	Course Code	e CST038				
-		Engineering						
Credits		03	L	Т	Р			
Course 7	Гуре	Theory	3	0	0			
		Course Obj	ectives					
• T	o provi	de basic introduction to Systems E	biology, proper	ties of biologi	cal systems and			
21	pproacl	nes in systems biology to analyze a	and interpret da	uta	5			
• T		an overview of Synthetic Biolo	av and analy	tical compute	tional methods			
• 1		d with the help of tools and software	gy and analy	lical compute	monar methods			
u	iscusse	d with the help of tools and softwa						
• 1	o unde	rstand the recent trends in genomic	s like toxico-g	enomics, phai	macogenomics,			
N	GS etc							
• T	'o fan	niliarize the advanced topics	in CADD	ike pharma	codynamics &			
p	harmac	okinetics.						
• T	o intro	duce metabolomics with its profili	ng and analysis	5.				
		Learning Ou	tcomes					
By the er	nd of th	is course, the student will be able	to:					
• E	xplain	mathematical concepts involved in	n biology					
• 6	hain has	sic knowledge of modern molecula	r biology and	penomics				
• D	evelon	an algorithm for analysis of hiolo	gical sequence	s				
• 6	ain kn	owledge to identify and develop i	n silico model	s. s. annronriate	to the different			
b b		al projects	II SINCO MOdel	s appropriate	to the unreferr			
• A	nnly n	nolecular methods to study genet	ic variation wi	thin and bety	veen species 6)			
E	xplain	and evaluate different phylogeneti	c optimal crite	ria.	veen species o)			
• 0	'orrectl	v select systems biology tools th	hat will help	them in re-c	onstructing and			
re	edefinir	g complex biological processes	inder with help		onstructing und			
		Course Syn	onsis					
System F	Biology	Gene Regulatory Network, Prote	in Interaction	Network.Svs	nthetic Biology.			
Computa	tional	Synthetic biology Engineering Bio	logy. Toxic-ge	enomics. Phar	macogenomics.			
Pharmac	o-genet	tics, Molecular dynamics simulation	ons, Metabolon	ne informatic	S.			
	0	Course Outline	/ Content					
Unit		Topics			Week			
	Syste	ms biology: Self-organization, er	nergence, mod	lularity and				
1.	abstra	ction, feedback, control analysi	s. Enzvme K	inetics and				
	Thermodynamics: The Law of Mass Action: Peaction Kinetics 3							
	Data Equation Michaelia Manter Equation Util Equation							
	Kate Equation, Wichaens-Wienten Equation, Hill Equation,							
Interaction networks overview- Gene Regulatory Network, Protein								
	- Floteni interaction network, Signaning Pathways, Metadolic							
	path-v	vays; network motifs, Systen	ns Biology	tools and				
	standards: Matlab Systems Biology toolbox; SBML; SBGL							
	(Systems Biology Graphical Language); KEGG; Tools for systems							
	Biolo	gy- Cell designer; Cytoscape.						

MAGAR KASHMING					
2.	Synthetic Biology: Engineering Biology; design and construction of novel biological systems; Abstraction hierarchy-Part, Device, Systems; Bio-Bricks - a standard for (physical) DNA composition, Designing a biological system from Bio-bricks; iGEM; SBOL, Computational Synthetic biology: Codon optimization; AND gate and OR gate in biology; Operons; Switches and clocks; Re- pressilator; Applications- Environment, Energy, Pharmaceutical needs, Ethical issues of Synthetic Biology.	3			
3.	Niche areas in Genomics: Toxic-genomics, Pharmacogenomics, Pharmaco-genetics, SNP, Personalized medicine, Meta-genomics, Comparative genomics, Functional genomics, structural genomics, QTL, HGP. Next Generation Sequencing methods, Overview of data compression, Need for compression, Scope of NGS data compression.	3			
4.	Advanced topics in CADD: Molecular dynamics simulations, Force fields, Energy minimization, pharmacodynamics & pharmacokinetics, 2D and 3D screening, Identification of targets in silico, GPCRs, Peptides as drugs, introduction to Ayur-informatics.	3			
5.	Metabolomics: Metabolism, metabolomite, metabolome, metabolomic separation and analysis techniques, metabolic profiling, metabolic fingerprinting, Metabolome informatics. Resources/databases of metabolomics, Applications; Epigenetics	3			
	Text Books				
1.	Alon, U. (2006). An introduction to systems biology: design princip biological circuits. CRC press.	oles of			
2.	Gautham, N. (2006). Bioinformatics: Databases and Algorithms. Al Int'l Ltd.	pha Science			
3.	Benson, G. (2003). Algorithms in Bioinformatics. Springer Berlin H	Heidelber			
	References				
1.	Choi, S. (Ed.). (2007). Introduction to systems biology. New Jersey:: Humana Press.				
2.	Demin, O., & Goryanin, I. (2010). Kinetic modelling in systems biology. CRC Press.				
3.	Gusfield, D. (1997). Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge University Press.				
4.	Iyengar, S. (2010). Symbolic Systems Biology. Jones and Bartlett.				

Department of Computer Science & Engineering National Institute of Technology Srinagar					
Course Title	Special Topics in Computer	Semester			
	Science				
Department	Computer Science &	Course Code	e CST039		
	Engineering				
Credits	03	L	Т	Р	
Course Type	Theory	3	0	0	
	Course Ob	iactivas			

This course will introduce students to this rapidly growing field and equip them with some of its basic principles and tools as well as its general mindset. Students will learn concepts, techniques and tools they need to deal with various facets of data science practice, including data collection and integration, exploratory data analysis, predictive modeling, descriptive modeling, data product creation, evaluation, and effective communication.

Learning Outcomes

After completion of this course students will be able to:

- Explain what Data Science is and the skill sets needed to be a data scientist.
- Apply basic machine learning algorithms (Linear Regression, k-Nearest Neighbors (k-NN), k-means, Naive Bayes) for predictive modeling.
- Identify probability distributions commonly used as foundations for statistical modeling. Fit a model to data.
- Explain the significance of exploratory data analysis (EDA) in data science. Apply basic tools (plots, graphs, summary statistics) to carry out EDA.
- Build their own recommendation system using existing components.
- Reason around ethical and privacy issues in data science

Course Synopsis

Data Science is the study of the generalizable extraction of knowledge from data. Being a data scientist requires an integrated skill set spanning mathematics, statistics, machine learning, databases and other branches of computer science along with a good understanding of the craft of problem formulation to engineer effective solutions.

Course Outline / Content

Unit	Topics	Week
1.	Introduction: Introduction to Data Science, Steps in doing	
	data Science, Skills needed to do data Science, Datafication	1
2.	Statistical Inference Populations and samples, Statistical	
	modelling, probability distributions, fitting a model, Intro to R	1
3.	Exploratory Data Analysis and the Data Science Process - Basic	
	tools (plots, graphs and summary statistics) of EDA, Philosophy of	2

	EDA, The Data Science Process, Case Study: RealDirect (online	
	real estate firm)	
4.	Introduction to Machine Learning: Linear Regression ,K-	2
	Nearest Neighbors (K-NN), k-means, Motivating application:	
	Filtering Spam, Why Linear Regression and k-NN are poor	
	choices for Filtering Spam, Naive Bayes and why it works for	
	Filtering Spam, Data Wrangling: APIs and other tools for	
	scrapping the Web	
5.	Feature Generation and Feature Selection (Extracting	2
	Meaning From Data) - Motivating application: user (customer)	
	retention Feature Generation (brainstorming, role of domain	
	expertise, and place for imagination), Feature Selection algorithms	
	– Filters; Wrappers; Decision Trees; Random Forests.	
6.	Recommendation Systems: Building a User-Facing Data Product,	2
	Algorithmic ingredients of a Recommendation Engine,	
	Dimensionality Reduction Singular Value Decomposition	
	Dimensionality Reduction, Singular value Decomposition,	
	Principal Component Analysis, Exercise: build your own	
	Principal Component Analysis, Exercise: build your own recommendation system	
7.	Principal Component Analysis, Exercise: build your own recommendation system Mining Social-Network Graphs: Social networks as graphs,	1
7.	Principal Component Analysis, Exercise: build your own recommendation systemMining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs,	1
7.	 Principal Component Analysis, Exercise: build your own recommendation system Mining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs. 	1
7.	 Principal Component Analysis, Exercise: build your own recommendation system Mining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs. Data Visualization Basic principles, ideas and tools for data 	1
7.	 Principal Component Analysis, Exercise: build your own recommendation system Mining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs. Data Visualization Basic principles, ideas and tools for data visualization, Examples of inspiring (industry) projects, Exercise: 	1
7.	 Principal Component Analysis, Exercise: build your own recommendation system Mining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs. Data Visualization Basic principles, ideas and tools for data visualization, Examples of inspiring (industry) projects, Exercise: create your own visualization of a complex dataset. 	1
7. 8. 9.	 Principal Component Analysis, Exercise: build your own recommendation system Mining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs. Data Visualization Basic principles, ideas and tools for data visualization, Examples of inspiring (industry) projects, Exercise: create your own visualization of a complex dataset. Data Science and Ethical Issues: Discussions on privacy, security, 	1

Department of Computer Science & Engineering National Institute of Technology Sringgar					
Course T	itle	System & Network Administration	Semester	-	
Departme	ent	Computer Science &	Course Code	CST	040
		Engineering			
Credits		03	L	Т	Р
Course T	ype	Theory	3	0	0
		Course Objec	tives		·
5. Ur	ndersta	nd the role and responsibilities of a	system adminis	trator	
6. Co	onfigur	e the Unix operating system			
7. Fo	cuses	on the principles and techniques use	ed in the design	of networ	ks and
de	velopn	nent of networked and distributed so	oftware.		
8. Stu	udents	will be exposed to standard networ	k design tools, a	ind diagno	ostic tools, such
as	packet	t monitors and performance analysis	s tools.		
		Learning Outo	comes		
• De	emonst	rate an understanding of system con	nponents, the ad	lvantages	of Unix OS.
• De	esign a	nd diagnosis of networks will also b	be covered.		
• Sy	vstems	Administration will also be discus	ssed, especially	with res	pect to Network
Ma	anager	nent; However, homework and p	programming as	ssignment	ts will be more
foo	cused of	on Network programming.			
		Course Syno	psis		
The maint	tenanc	e and deployment of computer syst	tems in product	ion enviro	onments requires
significant	t effor	t. This course distils decades of e	xperience into	operationa	al principles that
apply acro	oss tecl	hnologies.	~		
T T •4		<u>Course Outline /</u>	Content		XX7 1
Unit	T (1			1 '	Week
1.	Introduction to Networks, OSI interconnect model, topologies, 1				
2	Dhyoic	et filstory and TCF/IF	at programming		1
Ζ.	Drocos	car Layer. transmission media, sock	et programming	, UNIA	1
	110068	os creation and UNIA IFC.			
3.	Introd	uction to System administration as	a discipline: it	s goals,	1
	philos	ophy, challenges and common pr	ractices, Discus	ssion of	
computer system components and Operating systems components:					
	Unix-l	ike systems vs Windows systems			
4.	Data I	Link Laver: framing, flow control	error control	ncoding	2
	for loc	al and wide areas. Admin tricks wit	h UNIX shell.		_
5	Mediu	m Access Layer. Broadcast. CSM	IA/CD, CDMA	, FDDI.	1
	802.X	, Bluetooth.	,	. ,	
6	Netwo	ork Layer: Flow control, congest	tion control, F	Routing,.	2
	quality	of service, switching, CIDRs, mot	oile IP, WAP	C.	

7	Finish Routing. Transport Layer: TCP, UDP, IP v 6. CISCO	1		
	Router IOS.			
8	Application Layer: httpd, smtp, dns, snmp, ftp, Telnet, streaming	2		
	video, video compression, multicast, JME. Network Services. Dist			
	Computing, Network Management			
	Text Books			
1.	Nemeth, Snyder, Hein and Whaley "UNIX and Linux System	n Administration		
	Handbook", 4th Ed.(Prentice Hall, 2010)			
2.	William Stallings: Data & Computer Communications, 7th Ed,PHI			
References				
4.	AndrewTanenbaum,-Computer Networks PHI			

MAGAR KASH		Department of Computer Sci National Institute of Tech	ience & Engin	eering		
Course	Title	Pattern Recognition	Semester	<u>zai</u>		
Denartn	Department Computer Science & Course Code CS'		CST	041		
Departi	iitiit	Engineering	Course Cou		0+1	
Credits			L	Т	Р	
Course '	Type	Theory				
course	- , pe	Course Object	tives			
 (p (1 <li(1<="" li=""> <li(1<="" li=""> (1 <li(1<="" li=""></li(></li(></li(>	 Understand the concept of a pattern and the basic approach to the development of pattern recognition and machine intelligence algorithms. Understand the basic methods of feature extraction, feature evaluation, and data mining. Understand and apply both supervised and unsupervised classification methods to detect and characterize patterns in real-world data. Develop prototype pattern recognition algorithms that can be used to study algorithm behavior and performance against real-world multivariate data. Learning Outcomes After the course the student should be able to Define basic concepts in modelling and simulation Classify various simulation models and give practical examples for each category Construct a model for a given set of data and motivate its validity 					ng. ods hm
		Course Syno	psis			
		~ ~ ~ · · · ·	~			
T T •4	Course Outline / Content					
	Tradina d	l opics			<u>vv еек</u>	
1.	develo Super Featur Featur Super Unsup Super netwo Super Unsup learni	opment: vised pattern detection I (Bayes class re extraction - multivariate data re extraction - image data vised pattern detection II (linear cla pervised pattern detection I (clusteri vised pattern detection III (non-li orks, support vector machines) vised pattern detection IV (rule-base pervised pattern detection II (self-or ng)	ssifiers) ssifiers) ng) near classifier ed classifiers) rganization, co	rs, neural	2	
2.	Basic (recaj joint j and cross	s of Probability, Random Process p): Probability: independence of o probability, Bayes theorem Randon non-stationary processes, Expect -Correlation, spectra.	es and Linear events, conditi n Processes: S ation, Autoco	Algebra onal and stationary orrelation,	2	
3.	Bayes Classi densit	Decision Theory : Minimum-e fiers, Discriminant functions, Dec y and discriminant functions. Discre-	rror-rate class vision surfaces ete features.	sification. Normal	2	

KASI		
4.	Parameter Estimation Methods : Maximum-Likelihood estimation: Gaussian case. Maximum a Posteriori estimation. Bayesian estimation: Gaussian case. Unsupervised learning and clustering - Criterion functions for clustering. Algorithms for clustering: K-Means, Hierarchical and other methods. Cluster validation. Gaussian mixture models, Expectation-Maximization method for parameter estimation. Maximum entropy estimation. Sequential Pattern Recognition. Hidden Markov Models (HMMs). Discrete HMMs. Continuous HMMs. Nonparametric techniques for density estimation. Parzen-window method. K-Nearest Neighbor method	3
5.	Dimensionality reduction : Principal component analysis - it relationship to eigen analysis. Fisher discriminant analysis - Generalized eigen analysis. Eigen vectors/Singular vectors as dictionaries. Factor Analysis, Total variability space - a dictionary learning methods. Non-negative matrix factorization - a dictionary learning method.	2
6.	Linear discriminant functions : Gradient descent procedures, Perceptron, Support vector machines - a brief introduction.	1
7.	Artificial neural networks: Multilayer perceptron - feedforward neural network. A brief introduction to deep neural networks, convolutional neural networks, recurrent neural networks.	2
8.	Non-metric methods for pattern classification : Non-numeric data or nominal data. Decision trees: Classification and Regression Trees (CART).	1
-	Text Books	
1.	R.O.Duda, P.E.Hart and D.G.Stork, Pattern Classification, John W	iley
2	S.Theodoridis and K.Koutroumbas, Pattern Recognition, 4th Ed.	
3	C.M.Bishop, Pattern Recognition and Machine Learning, Springer	
4	MATLAB latest release full.	
Student This cou Case stud will prov recogniti own cho class dur	expectations rse will aim at basic student requirements: dies - A number of case studies will be assigned to students through ide an opportunity for the student to work with real world data to buil on applications. Students are also required to select and develop a c osing by the end of the semester, and to present their case studies ing the last class of the semester.	hout the term and d realistic pattern ase study of their to the rest of the

Department of Computer Science & Engineering				
0	National Institute of Tech	nnology Srina	gar	
Course	Title Natural Language Processing	Semester	COTO	40
Departn	Encineering	Course Cod	e CSIC	42
Credita		T	т	р
Creatis			1 0	<u> </u>
Course.	Course Obje		0	0
• T	his course is about a variety of ways to re-	oresent human	languages (like English and
	hinese) as computational systems, and ho	w to exploit th	ose represe	ntations to write
n	rograms that do useful things with	text and spee	ch data	like translation
P	immerization extracting information a	uestion answe	ring natur	al interfaces to
4	atchases and conversational agents	destion answe	ing, natur	ai internaces to
u	atabases, and conversational agents.			
• T	his field is called Natural Language Proce	essing or Comp	utational L	inguistics, and it
is	extremely multidisciplinary. This course	will therefore in	nclude some	e ideas central to
Ν	lachine Learning (discrete classification	. probability r	nodels) and	to Linguistics
(1	norphology syntax semantics)	, produciny r		
(-				
	Learning Out	comes		
• V	/e'll cover computational treatments of	words, sounds	, sentences	, meanings, and
C	onversations. We'll see how probabilities a	and real-world	text data car	n help. We'll see
h	ow different levels interact in state-of	-the-art appro-	aches to a	pplications like
tr	anslation and information extraction			
	~ ~ ~			
T 1	Course Sync	opsis	1 4 4 1	
The cour	se is designed for SCS undergraduate s	tudents, and a	Iso to stude	donte unho know
how to r	s who have a peripheral interest in natural produced a peripheral parameter in the period of the per	ta Structures a	nd Algorith	15_{211} or
equivaler	nt strong programming canabilities	la Structures a	nu Aigonu	IIIIS (13-211) OI
equivalen	Course Outline	Content		
Unit	Topics			Week
1.	Introduction- Human languages, models	, ambiguity, p	rocessing	
	paradigms; Phases in natural language	processing, app	olications.	2
	Text representation in computers, encodi	ng schemes. L	inguistics	
	resources- Introduction to corpus, eleme	ents in balance	d corpus,	
	TreeBank, PropBank, WordNet, Vo	erbNet etc.	Resource	
	management with XML, Management of	f linguistic data	a with the	
2	Regular expressions Finite State Autor	mata word red	cognition	3
۷.	lexicon Morphology acquisition models	Finite State Tr	ansducer	5
	N-grams, smoothing, entropy, HMM, M	IE. SVM. CRI	F. Part of	
	Speech tagging- Stochastic POS tagging	, HMM. Trans	formation	
	based tagging (TBL), Handling of u	nknown word	s, named	
	entities, multi word expressions.			
3.	A survey on natural language gramma	ars, lexeme, p	honemes,	4
	phrases and idioms, word order, agree	ment, tense, as	spect and	

AGAR KASH		
	mood and agreement, Context Free Grammar, spoken language	
	syntax	
4.	Parsing- Unification, probabilistic parsing, TreeBank. Semantics-	
	Meaning representation, semantic analysis, lexical semantics,	3
	WordNet Word Sense Disambiguation- Selectional restriction,	
	machine learning approaches, dictionary based approaches.	
	Discourse- Reference resolution, constraints on co-reference,	
	algorithm for pronoun resolution, text coherence, discourse	
	structure	
5.	Applications of NLP- Spell-checking, Summarization Information	3
	Retrieval- Vector space model, term weighting, homonymy,	
	polysemy, synonymy, improving user queries. Machine	
	Translation– Overview.	
	Text Books	
1.	Daniel Jurafsky and James H Martin. Speech and Language Proces	ssing, 2e, Pearson
	Education, 2009	
2.	James A Natural language Understanding 2e, Pearson Education,	1994
	References	
1.	Bharati A., Sangal R., Chaitanya V Natural language proces	sing: a Paninian
	perspective, PHI, 2000	

MAGAR KASH		Department of Computer Sci	ence & Engine	ering		
Course 7	F:4 1.	National Institute of Tech	nology Srinag	ar		
Course I		Quantum Computing	Semester	- (10TO 42	
Departm	ient	Engineering	Course Cod	e	.51045	
Credite			T		Г	D
Course	Type	Theory				I
Course Objectives						0
This cour	rse is des	igned:				
• T	o enable	students with non-physics backgro	unds to 'think	auantu	mlv'	
• T	o recom	ize which classical assumptions fa	l anart at the d	quantum	n level	
• T	o begin	to reintegrate the strange result	s of quantum	theor	v into	the broader
• 1 fr	o ocgin ameworl	to reintegrate the strange result	is of quantum		y mto	the broader
11		Learning Outc	omes			
Enable th	ne studen	t to:	omes			
• T	ranslate	fluently between the major ma	thematical re	present	ations	of quantum
	perations	a second the major ma		present	ations	or quantum
• Ir	nnlemen	t basic quantum algorithms				
• T	o acquire	a working knowledge of quantum	information th	eorv		
• 1				icory.		
This cour	rse is an i	introduction to quantum information	n theory (aubit)	s quan	tum oat	tes and aubit
systems)	It cove	rs a few selected quantum algorith	ms vet the en	o, quan nhasis	of the	course is on
quantum	simulat	ion (i.e. quantum informational t	epresentations	of au	antum	systems and
quantum	algorith	ns for computational physics).	oprosontations	or qu	41104111	systems and
1		Course Outline /	Content			
Unit		Topics				Week
1.	Introd	uction and Background: Overvi	ew, Computers	and t	he	
	Strong	Church-Turing Thesis, The	Circuit M	odel	of	2
	Compu	tation, A Linear Algebra Forn	nulation of the	e Circu	lit	
	Model	Reversible Computation, A Preview	w of Quantum	Physic	cs,	
	Quantu	Im Physics and Computation.				
	Linear	· Algebra and The Dirac Notation	on: The Dirac	Notatio	on	
	and H	ilbert Spaces, Dual Vectors, O	perators, The	Spectr	al	
	Theore	m, Functions of Operators, Tensor	Products, The	Schmi	dt	
	Decom	position Theorem, Some Commen	s on the Dirac	Notatio	on.	
2.	Qubits	and The Framework of Quantur	n Mechanics: '	The Sta	nte	
	of a C	Quantum System, Time-Evolution	of a Closed	Syster	m,	2
	Compo	osite Systems, Measurement, Mix	ed States and	Gener	al	
	Quantu	im Operations.		C'		
	A Qua	antum Model of Computation:	The Quantum	1 Circu	11t	
	Model,	Quantum Gates, Universal Se	ts of Quantur	n Gate	es,	
	Efficie	ncy of Approximating Unit	ary Transfor	rmatior	ns,	
2	Implen	henting Measurements with Quanti	im Circuits.			
5.	Super	Lense Coding and Quantum Tele	eportation: Su	perden	se	2
		g, Quantum Teleportation, An A	pplication of	Quantu	m	L
	relepo	nauon.				

INAGAR KASHMIBU						
	Introductory Quantum Algorithms: Probabilistic Versus					
	Quantum Algorithms, Phase Kick-Back, The Deutsch Algorithm,					
	The Deutsch–Jozsa Algorithm, Simon's Algorithm.					
4.	Algorithms With Superpolynomial Speed-Up: Quantum Phase					
	Estimation and the Quantum Fourier Transform, Eigenvalue	4				
	Estimation, Finding-Orders, Finding Discrete Logarithms,					
	Hidden Subgroups, Related Algorithms and Techniques.					
	Algorithms Based on Amplitude Amplification: Grover's					
	Quantum Search Algorithm, Amplitude Amplification, Quantum					
	Amplitude Estimation and Quantum Counting, Searching Without					
	Knowing the Success Probability, Related Algorithms and					
	Techniques					
5.	Quantum Computational Complexity Theory and Lower					
	Bounds: Computational Complexity, The Black-Box Model,	4				
	Lower Bounds for Searching in the Black-Box Model: Hybrid					
	Method, General Black-Box Lower Bounds, Polynomial Method,					
	Block Sensitivity, Adversary Methods.					
	Quantum Error Correction: Classical Error Correction, The					
	Classical Three-Bit Code, Fault Tolerance, Quantum Error					
	Correction, Three- and Nine-Qubit Quantum Codes, Fault-					
	Tolerant Quantum Computation.					
	Text Books					
1.	Eleanor G. Rieffel and Wolfgang H. Polak, "Quantum Comp	uting: A Gentle				
	Introduction"					
	References					
1.	Michael A. Nielsen and Isaac L. Chuang, "Quantum Computation	on and Quantum				
	Information".					
2.	Phillip Kaye, Raymond Laflamme, and Michele Mosca (2007). An Introduction to					
	Quantum Computing. Oxford University Press.					
3.	Yanofsky, Noson S. and Mirco A. Mannucci (2008). Quantum Computing for					
	Computer Scientists. Cambridge University Press.					
4.	McMahon, David (2008). Quantum Computing Explained. John W	/iley & Sons,				
	Inc.					
5.	Mermin, N. David (2007). Quantum Computer Science: An Introd	uction.				
	Cambridge University Press.					

Department of Computer Science & Engineering					
National Institute of Technology Srinagar					
Course Title	Deep Learning	Semester			
Department Computer Science & Course Code CST044					
	Engineering				
Credits	03	L	Т	Р	
Course Type	Theory	3	0	0	
	Course Objec	tives			
• This course is an introduction to deep learning, a branch of machine learning concerned					
with the	e development and application of	modern neura	l networks. D	eep learning	
-1	······································		· · · · · · · · · · · · · · · · · · ·		

algorithms extract layered high-level representations of data in a way that maximizes performance on a given task. For example, asked to recognize faces, a deep neural network may learn to represent image pixels first with edges, followed by larger shapes, then parts of the face like eyes and ears, and, finally, individual face identities. Deep learning is behind many recent advances in AI.

Learning Outcomes

- This is an upper-level undergraduate/graduate course.
- All students should have the following skills:
- Calculus, Linear Algebra
 Probability & Statistics
 Ability to code in Python

Course Synopsis

We will cover a range of topics from basic neural networks, convolutional and recurrent network structures, deep unsupervised and reinforcement learning, and applications to problem domains like speech recognition and computer vision. Prerequisites: a strong mathematical background in calculus, linear algebra, and probability & statistics (students will be required to pass a math prerequisites test), as well as programming in Python and C/C++. There will be assignments and a final project.

Course Outline / Content				
Unit	Topics	Week		
1.	Feedforward Neural networks. Gradient descent and the back			
	propagation algorithm. Unit saturation, aka the vanishing gradient	2		
	problem, and ways to mitigate it. RelU Heuristics for avoiding bad			
	local minima. Heuristics for faster training. Nestors accelerated			
	gradient descent. Regularization. Dropout.			
2.	Convolutional Neural Networks: Architectures, convolution /	3		
	pooling layers			
	Recurrent Neural Networks: LSTM, GRU, Encoder Decoder			
	architectures			
3.	Deep Unsupervised Learning: Autoencoders (standard, sparse,	4		
I	denoising, contractive, etc), Variational Autoencoders,			
l	Adversarial Generative Networks, Autoencoder and DBM			
l	Attention and memory models, Dynamic memory networks.			
1	Applications of Deep Learning to Computer Vision: Image			

	segmentation, object detection, automatic image captioning,	
	Image generation with Generative adversarial networks, video to	
	text with LSTM models. Attention models for computer vision	
	tasks.	
4.	Applications of Deep Learning to NLP: Introduction to NLP and	
	Vector Space Model of Semantics: Word Vector Representations:	3
	Continuous Skip-Gram Model, Continuous Bag-of Words model	
	(CBOW), Glove, Evaluations and Applications in word similarity,	
	analogy reasoning: Named Entity Recognition. Opinion Mining	
	using Recurrent Neural Networks	
5.	Named Entity Recognition. Opinion Mining using Recurrent	3
	Neural Networks: Parsing and Sentiment Analysis using	-
	Recursive Neural Networks: Sentence Classification using	
	Convolutional Neural Networks: Dialogue Generation with	
	LSTMs (1 lecture) Applications of Dynamic Memory Networks	
	in NLP (1 lecture) Recent Research in NLP using Deen Learning.	
	Factoid Question Asnwering similar question detection Dialogue	
	tonic tracking Neural Summarization Smart Renly	
	Text Books	
1	Bengio Voshua Ian I Goodfellow and Aaron Courville "Deen le	arning " An MIT
1.	Press book in preparation (2015)	anning. An Miri
2	Pangio Voshua "Learning doop architectures for AL" Foundatio	and trands in
۷.	Mashina Learning 2.1 (2000): 1127	and trends in
	Machine Learning 2.1 (2009): 1127.	
1	Keterences	
1.	Hochreiter, Sepp, and Jargen Schmidhuber. "Long short-term r	nemory." Neural
	computation 9.8 (1997): 17351780.	

Department of Computer Science & Engineering National Institute of Technology Srinagar					
Course	Title	Introduction to Data	Semester		
		Science		GOT	
Depart	ment	Computer Science &	Course Code	CST)45
Cara 124	_	Engineering	т		D
Creatts	Tuno	U3 Theory		<u> </u>	P
Course	туре	Course Obj		0	0
This co	urse will in	troduce students to this rapidly	growing field and equ	in them	with some of
its basi techniq data co	c principles ues and too llection and	s and tools as well as its gen ls they need to deal with vario d integration, exploratory data	eral mindset. Students ous facets of data scien a analysis, predictive 1	will lea ce practi modeling	arn concepts, ice, including g, descriptive
modelin	ng, data pro	duct creation, evaluation, and e	effective communication	n.	
A.C.	1	Learning Ou	itcomes		
After co	ompletion o	t this course students will be al	ble to:		
•	Explain wh	at Data Science is and the skill	sets needed to be a dat	a scienti	ist.
•	Apply basic NN), k-mea	c machine learning algorithms (ans, Naive Bayes) for predictive	(Linear Regression, k-l e modeling	Nearest I	Neighbors (k-
•	Identify pi modeling. I	obability distributions comm Fit a model to data.	nonly used as found	ations f	or statistical
•	Explain the basic tools	e significance of exploratory d (plots, graphs, summary statisti	lata analysis (EDA) in ics) to carry out EDA.	data sc	ience. Apply
•	Build their	own recommendation system u	using existing compone	nts.	
•	Reason aro	und ethical and privacy issues i	in data science		
		Course Syr	nopsis		
Data Sc scientis databas of probl	ience is the t requires a es and other lem formula	study of the generalizable extr in integrated skill set spanning r branches of computer science ation to engineer effective solut	action of knowledge fr g mathematics, statistic along with a good under tions	om data. cs, mach erstandir	Being a data nine learning, ng of the craft
		Course Outline	e / Content		
Unit		Topics			Week
1.	Introduct	tion: Introduction to Data Sci	ence, Steps in doing	data	1
2	Science, S	I Information Populations	e, Datafication	tical	1
۷.	modelling	probability distributions fitti	and samples, Statis	lical	1
3	Explorate	, probability distributions, fitth	ta Science Process - R	lasic	1
5.	tools (plot	ts, graphs and summary statisti	cs) of EDA. Philosoph	v of	2
	EDA, The	Data Science Process, Case Stu	udy: RealDirect (online	real	_
	estate firm	1)	-		
4.	Introduct	tion to Machine Learning: Li	near Regression,K-		2
	Nearest N	eighbors (K-NN), k-means, Mo	otivating application:		
	Filtering S	Spam, Why Linear Regression	and k-NN are poor		
	choices fo	or Fintering Spam, Naive Bayes	s and why it works for		

AGAR KASHM		
	Filtering Spam, Data Wrangling: APIs and other tools for	
	scrapping the Web	
5.	Feature Generation and Feature Selection (Extracting	2
	Meaning From Data) - Motivating application: user (customer)	
	retention Feature Generation (brainstorming, role of domain	
	expertise, and place for imagination), Feature Selection algorithms	
	– Filters; Wrappers; Decision Trees; Random Forests	
6.	Recommendation Systems: Building a User-Facing Data Product,	2
	Algorithmic ingredients of a Recommendation Engine,	
	Dimensionality Reduction, Singular Value Decomposition,	
	Principal Component Analysis, Exercise: build your own	
	recommendation system	
7.	Mining Social-Network Graphs: Social networks as graphs,	1
	Clustering of graphs, Direct discovery of communities in graphs,	
	Partitioning of graphs, Neighborhood properties in graphs.	
8.	Data Visualization Basic principles, ideas and tools for data	1
	visualization, Examples of inspiring (industry) projects, Exercise:	
	create your own visualization of a complex dataset.	
9.	Data Science and Ethical Issues: Discussions on privacy, security,	1
	ethics, A look back at Data Science, Next-generation data scientists	
	Text Books	
1.	Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk	From The
	Frontline. O'Reilly. 2014.	
2.	Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Ma	ssive Datasets.
	v2.1, Cambridge University Press. 2014.	
3.	Foster Provost and Tom Fawcett. Data Science for Business: What Y	ou Need to
	Know about Data Mining and Data-analytic Thinking. ISBN 144936	1323. 2013.
	References	
1.	Foster Provost and Tom Fawcett. Data Science for Business: What Yo	ou Need to Know
	about Data Mining and Data-analytic Thinking. ISBN 1449361323.	2013.

Department of Computer Science & Engineering National Institute of Technology Sringger					
Course Title Internet Of Things Semester					
Department Computer Science & Course Code CST046					
Engineering					
Credits 03 L T P					
Course Type Theory					
Course Objectives					
This course will enable students to					
•Define and explain basic issues, policy and challenges in the IOT					
•Illustrate Mechanism and Key Technologies in IOT					
•Explain the Standard of the IOT					
•Explain resources in the IOT and deploy of resources into business					
•Demonstrate data analytics for IOT					
Learning Outcomes					
At the end of this course the students will be able to:					
•Develop schemes for the applications of IOT in real time scenarios					
•Manage the Internet resources					
•Model the Internet of things to business					
•Understand the practical knowledge through different case studies					
•Understand data sets received through IOT devices and tools used for analysis					
Course Synopsis					
The course deals with all the important aspects of discrete Internet of things and to de	velop				
schemes for the applications of IOT in real time scenarios This course is meant for an	ipper				
level undergraduate or master's level introduction to manage the internet resources and	gain				
the practical knowledge through different case studies.					
Course Outline / Content					
Unit Topics Week					
1. What is The Internet of Things? Overview and Motivations, 2					
Examples of Applications, IPV6 Role, Areas of Development and					
Standardization, Scope of the Present Investigation. Internet of					
Things Definitions and frameworks-IOT Definitions, IOT					
Frameworks, Basic Nodal Capabilities. Internet of Things					
Application Examples-Overview, Smart Metering/Advanced					
Metering Infrastructure-Health/Body Area Networks, City					
Automation, Automotive Applications, Home Automation, Smart					
Cards, Iracking, Over-Ine-Air-Passive Surveillance/King of Stool Control Application Examples, Married Other Applications					
Steel, Control Application Examples, Myriad Other Applications.					
2. [Fundamental IOI Nechanism and Key Lechnologies-] 3					
Identification of IOT Object and Services Structural Aspects of					
Identification of IOT Object and Services, Structural Aspects of the IOT Key IOT Technologies Evolving IOT Standards					

COAL INTO		
	Roll, Constrained Application Protocol, Representational State	
	Transfer, ETSI M2M, Third Generation Partnership Project	
	Service Requirements for Machine-Type Communications,	
	CENELEC, IETF IPv6 Over Low power WPAN, Zigbee	
	IP(ZIP),IPSO	
3	Layer ¹ / ₂ Connectivity: Wireless Technologies for the IOT-WPAN	3
	Technologies for IOT/M2M, Cellular and Mobile Network	
	Technologies for IOT/M2M, Layer 3 Connectivity: IPv6	
	Technologies for the IOT: Overview and Motivations. Address	
	Capabilities, IPv6 Protocol Overview, IPv6 Tunnelling, IPSec in	
	IPv6, Header Compression Schemes, Quality of Service in IPv6,	
	Migration Strategies to IPv6.	
4.	Case Studies illustrating IOT Design-Introduction, Home	2
	Automation, Cities, Environment, Agriculture, Productivity	
	Applications.	
5.	Data Analytics for IOT –Introduction, Apache Hadoop, Using	2
	Hadoop Map Reduce for Batch Data Analysis, Apache Oozie,	
	Apache Spark, Apache Storm, Using Apache Storm for Real-time	
	Data Analysis, Structural Health Monitoring Case Study.	
	Text Books	
1.	Daniel Minoli,"Building the Internet of Things with IPv6 and MIP	v6:The Evolving
	World of M2M Communications", Wiley, 2013.	
2.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands on	n Approach"
	Universities Press., 2015	
	References	
1.	Michael Miller," The Internet of Things", First Edition, Pearson, 2	015.
2.	Claire Rowland, Elizabeth Goodman et.al.," Designing Connected	Products", First
	Edition,O'Reilly, 2015.	

Department of Computer Science & Engineering						
	• 41	National Institute of Techn	ology Srinaga	ar		
Course 1	itte	Advanced Cryptography	Semester		TO 17	
Departm	ent	Computer Science &	Course Code	e CS	CS1047	
<i>a</i> . 11/		Engineering	-			
Credits	1	3	L	<u> </u>		P ^
Course T	ype	Theory	3	0		0
	1 0	Course Objecti	ives			
• To	learn fi	undamental concepts of computer se	curity and cry	ptograpł	iy and	l utilize these
teo	chniques	s in computing systems.			P	
• To) learn	about Pseudo-random Generato	rs (PRG), b	uilding	a Ps	seudorandom
Pe	rmutatio	on and its applications.				
• To	o develo	op an understanding of Message Au	uthentication (Codes (N	AACs	and Public
Ke	ey Signa	iture Schemes.				
		Learning Outco	omes			
• Th	ie objec	tives of this course are to:				
• 1.	To unde	erstand the fundamentals of Cryptog	graphy			
• 2.	To acc	juire knowledge on standard algo	rithms used t	o provi	de co	nfidentiality,
int	tegrity a	nd authenticity.				
• 3.	To unde	erstand the various key distribution	and manageme	ent schei	nes.	
• 4.	To und	erstand how to deploy encryption to	echniques to se	ecure da	ta in t	transit across
da	ta netwo	orks				
• 5.	To desi	gn security applications in the field	of Information	techno	ogy	
		Course Synop	sis			
Fundamen	ntals of	Cryptography; Basics of Symmetry	ric and Asymr	netric K	ley C	ryptography;
Notions of	of sema	ntic Security and various types of	of Attacks; W	eak and	Stro	ng one way
functions;	Build	ling a Pseudorandom Permutat	ion; Message	e Auth	entica	tion Codes
(MACs);	Various	Public Key Signature Schemes.				
		Course Outline / C	Content			
Unit		Topics				Week
1.	Introd	uction : Attacks on computers and c	computer secur	ity, need	1	
	for sec	urity, approaches, principles, types	of attacks ,op	erationa	l	1
	model	of network security Cryptography co	oncepts and tec	hniques	,	
	substitu	ution, transposition, encryption and	decryption, sy	mmetric	,	
	Asymn	netric key cryptography, key range	e size, possible	e type of	f	
	attacks					
2.	Mather	matics of cryptography and DES	Block ciphers	modes	,	
	feistel	ciphers DES. working of DES ,crac	cking des ,prol	olems or	1	2
	des., 21	DES, 3DES, des design ,Side chanr	nel attacks, Dif	fferentia	1	
	cryptar	nalysis.				

KASHMISSO				
3.	Symmetric-Key Cryptography: Glosis field theory, AES,			
	overview of Rijndael - comparison with others. Symmetric	3		
	ciphers, Blowfish in practice ,RC4, RC5,RC6,IDEA, RSA			
4.	Asymmetric-Key Cryptography RSA, Elliptic curve cryptography			
	ECC, Digital certificates and PK	4		
5.	Cryptographic Hash Functions Hashing schemes SHA-family,			
	MAC, Digital Signature RSA El Gomel , DSS DSA,	5		
	Authentication Protocols, applications Kerberos, X.509 Directory			
	services			
6.	Network Security Internet security protocols, SSL,TLS TSP			
	WAP security, SET Hashing Authentication & Signature Schemes			
	E-mail security, Email architecture SSL, PGP, MIME, S/MIME	6		
	Internet Protocol Security (IPSec) IPSec architecture, IPSec			
	verses other layers security Mobile IPSec, VPN, Web security			
	SSL, TLS, SET etc			
7	System Security Intruders, types of attacks, protecting against			
	Intruders honeypots, scanning and analysis tools, Viruses and			
	worms, types of viruses, protection, Firewall architecture	7		
	implementing firewalls, xml firewalls, trusted systems, trusted			
	system applications, multi-level security, trusted products.			
	Security implementation, wireless security, securities in Adhoc-			
	networks.			
	Text Books			
1.	Cryptography And Network Security Principles and Practices W	Villiam Stallings,		
	Prentice Hall			
2.	Cryptography and Network Security Atul Kahate, Tata McGraw-H	lill		
3.	Cryptography and Network Security Behrouz A. Forouzan, TMH			
4.	Wade Trappe, Lawrence C Washington, "Introduction to Cryptogr	aphy with coding		
	theory", Pearson.			
	References			
1.	W. Mao, "Modern Cryptography – Theory and Practice", Pearson	Education		
2.	Charles P. Pfleeger, Shari Lawrence Pfleeger - Security in comput	ing – Prentice		
	Hall of India.			

Department of Computer Science & Engineering									
National Institute of Technology Srinagar									
Course Title	Course Title Data Mining Semester								
Department	Computer Science &	Course Code	CST0	T048					
	Engineering			•					
Credits	03	L	Т	Р					
Course Type	Theory	3	0	0					
	Course	Objectives							
To intr	oduce students to the basic cor	ncepts and techniques	s of Data M	lining.					
• To dev	elop skills of using recent data	mining software for s	olving prac	ctical problems.					
 To gai 	n experience of doing independ	dent study and resear	ch.						
• To stu	dy the methodology of engineer	ring legacy databases	for data w	arehousing and					
data m	ining to derive business rules f	for decision support s	ystems.						
	Learning	g Outcomes							
This course ha	is the following program learni	ing outcomes:							
• Study	the major data mining proble	ems as different type	es of comp	utational tasks					
(predic	tion, classification, clusterin	g, etc.) and the al	gorithms a	appropriate for					
addres	sing these tasks.								
• Learn	how to analyze data throu	gh statistical and	graphical s	summarization,					
superv	ised and unsupervised learning	g algorithms.							
• System	natically evaluate data mining	g algorithms and ur	nderstand l	now to choose					
algorit	hms for different analysis tasks	8.							
	Course	Synopsis							
This course in	troduces basic concepts, tasks	, methods, and techn	iques in da	This course introduces basic concepts, tasks, methods, and techniques in data mining. The					
emphasis is of	n various data mining problem	emphasis is on various data mining problems and their solutions. Students will develop an							
understanding of the data mining process and issues, learn various techniques for data									
understanding	of the data mining process	and issues, learn va	rious techr	will develop an niques for data					
mining, and a	pply the techniques in solving	and issues, learn va data mining problem	rious techn is using da	will develop an hiques for data ta mining tools					
mining, and a and systems.	pply the techniques in solving Students will also be exposed to	and issues, learn va data mining problem o a sample of data mi	rious techr is using da ning applic	will develop an hiques for data ta mining tools eations.					
mining, and a and systems. S	pply the techniques in solving Students will also be exposed to Course Out	and issues, learn va data mining problem o a sample of data mi line / Content	rious techn is using da ning applic	will develop an hiques for data ta mining tools eations.					
mining, and a and systems. S Unit	pply the techniques in solving Students will also be exposed to Course Out Topics	and their solutions, and issues, learn va data mining problem o a sample of data mi line / Content s	rious techn ns using da ning applic	will develop an hiques for data ta mining tools eations. Week					
mining, and a and systems. S Unit 2. Intro	pply the techniques in solving Students will also be exposed to Course Out Topics oduction to Data Mining: Int	and their solutions, and issues, learn va data mining problem o a sample of data mi line / Content s troduction: Scope o	rious techn ns using da ning applic	will develop an hiques for data ta mining tools eations. Week 1					
understanding mining, and a and systems. S Unit 2. Intro Min	pply the techniques in solving Students will also be exposed to Course Out Doduction to Data Mining: Int ing: What is Data Mining; How	and insues, learn va data mining problem o a sample of data mi line / Content s troduction: Scope o w does Data Mining	rious techn ns using da ning applic f Data Works,	will develop an hiques for data ta mining tools eations. Week 1					
understanding mining, and a and systems. S Unit 2. Min Prece	bit the data finning process pply the techniques in solving Students will also be exposed to Course Out Topics oduction to Data Mining: Int ing: What is Data Mining; How lictive Modelling: Data Mining	and issues, learn va data mining problem <u>a sample of data mi</u> line / Content s troduction: Scope o w does Data Mining ng and Data Wareh	rious techn ns using da ning applic f Data Works, ousing:	will develop an aiques for data ta mining tools eations. Week 1					
understanding mining, and a and systems. S Unit 2. Min Prec Arct	ply the techniques in solving Students will also be exposed to Course Out oduction to Data Mining: Int ing: What is Data Mining; How lictive Modelling: Data Minin nitecture for Data Mining: Pr	and issues, learn va data mining problem o a sample of data mi dine / Content s troduction: Scope o w does Data Mining ng and Data Wareh- rofitable Application	f Data Works, ousing: S: Data	will develop an hiques for data ta mining tools eations. Week 1					
Unit 2. Intro Min Prec Arc: Min	ply the techniques in solving <u>Students will also be exposed to</u> <u>Course Out</u> Dduction to Data Mining: Int ing: What is Data Mining; How lictive Modelling: Data Minin nitecture for Data Mining: Pr ing Tools	and issues, learn va data mining problem o a sample of data mi line / Content s troduction: Scope o w does Data Mining ng and Data Wareh- rofitable Applications	f Data Works, ousing: s: Data	will develop an hiques for data ta mining tools eations. Week 1					

COAR KAO		
	Data Warehouse, BI versus Data Mining, Future of BI.	
4.	Data Pre-processing: Introduction, Data Pre-processing	2
	Overview, Data Cleaning, Data Integration and	
	Transformation, Data Reduction, Discretization and Concept	
	Hierarchy Generation.	
5.	Data Mining Techniques- An Overview: Introduction, Data	2
	Mining, Data Mining Versus Database Management System,	
	Data Mining Techniques- Association rules, Classification,	
	Regression, Clustering, Neural networks.	
6.	Clustering: Introduction, Clustering, Cluster Analysis,	1
	Clustering Methods- K means, Hierarchical clustering,	
	Agglomerative clustering, Divisive clustering, clustering and	
_	segmentation software, evaluating clusters.	
7.	Web Mining: Introduction, Terminologies, Categories of Web	2
	Mining – Web Content Mining, Web Structure Mining, Web	
	Usage Mining, Applications of Web Mining, and Agent based	
0	and Data base approaches, Web mining Software.	2
8.	Applications of Data mining: Introduction, Business	2
	Applications Using Data Mining- Risk management and	
	Medical applications (dispetion companies) Scientific	
	Applications using Data Mining Other Applications	
	Applications using Data Minnig, Other Applications.	
2		
3.	Kamber and Han, "Data Mining Concepts and Techniques", Har	t Court India P.
	Ltd. Elsevier Publications Second Edition, 2001	
4.	Paul Raj Poonia, "Fundamentals of Data Warehousing", John W	iley & Sons,
	2004.	
	References	
5.	W. H. Inmon, "Building the operational data store", 2nd Ed., Joh	n Wiley, 1999.
6.	Pang- Ning Tan, Michael Steinbach, Viach, Vipin Kumar, Introd	uction to Data
	Mining, Pearson	

Department of Computer Science & Engineering								
Course 7	Course Title Advanced Graph Algorithms Semester							
Departn	nent	Computer Science & Engineering	Course Code CST049					
Credits		03	L	Т	Р			
Course 7	Гуре	Theory	3	0	0			
		Course Objec	tives					
• T • T • T • T • T • T • T • A • A • A • A • A • S • K • C	o expla o ident o under f a give o apply refix co who co argue the analyze mploy ynthesi ey com	tin the major graph algorithms and the ify different parameters of graphs and its properties of graph. The optimization techniques to construct the graph. The optimization techniques to construct the optimization techniques and the optimization techniques are structures. The optimization techniques are structures to the optimization techniques are structures to the optimization techniques are structures. The optimization techniques are structures to the optimization techniques are structures to the optimization techniques are structures. The optimization techniques are structures to the optimization techniques are structures. The optimization techniques are structures to the optimization techniques are structures are structures. The optimization techniques are structures are structures are structures are structures are structures are structures. The optimization techniques are structures are structures are structures are structures are structures. The optimization techniques are structures are structures. The optimization techniques are structures are stru	heir analyses. nd its application es of a given pro- ruct a minimal comes strated the abilities iductive proofs hms using asym- ms, when appro- ithms that emp- . Pick an appro-	ons. roperties t spanning ity to do th and invar nptotic an opriate. oloy graph	o detect planarity tree of a graph, ne following: iants. alysis. computations as ta structure for a			
d	esign si	ituation.	•					
T1.'		Course Syno	psis	.1.1. D.	-4 -1			
This course covers advanced graph algorithms from various fields Fast algorithms for fundamental graph optimization problems, including maximum flow, minimum cuts, minimum spanning trees, nonbipartite matching, planar separators and applications, and shortest paths								
		Course Outline /	Content					
Unit		Topics			Week			
1.	Basics Bipart Algor	s: Introduction, Machine Model, (ite Graphs, Eulerian Graphs, Circ ithm, Hierholzer's Algorithm	Graph Data St cuits & Trails,	ructures, Fleury's	2			

AGAR KASH		
2.	Connectivity: Top. Sort, Detecting Strong Components, 2- Connectivity / 2-Edge-Connectivity, (Open) Ear Decompositions, Strong Orientations, Testing 2-(Edge-)Connectivity in Linear Time, Bipolar Orientations, s-t-Numberings + Algorithm	3
3.	Matchings: Definitions, Hopcroft–Karp algorithm, Edmonds algorithm, Hall's Theorem, Hungarian Method for Bipartite Weighted Matchings, Weighted Matchings in General Graphs, Some approximate approach	2
4.	Dynamic Algorithms: Dynamic Connectivity and Spanning Trees in Amortized Poly-log time, Dynamic Connectivity in Worst-case $O(n^{1}/2)$ time	2
5.	Planar Graphs: Planar Separator Theorem and its Applications, Embeddings (combinatorial + planar), Euler's Formula, Kuratowski's Theorem, Detour to Platonic Solids, Dual Graphs, Interdigitating Trees, Half-Edge Data Structure, Decremental Dynamic Adjacency Queries, Max-Cut in polynomial time, Minimum Spanning Trees in linear time, Shortest Paths with Matrix Multiplication.	3
6.	NP-Hard Problems: Intro (FPT). Vertex Cover: FPT algorithm, Buss' kernel. Feedback Vertex Set: FPT algorithm, Kernels for Vertex Cover by Matching and for Feedback Vertex Set, Hamiltonian Path Problem, k-Path, Chromatic number, FPT Cut Problems: Important separators, Multiway Cut, Treewidth: Tree decompositions, Algorithmic use (dynamic programming), Introduction to Bidimensionality, Planar Graphs: Linear Kernels, Bidimensionality, Subexponential Time Parameterized Algorithms, Problems on Restricted Graph Classes, Combinatorial Algorithms for Linear Fisher Markets	2
	Text Books	
1.	R. Diestel. "Graph Theory". Springer, 2012.	
2.	Kozen, "Design and Analysis of Algorithms". Springer	
1	References	Durantina II 11
1.	Douglas B. west, Introduction to Graph Theory, Second Edition, F	rentice-Hall
2.	Bondy, J. A. and Murty, U.S.R., 'Graph Theory with Applications	', Springer

Department of Computer Science & Engineering								
Com	ao T :41o	National Institute of Techn	ology Srinagar					
Cour	se litte	Advanced Java	Semester Commo Codo	CETO	0			
Depa	rtment	Computer Science & Engineering	Course Code	<u> </u>				
Cred		U3		<u> </u>	P			
Cour	se Type	Theory Course Objection	3	0	0			
A	dant ah avid i	Course Object	ves					
A stu	of the verice	advenced packages	euge in Java programmin	ig and explo	ore the			
uses (Learning Outcomes							
At the	At the and of the assess the next is in an arrille							
At the	Develop S	wing based CLU						
•	Develop S	instructions and TCD/ID a						
•	Develop cl	lient/server applications and TCP/IP's	ocket programming					
•	Update and	a retrieve the data from the databases	using SQL					
•	Develop di	istributed applications using RMI	T D					
•	Develop co	omponent-based Java software using.	JavaBeans					
•	Develop se	erver side programs in the form of ser	vlets					
~		Course Synops	sis	~ ~ ~ ~	_			
Colle	ction framew	vork, Multithreading, Networking, Er	nterprise Java Bean, JDI	BC, Servlets	s, Java			
Serve	r Pages, Ren	note Method Invocation, Common C	bject Request Broker And	rchitecture.				
.		<u>Course Outline / C</u>	ontent					
Uni		Topics			Wee			
t				N 11	k			
1	Collections	: Collection Interfaces, Concrete	e Collections, The C	Collections				
•	Framework	Prove Constinue thread and manine	' Maltinla Thursday		2			
	in ala abia	ang: Creating thread and running	It, Multiple Infead ad	Thread	Z			
	ingle object	ci, Synchronization, Inread comm	unication, Thread grou	p, Inread				
2	Notworking	waemon Thread, Life Cycle of Thread.	•					
Z	Internet Ad	g: Idragging InatAddragg Eastery Mat	thada Instance Method					
•	Client Soc	kate UPI UPI Connection TCD/ID	Sorver Sockets Deterri	S, ICF/IF	2			
	Enternrise	Isva Rean: Preparing a Class to be	a JavaBean Creating a	uiis IavaRean	3			
	IavaBean P	roperties Types of beans Stateful Se	ssion bean Stateless Ses	sion bean				
	JavaDean I	roperties, Types of beans, Stateral Se	ssion bean, stateless see	sion ocan,				
	Entity hean							
3	Entity bean.							
3	Entity bean. Java Database	C onnectivity (.IDBC): Merging Data	a from Multiple Tables	s: Joining				
3	Entity bean. Java Database Manipulat	Connectivity (JDBC):Merging Data	a from Multiple Tables	s: Joining, Processing.				

	Servlets: Servlet Overview and Architecture, Interface Servlet and the Servle				
	t Life Cycle, Handling				
	HTTP get Requests, Handling HTTP post Requests, Redirecting Requests to				
	Other Resources, Session Tracking, Cookies, Session Tracking with HttpSession.				
4	JavaServer Pages (JSP): Introduction, JavaServer Pages Overview,				
	A First JavaServer Page Example, Implicit Objects, Scripting, Standard Actions,				
	Directives, Custom Tag Libraries	3			
	Remote Method Invocation:				
	Defining the Remote Interface, Implementing the Remote Interface, Compiling				
	and Executing the Server and the Client.				
5	Common Object Request Broker Architecture (CORBA):				
	Technical/Architectural Overview, CORBA Basics, CORBA services.	3			
	Introduction Smart Phone Application Development: Introduction to android pl				
	atform, Creating application template, adding activity, intent, services to				
	application, receivers and alerts.				
	Text Books				
1	Core and Advanced Java, Black Book, Dreamtech Press				
2	Java SE8 for Programmers (3rd Edition) (Deitel Developer Series) by Paul Deitel an	d			
	Harvey Deitel.				
References					
1	"Advanced Java 2 Platform HOW TO PROGRAM" by H. M.Deitel, P. J. Deitel, S. E.	Santry			
.	– Prentice Hall	2			
2	"Beginning Java [™] EE 6 Platform with GlassFish 3 From Novice to Professiona	al" by			
•	Antonio Goncalves– Apress publication.	2			

		Department of Computer So	cience & Engine	ering			
~ .		National Institute of Tec	hnology Srinag	ar			
Course '	l'itle	Numerical Methods	Semester				
Departn	nent	Computer Science &	Course Code	MTH	1 707		
		Engineering					
Credits		03	L	T	P		
Course '	Гуре	Theory	3	0	0		
		Course Obje	ctives				
This cou	irse is	a study of mathematical techniqu	es used to mod	el enginee	ering systems. It		
involves	the dev	elopment of mathematical models	and the application	on of the c	computer to solve		
engineer	ing pr	oblems using the following c	omputational te	chniques:	Taylor Series		
approxin	nation,	numerical differentiation, root-fin	ding using brack	keting and	d open methods,		
linear a	nd poly	ynomial curve fitting, solution r	nethods for ma	trix equa	tions, numerical		
integratio	on, and	the solution of differential equation	ns				
		Learning Out	comes				
Upon suc	ccessfu	l completion of this course, the stud	lent will:				
• B	e able	to model engineering systems using	g first and second	l order dif	ferential		
e	quation	s, and solve the equations both ana	lytically and nur	nerically.			
• B	e able	to employ the Taylor Series for app	proximation and	error analy	ysis.		
• B	e able	to formulate and apply numerical te	echniques for roo	ot finding,	curve fitting,		
d	ifferent	iation, and integration.	-	-	-		
		-					
		Course Syne	opsis				
Numeric	al anal	ysis is the story of how function	ns, derivatives,	integrals,	and differential		
equation	s are ha	ndled as strings of numbers in the c	computer. At the	heart of n	umerical analysis		
is an und	erstand	ing of the speed of convergence of T	Γaylor, Fourier, a	nd other s	eries expansions.		
Most sci	entists a	and engineers are sooner or later fa	ced with comput	ing tasks t	that require some		
knowled	ge of ni	umerical analysis.					
	Course Outline / Content						
Unit		Topics			Week		
1.	Linea	r Algebra: Matrices, Matrics	decompositio	n: LU	4		
	decon	position, Cholesky decomposition	, spectral decom	position,			
	Matrix	x Eigen-value problem, Gerchgorin	's theorem, Eign	en value			
	by ite	ration, generalized inverse of a n	natrix, solution of	of linear			
	system	n by decomposition method, Jacob	method.				
2.	Nonli	near system of equations: Newton'	s method, Powe	l Hybrid	4		
	metho	d. Differential equations: General	ised characterist	ic value			

AGAR KASH		
	problems, phase plane and critical points, stability and phase plane methods in nonlinear equations. Boundary value problems, mixed boundary conditions, boundary conditions at infinity, nonlinear boundary value problems, linear eigen value problems	
	boundary value problems, miear ergen value problems.	
3.	Differential Equations: Taylor series method, Euler method, Runge-Kutta method. Numerical solutions to Partial Differential Equations: Second order quasi-linear equations, numerical solutions.	3
4.	Approximate Analytic methods: Variational methods, weighted residual methods – Galerkin's method, collocation method, Functional, quadratic functionals. Numerical Integration – Gauss Legendre, Quadrature, Error Analysis, Convergence of solution. Finite element and Boundary element method.	3
	Text Books	
1.	S. S. Sastry, 'Numerical Analysis', Prentice-Hall of India Pvt. Ltd.	
2.	M.K. Jain, et.al., 'Numerical Methods for Scientific and Engineering	ng Computation',
	New Age International Publishers	
	References	
1.	Applied Numerical Methods with MATLAB for Engineers 2nd Edition. Stephen C. Chapra, McGraw Hill, 2010	and Scientists,
2.	J. H. Mathews and K. D. Fink, Numerical Methods Using MATLA Upper Saddle River, NJ: Prentice Hall, 2004, ISBN: 0130652482	AB®, 3rd ed,
3.	A. Gilat and V. Subramaniam, Numerical Methods for Engineers a John Wiley & Sons, Inc., 2008, ISBN: 9780471734406	nd Scientists,

Scheme of Courses for B.Tech. Electrical Engineering (3rd to 8th Semester

S. No. Course No. Subjects L T P Credits 1. EET201 Electrical Measurement & Instrumentation. 3 1 0 4 2. ECT201 Electronics-1 3 1 0 4 3. ECT202 Network Analysis 3 1 0 4 4. PHT201 EMF & Waves 3 1 0 4 5. MMT209 Electrical Engg. Materials 3 1 0 4 6. MAT204 Mathematics-III 3 1 0 4 7. ECL204 Electrical Machines-I 3 1 0 4 7. ECT250 Electrical Machines-I 3 1 0 4 2. EET251 Control Systems-I 3 1 0 4 3. MET257 Thermal Engineering 3 1 0 4 4. ECT250 Electronics-I 3 0 0 2 1 6. MAT253 Mathem	3 rd Semester								
1. EET201 Electrical Measurement & Instrumentation. 3 1 0 4 2. ECT201 Electronics-1 3 1 0 4 3. ECT202 Network Analysis 3 1 0 4 4. PHT201 EMF & Waves 3 1 0 4 5. MMT209 Electrical Eng, Materials 3 1 0 4 6. MAT204 Matematics-II 3 1 0 4 7 ECL204 Electrical Machines-I 3 1 0 4 7 ECL205 Electrical Machines-I 3 1 0 4 2. PET250 Electrical Machines-I 3 1 0 4 3. MET257 Thermal Engineering 3 1 0 4 4. ECT200 Electronics-II Lab 0 0 2 1 0 6. MAT233 Mathematics-IV 2 1 0 3 1 0 7. <t< td=""><td>S. No.</td><td>Course No.</td><td>Subjects</td><td>L</td><td>Т</td><td>Р</td><td>Credits</td></t<>	S. No.	Course No.	Subjects	L	Т	Р	Credits		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.	EET201	Electrical Measurement & Instrumentation.	3	1	0	4		
3. ECT202 Network Analysis 3 1 0 4 4. PHT201 EMF & Waves 3 1 0 4 5. MMT204 Electrical Engg. Materials 3 1 0 4 6. MAT204 Electronics - ILab 0 0 2 1 TOTAL CONTACT HOURS = 18 + 6 + 2 = 26 18 6 2 25 Import on the second state of the sec	2.	ECT201	Electronics-I	3	1	0	4		
4. PHT201 EMF & Waves 3 1 0 4 5. MMT209 Electrical Engs. Materials 3 1 0 4 6. MAT204 Mathematics-III 3 1 0 4 7 ECL204 Electronics - I Lab 0 0 2 1 7 ECL204 Electrical Machines-I 3 1 0 4 2. EET251 Control Systems-I 3 1 0 4 2. EET251 Control Systems-I 3 1 0 4 3. MET257 Thermal Engineering 3 1 0 4 4. ECT250 Electronics-II 3 1 0 4 5. CV7259 Hydraulics & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-IV 2 1 0 3 1 7. EEL252 Electrical Machines -I Lab 0 0 2 1 7. EL253 Electrice Mach	3.	ECT202	Network Analysis	3	1	0	4		
5. MMT209 Electrical Eng. Materials 3 1 0 4 6. MAT204 Mathematics-III 3 1 0 4 7 ECL204 Electronics -I Lab 0 0 2 1 TOTAL CONTACT HOURS = 18 + 6 + 2 = 26 18 6 2 25 4 th Semester I T P Credits 1. EET251 Control Systems-I 3 1 0 4 2. EET251 Control Systems-I 3 1 0 4 3. MET257 Thermal Engineering 3 1 0 4 4. ECT250 Electronics-II 3 1 0 4 5. CV71259 Hydraulics & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-IV 2 1 0 2 1 8. EEL253 Electrical Machines -I Lab. 0 0 2 1 1 9. ECL253 Electrical Machines -I 1	4.	PHT201	EMF & Waves	3	1	0	4		
6. MAT204 Mathematics-III 3 1 0 4 7 ECL204 Electronics – I Lab 0 0 2 1 TOTAL CONTACT HOURS = 18 + 6 + 2 = 26 18 6 2 25 U 4 th Semester S.No. Course No. Subjects L T P Credits 1. EET250 Electrical Machines-I 3 1 0 4 2. EET250 Electronics-II 3 1 0 4 4. ECT250 Electronics-II 3 1 0 4 5. CVT259 Hydraulics & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-V 2 1 0 0 2 1 7. EEL253 Electronics-II Lab 0 0 2 1 0 3 7. EET301 Power Systems-I 2 1	5.	MMT209	Electrical Engg. Materials	3	1	0	4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6.	MAT204	Mathematics-III	3	1	0	4		
$\begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	7	ECL204	Electronics – I Lab	0	0	2	1		
4 th Semester Subjects L T P Credits 1. EET250 Electrical Machines-I 3 1 0 4 2. EET251 Control Systems-I 3 1 0 4 3. MET257 Thermal Engineering 3 1 0 4 4. ECT250 Electronics-II 3 1 0 4 5. CVT259 Hydraulic & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-IV 2 1 0 0 2 1 8. EEL253 Electrical Masurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electronics-II Lab 0 0 2 1 1. EET301 Power Systems-I 2 1 0 3 2. EET302 Electric Machines II 3 1 0 4 3. EET302			TOTAL CONTACT HOURS $= 18 + 6 + 2 = 26$	18	6	2	25		
S. No. Course No. Subjects L T P Credits 1. EET250 Electrical Machines-I 3 1 0 4 2. EET251 Control Systems-I 3 1 0 4 3. MET257 Thermal Engineering 3 1 0 4 4. ECT250 Electronics-II 3 1 0 4 5. CVT259 Hydraulics & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-IV 2 1 0 3 1 7. EEL252 Electronics-II Lab. 0 0 2 1 1 9. ECL253 Electronics-II Lab 0 0 2 1 1 9. ECL253 Electronics Subjects L T P Credits 1. EET301 Power Systems-I 2 1 0 3 2. ECT33x Control System I 3 1 0 4 3. <			4 th Semester						
1. EET250 Electrical Machines-I 3 1 0 4 2. EET251 Control Systems-I 3 1 0 4 3. MET257 Thermal Engineering 3 1 0 4 3. MET257 Electronics-II 3 1 0 4 5. CVT259 Hydraulics & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-IV 2 1 0 3 1 7. EEL252 Electrical Machines – I Lab. 0 0 2 1 1 9. ECL253 Electronics-II Lab 0 0 2 1 1 TOTAL CONTACT HOURS = 16 + 6 + 6 = 28 16 6 6 25 1 1 3 1 0 4 3. EET301 Power Systems-I 2 1 0 3 2 2. EET301 Power Systems I Lab 0 0 2 1 0 3 2 1 0 3	S. No.	Course No.	Subjects	L	Т	Р	Credits		
2. EET251 Control Systems-I 3 1 0 4 3. MET257 Thermal Engineering 3 1 0 4 4. ECT250 Electronics-II 3 1 0 4 5. CVT259 Hydraulics & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-IV 2 1 0 3 7. EEL252 Electrical Machines – I Lab. 0 0 2 1 8. EEL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electrical Machines II Lab 0 0 2 1 0 3 10. EET303 Control System I 3 1 0 4 4 2 1 0 3 10. EET30	1.	EET250	Electrical Machines-I	3	1	0	4		
3. MET257 Thermal Engineering 3 1 0 4 4. ECT250 Electronics-II 3 1 0 4 5. CVT259 Hydraulics & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-IV 2 1 0 3 7. EEL252 Electrical Machines – I Lab. 0 0 2 1 8. EEL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electronics-II Lab 0 0 2 1 1 9. ECT33X Dover Systems-I 2 1 0 3 2 1. EET303 Control System II 3 1 0 4 3. EET303 Control Systems 2 1 0 3 5. ECT3xx Digital Electronics & Logic Design 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1	2.	EET251	Control Systems-I	3	1	0	4		
4. ECT250 Electronics-II 3 1 0 4 5. CVT259 Hydraulics & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-IV 2 1 0 3 7. EEL252 Electrical Machines – I Lab. 0 0 2 1 8. EEL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electroics-II Lab 0 0 0 2 1 TOTAL CONTACT HOURS = 16 + 6 + 6 = 28 16 6 6 25 S. No. Course No. Subjects L T P Credits 1. EET301 Power Systems-I 2 1 0 3 2 2. EET303 Control System II 3 1 0 4 4 4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 </td <td>3.</td> <td>MET257</td> <td>Thermal Engineering</td> <td>3</td> <td>1</td> <td>0</td> <td>4</td>	3.	MET257	Thermal Engineering	3	1	0	4		
5. CVT259 Hydraulics & Hydraulic Machines 2 1 0 3 6. MAT253 Mathematics-IV 2 1 0 3 7. EEL252 Electrical Machines – I Lab. 0 0 2 1 8. EEL253 Electroid Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electronics-II Lab 0 0 2 1 9. ECL253 Electronics-II CONTACT HOURS = 16 + 6 + 6 = 28 16 6 6 25 TOTAL CONTACT HOURS = 16 + 6 + 6 = 28 16 6 6 25 S.No. Course No. Subjects L T P Credits 1. EET301 Power Systems I 3 1 0 4 4. ECT3xx Communication Systems 2 1 0 3 5. ECT3xx Communicatics-V 2 1 0 3 6. EE	4.	ECT250	Electronics-II	3	1	0	4		
6. MAT253 Mathematics-IV 2 1 0 3 7. EEL252 Electrical Machines – I Lab. 0 0 2 1 8. EEL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electric Machines -I Lab 0 0 2 1 1. EET301 Power Systems -I 2 1 0 3 2. EET303 Control System II 3 1 0 4 4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 1 6. EEL301 Power Systems I Lab 0 0<	5.	CVT259	Hydraulics & Hydraulic Machines	2	1	0	3		
7. EEL252 Electrical Machines – I Lab. 0 0 2 1 8. EEL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electroics-II Lab 0 0 2 1 TOTAL CONTACT HOURS = 16 + 6 + 6 = 28 16 6 6 25 TOTAL CONTACT HOURS = 16 + 6 + 6 = 28 16 6 6 25 S. No. Course No. Subjects L T P Credits 1. EET301 Power Systems-I 2 1 0 3 2. EET303 Control System II 3 1 0 4 3. EET303 Control Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 7. MAT311 Mathematics-V 2 1 0 3 8. EEL301 Power System II & V.I. Lab 0 0 2 1 10 EL334 Control S	6.	MAT253	Mathematics-IV	2	1	0	3		
8. EEL253 Electrical Measurement & Instrumentation-Lab 0 0 2 1 9. ECL253 Electronics-II Lab 0 0 2 1 70 TOTAL CONTACT HOURS = 16 + 6 + 6 = 28 16 6 6 25 5 th Semester 5 th Semester 1 7 P Credits 1. EET301 Power Systems-I 2 1 0 3 2. EET302 Electric Machines II 3 1 0 4 3. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Digital Electronics & Logic Design 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 9. EEL303 Control System II Lab 0 0 2 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1 11 ECC3xx </td <td>7.</td> <td>EEL252</td> <td>Electrical Machines – I Lab.</td> <td>0</td> <td>0</td> <td>2</td> <td>1</td>	7.	EEL252	Electrical Machines – I Lab.	0	0	2	1		
9. ECL253 Electronics-II Lab 0 0 2 1 TOTAL CONTACT HOURS = 16 + 6 + 6 = 28 16 6 6 25 Sh Semester S.No. Course No. Subjects L T P Credits 1. EET301 Power Systems I 2 1 0 3 2. EET302 Electric Machines II 3 1 0 4 3. EET303 Control System II 3 1 0 4 4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 9. EEL302 Electric Machines II Lab 0 0 2 1 11 ECL3x Digital Electronics & Logic Design Lab Logic 0 0 2 1 9. EEL303 Control System SI Lab 0 0 2	8.	EEL253	Electrical Measurement & Instrumentation-Lab	0	0	2	1		
Interview Total Contact Hours = 16 + 6 + 6 = 28 16 6 6 25 5^{th} Semester Subjects L T P Credits 1. EET301 Power Systems-I 2 1 0 3 2. EET302 Electric Machines II 3 1 0 4 3. EET303 Control System II 3 1 0 4 4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 0 7. MAT311 Mathematics-V 2 1 0 3 8. EEL303 Control System II & V.I. Lab 0 0 2 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1 11 ECL3xx <td< td=""><td>9.</td><td>ECL253</td><td>Electronics-II Lab</td><td>0</td><td>0</td><td>2</td><td>1</td></td<>	9.	ECL253	Electronics-II Lab	0	0	2	1		
Sho. Course No. Subjects L T P Credits 1. EET301 Power Systems-I 2 1 0 3 2. EET302 Electric Machines II 3 1 0 4 3. EET303 Control System II 3 1 0 4 4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 0 3 7. MAT311 Mathematics-V 2 1 0 3 3 1 0 2 1 0 3 1 0 2 1 <td< td=""><td></td><td></td><td>TOTAL CONTACT HOURS $= 16 + 6 + 6 = 28$</td><td>16</td><td>6</td><td>6</td><td>25</td></td<>			TOTAL CONTACT HOURS $= 16 + 6 + 6 = 28$	16	6	6	25		
S. No. Course No. Subjects L T P Credits 1. EET301 Power Systems-I 2 1 0 3 2. EET302 Electric Machines II 3 1 0 4 3. EET303 Control System II 3 1 0 4 4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 7. MAT311 Mathematics-V 2 1 0 3 8. EEL302 Electric Machines II Lab 0 0 2 1 9. EEL303 Control System I & V.I. Lab 0 0 2 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1 11 ECT3xx			5 th Semester						
I. EET301 Power Systems-I 2 1 0 3 2. EET302 Electric Machines II 3 1 0 4 3. EET303 Control System II 3 1 0 4 4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 7. MAT311 Mathematics-V 2 1 0 3 8. EEL302 Electric Machines II Lab 0 0 2 1 9. EEL303 Control System II & V.I. Lab 0 0 2 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1 11 ECT3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1	S. No.	Course No.	Subjects	L	Т	Р	Credits		
2. EET302 Electric Machines II 3 1 0 4 3. EET303 Control System II 3 1 0 4 4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 0 3 7. MAT311 Mathematics-V 2 1 0 3 3 1 0 0 2 1 0 3 8. EEL302 Electric Machines II Lab 0 0 2 1 1 1 1 1 1 1 1 0 2 1	1.	EET301	Power Systems-I	2	1	0	3		
3. EET303 Control System II 3 1 0 4 4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 0 3 7. MAT311 Mathematics-V 2 1 0 3 3 1 0 2 1 1 3 1 0 3 3 1 0 3 3 1 0 0 2 1 1 1 1 0 3 1 0 0 2 1 <t< td=""><td>2.</td><td>EET302</td><td>Electric Machines II</td><td>3</td><td>1</td><td>0</td><td>4</td></t<>	2.	EET302	Electric Machines II	3	1	0	4		
4. ECT3xx Digital Electronics & Logic Design 2 1 0 3 5. ECT3xx Communication Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 0 3 7. MAT311 Mathematics-V 2 1 0 3 3 8. EEL302 Electric Machines II Lab 0 0 2 1 1 9. EEL303 Control System II & V.I. Lab 0 0 2 1 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1 1 11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 1 11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 1 5. No. Course No. Subjects L T P Credit	3.	EET303	Control System II	3	1	0	4		
5. ECT3xx Communication Systems 2 1 0 3 6. EEL301 Power Systems I Lab 0 0 2 1 0 3 7. MAT311 Mathematics-V 2 1 0 3 8. EEL302 Electric Machines II Lab 0 0 2 1 9. EEL303 Control System II & V.I. Lab 0 0 2 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1 11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 11 ECT3xx Disgital Signal Processors 3 1 0 4 2. EET351 Power Electronics <td>4.</td> <td>ECT3xx</td> <td>Digital Electronics & Logic Design</td> <td>2</td> <td>1</td> <td>0</td> <td>3</td>	4.	ECT3xx	Digital Electronics & Logic Design	2	1	0	3		
6. EEL301 Power Systems I Lab 0 0 2 1 7. MAT311 Mathematics-V 2 1 0 3 8. EEL302 Electric Machines II Lab 0 0 2 1 9. EEL303 Control System II & V.I. Lab 0 0 2 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1 11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 TOTAL CONTACT HOURS = 14+6+10 = 30 14 6 10 25 G ^{6th} Semester S. No. Course No. Subjects L T P Credits 1. EET350 Power Systems II 3 1 0 4 2. EET351 Power Electronics 3 1 0 4 3. EET352 Microprocessors 3 1 0 4 5. EET354 Electric Machine Design 3 1 0	5.	ECT3xx	Communication Systems	2	1	0	3		
7. MAT311 Mathematics-V 2 1 0 3 8. EEL302 Electric Machines II Lab 0 0 2 1 9. EEL303 Control System II & V.I. Lab 0 0 2 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1 11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 TOTAL CONTACT HOURS = 14+6+10 = 30 14 6 10 25 Ofth Semester S. No. Course No. Subjects L T P Credits 1. EET350 Power Systems II 3 1 0 4 2. EET351 Power Electronics 3 1 0 4 3. EET352 Microprocessors 3 1 0 4 4. EET353 Digital Signal Processing 3 1 0 4 5. EET354 Electric Machine Design 3 1 0 <td>6.</td> <td>EEL301</td> <td>Power Systems I Lab</td> <td>0</td> <td>0</td> <td>2</td> <td>1</td>	6.	EEL301	Power Systems I Lab	0	0	2	1		
8. EEL302 Electric Machines II Lab 0 0 2 1 9. EEL303 Control System II & V.I. Lab 0 0 2 1 10 EEL304 Computer Aided Simulation of Electrical 0 0 2 1 11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 TOTAL CONTACT HOURS = 14+6+10 = 30 14 6 10 25 Conse No. Subjects L T P Credits 1. EET350 Power Systems II 3 1 0 4 2. EET351 Power Electronics 3 1 0 4 3. EET352 Microprocessors 3 1 0 4 4. EET353 Digital Signal Processing 3 1 0 4 5. EET354 Electric Machine Design 3 1 0 4 6. EEL350 Power Systems II Lab 0 0 2 1	7.	MAT311	Mathematics-V	2	1	0	3		
9.EEL303Control System II & V.I. Lab002110EEL304Computer Aided Simulation of Electrical002111ECL3xxDigital Electronics & Logic Design Lab Logic0021TOTAL CONTACT HOURS = $14+6+10=30$ 14610256 th SemesterS. No.Course No.SubjectsLTPCredits1.EET350Power Systems II31042.EET351Power Electronics31043.EET352Microprocessors31044.EET353Digital Signal Processing31045.EET354Electric Machine Design31046.EEL350Power Systems II Lab00217.EEL351Power Electronics Lab00218.EEL352Microprocessors Lab00219.EEI353Tour and Training0081TOTAL CONTACT HOURS = $15+5+8=28$ 155825	8.	EEL302	Electric Machines II Lab	0	0	2	1		
10EEL304Computer Aided Simulation of Electrical002111ECL3xxDigital Electronics & Logic Design Lab Logic0021TOTAL CONTACT HOURS = $14+6+10=30$ 14610256 th SemesterS. No.Course No.SubjectsLTPCredits1.EET350Power Systems II31042.EET351Power Electronics31043.EET352Microprocessors31044.EET353Digital Signal Processing31045.EET354Electric Machine Design31046.EEL350Power Systems II Lab00217.EEL351Power Electronics Lab00218.EEL352Microprocessors Lab00219.EEI353Tour and Training0081TOTAL CONTACT HOURS = $15+5+8=28$ 155825	9.	EEL303	Control System II & V.I. Lab	0	0	2	1		
11 ECL3xx Digital Electronics & Logic Design Lab Logic 0 0 2 1 TOTAL CONTACT HOURS = $14+6+10=30$ 14 6 10 25 6 th Semester 5 6 th Semester 1 P Credits 1. EET350 Power Systems II 3 1 0 4 2. EET351 Power Electronics 3 1 0 4 3. EET352 Microprocessors 3 1 0 4 4. EET353 Digital Signal Processing 3 1 0 4 5. EET354 Electric Machine Design 3 1 0 4 6. EEL350 Power Systems II Lab 0 0 2 1 7. EEL351 Power Electronics Lab 0 0 2 1 8. EEL352 Microprocessors Lab 0 0 2 1 9. EEI353 Tour and Training 0 0 8 1	10	EEL304	Computer Aided Simulation of Electrical	0	0	2	1		
TOTAL CONTACT HOURS = $14+6+10=30$ 14 6 10 25 6 th Semester S. No. Course No. Subjects L T P Credits 1. EET350 Power Systems II 3 1 0 4 2. EET351 Power Electronics 3 1 0 4 2. EET351 Power Electronics 3 1 0 4 2. EET352 Microprocessors 3 1 0 4 2. EET353 Digital Signal Processing 3 1 0 4 EET350 Power Systems II Lab 0 0 2 1 TOTAL CONTACT HOURS = $15+5+8= 28$ 15	11	ECL3xx	Digital Electronics & Logic Design Lab Logic	0	0	2	1		
6^{th} SemesterS. No.Course No.SubjectsLTPCredits1.EET350Power Systems II31042.EET351Power Electronics31043.EET352Microprocessors31044.EET353Digital Signal Processing31045.EET354Electric Machine Design31046.EEL350Power Systems II Lab00217.EEL351Power Electronics Lab00218.EEL352Microprocessors Lab00219.EEI353Tour and Training0081TOTAL CONTACT HOURS = $15+5+8=28$ 155825			TOTAL CONTACT HOURS $= 14+6+10 = 30$	14	6	10	25		
S. No.Course No.SubjectsLTPCredits1.EET350Power Systems II31042.EET351Power Electronics31043.EET352Microprocessors31044.EET353Digital Signal Processing31045.EET354Electric Machine Design31046.EEL350Power Systems II Lab00217.EEL351Power Electronics Lab00218.EEL352Microprocessors Lab00219.EEI353Tour and Training0081TOTAL CONTACT HOURS = $15+5+8=28$ 155825		•	6 th Semester	•					
1. EET350 Power Systems II 3 1 0 4 2. EET351 Power Electronics 3 1 0 4 3. EET352 Microprocessors 3 1 0 4 4. EET353 Digital Signal Processing 3 1 0 4 5. EET354 Electric Machine Design 3 1 0 4 6. EEL350 Power Systems II Lab 0 0 2 1 7. EEL351 Power Electronics Lab 0 0 2 1 8. EEL352 Microprocessors Lab 0 0 2 1 9. EEI353 Tour and Training 0 0 8 1	S. No.	Course No.	Subjects	L	Т	Р	Credits		
2. EET351 Power Electronics 3 1 0 4 3. EET352 Microprocessors 3 1 0 4 4. EET353 Digital Signal Processing 3 1 0 4 5. EET354 Electric Machine Design 3 1 0 4 6. EEL350 Power Systems II Lab 0 0 2 1 7. EEL351 Power Electronics Lab 0 0 2 1 8. EEL352 Microprocessors Lab 0 0 2 1 9. EEI353 Tour and Training 0 0 8 1	1.	EET350	Power Systems II	3	1	0	4		
3. EET352 Microprocessors 3 1 0 4 4. EET353 Digital Signal Processing 3 1 0 4 5. EET354 Electric Machine Design 3 1 0 4 6. EEL350 Power Systems II Lab 0 0 2 1 7. EEL351 Power Electronics Lab 0 0 2 1 8. EEL352 Microprocessors Lab 0 0 2 1 9. EEI353 Tour and Training 0 0 8 1	2.	EET351	Power Electronics	3	1	0	4		
4. EET353 Digital Signal Processing 3 1 0 4 5. EET354 Electric Machine Design 3 1 0 4 6. EEL350 Power Systems II Lab 0 0 2 1 7. EEL351 Power Electronics Lab 0 0 2 1 8. EEL352 Microprocessors Lab 0 0 2 1 9. EEI353 Tour and Training 0 0 8 1	3.	EET352	Microprocessors	3	1	0	4		
5. EET354 Electric Machine Design 3 1 0 4 6. EEL350 Power Systems II Lab 0 0 2 1 7. EEL351 Power Electronics Lab 0 0 2 1 8. EEL352 Microprocessors Lab 0 0 2 1 9. EEI353 Tour and Training 0 0 8 1	4.	EET353	Digital Signal Processing	3	1	0	4		
6. EEL350 Power Systems II Lab 0 0 2 1 7. EEL351 Power Electronics Lab 0 0 2 1 8. EEL352 Microprocessors Lab 0 0 2 1 9. EEI353 Tour and Training 0 0 8 1 TOTAL CONTACT HOURS = 15+5+8= 28 15 5 8 25	5.	EET354	Electric Machine Design	3	1	0	4		
7. EEL351 Power Electronics Lab 0 0 2 1 8. EEL352 Microprocessors Lab 0 0 2 1 9. EEI353 Tour and Training 0 0 8 1 TOTAL CONTACT HOURS = 15+5+8= 28 15 5 8 25	6.	EEL350	Power Systems II Lab	0	0	2	1		
8. EEL352 Microprocessors Lab 0 0 2 1 9. EEI353 Tour and Training 0 0 8 1 TOTAL CONTACT HOURS = 15+5+8= 28 15 5 8 25	7.	EEL351	Power Electronics Lab	0	0	2	1		
9. EEI353 Tour and Training 0 0 8 1 TOTAL CONTACT HOURS = $15+5+8=28$ 15 5 8 25	8.	EEL352	Microprocessors Lab	0	0	2	1		
TOTAL CONTACT HOURS = 15+5+8= 28 15 5 8 25	9.	EEI353	Tour and Training	0	0	8	1		
			TOTAL CONTACT HOURS = 15+5+8= 28	15	5	8	25		

		7 th Semester				
S. No.	Course No.	Subjects	L	Т	Р	Credits
1.	EES401	Seminar	0	0	2	1
2.	EEP401	Project Preliminary Work	0	0	2	2
3.	EET401	Power System Protection	2	1	0	3
4.	EET402	High Voltage Engineering	2	1	0	3
5.	EET403	Power Systems - III	3	1	0	4
6.	EET404	Advanced Power Electronics	3	1	0	4
7.	ECT404	Electronic Measurements & I	2	1	0	3
8.	EET405	Power Station practice	2	1	0	3
9.	EEL401	Power System Protection Lab	0	0	2	1
10	EEL402	High Voltage Engineering Lab	0	0	2	1
		Total Contact Hours = $14+6+8=28$	14	6	8	25

8th Semester

S. No.	Course No.	Subjects	L	Т	Р	Credits
1.	EEP450	Project Work	0	0	12	10
2.	HST454	Industrial Organization & Management	3	1	0	4
3.	EET0XX	Elective – I (Swayam Course)	3	1	0	4
5.	EET0XX	Elective – II (Swayam Course)	3	1	0	4
7.	EET0XX	Elective – III (Swayam Course)	3	0	0	3
		TOTAL CONTACT HOURS $= 12 + 3 + 12 = 27$	12	3	12	25

E-I, II, III: Any three of the following electives

S. No.	Course no.	Elective courses	L	Т	Р	Credit
1.	EET050	Advanced Control Theory	3	0	0	3
2.	EET051	Mechatronics	3	0	0	3
3.	EET052	Renewable Sources of Electrical Energy	3	0	0	3
4.	EET053	Electric Drives	3	0	0	3
5.	EET054	Microcontroller & their Applications	3	0	0	3
6.	EET055	Maintenance & Design of Electrical Sub	3	0	0	3
7.	EET056	Power Systems Transients	3	0	0	3
8.	EET057	Distribution System Automation	3	0	0	3
9.	EET058	Industrial Process Instrumentation &	3	0	0	3
10.	EET059	Power System Reliability	3	0	0	3
11.	EET060	Utilization & Traction	3	0	0	3
12.	EET061	Advanced Power Systems Control	3	0	0	3
13.	EET062	System planning & Load forecasting	3	0	0	3
14.	EET064	Switched Mode Power Conversion	3	0	0	3

Nomenclature

- EE **Electrical Engineering**
- Mathematics Department subject MT
- Humanities and Social Sciences Department subject HS
- Electronics and Communication Engineering Department subject EC
- Theory Т
- Lab. course L
- Р Project/Dissertation
- S Seminar
- Industrial Training & Presentation Ι

First Numeral Year of course, Except for Elective courses assigned as "0". $2^{nd}\& 3^{rd}$ Num. Unique Course Number

*SWAYAM online courses will be floated before the start of semester to be managed by a faculty mentor.

<u>5</u>th<u>Semester</u>

Course: Power Systems - I	Year	Total Course Credit: 3			
(Code: EET301)	B. Tech Electrical Engineering 3 rd Year V Semester		L	Т	Р
			2	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks		50 Marks	

Course Objective: To understand the structure of Electric power system and its different components.

Course Outcomes (COs): Upon successful completion of the course, student should be able to:

- **CO1:** Understanding the basics of power system generation, transmission, distribution system.
- **CO2:** Classification of overhead line insulators and evaluation of string efficiency.
- **CO3:** Modeling, Design, and Evaluation of various parameters of transmission lines.
- **CO4:** Acquire knowledge of underground cables: construction, methods of laying, grading, and determination of fault location.
- **CO5:** Investigate the concept of corona and its effect online design.

UNIT-I Power System – Introduction

Introduction to Power System - Generation, Transmission & Distribution. Element of DC & AC distribution system – Radial and ring main distributor - Single fed, double fed.

UNIT-II Insulators for Transmission Line

Overhead line Insulator: need & types - Pin, Suspension, Strain, Shackle, Guy etc. Potential distribution - String efficiency - Methods of equalizing potential drop over string insulators.

UNIT-III Overhead Transmission Line

Overhead Transmission Lines Conductors. Transmission line parameters and their evaluations - Resistance, Inductance & Capacitance. Models of Short, Medium & Long Transmission Lines. Skin, Proximity and Ferranti effect. Power transfer capability of a transmission line.

UNIT-III Design of Transmission Line

Electric Power Transmission Towers. Sag evaluation and their calculations. Corona - Visual & Critical voltages - Corona loss - Effect of corona on line design practical considerations.

UNIT-IV Underground Cable

Classification of cables, Cable conductors, Insulating materials, Insulation resistance, electrostatic stress, grading of cables, capacitance calculation, losses and current carrying capacity. Location of faults, methods of laying of underground cables.

Text Books:

- 1. B.R. Gupta, "Power System Analysis and Design", S. Chand publishers.
- 2. S.N. Singh, "Electrical Power Generation, Transmission & Distribution", PHI Pvt. Ltd.
- 3. Weedy and Cory, "Electric Power Systems", John Wiley & Sons.
- 4. C.L. Wadhwa, "Electric Power Systems", New Age Intl. (P) Ltd.

Reference Books:

- 1. D. Das, "Electrical Power Systems", New Age Intl. (P) Ltd.
- 2. Hadi Saadat, "Power System Analysis", Mc Graw Hill.
- 3. J.J. Grainger and W.D Stevenson, "Power System Analysis", McGraw Hill.
- 4. Kothari and Nagrath, "Power System Engineering", McGraw Hill Edu. (I) Pvt. Ltd.
- 5. NPTEL Lecture Series on "Power System Engineering".

Course: Electric Machines-II	Year	Total Course Credit: 4			
(Code: EET302)	B. Tech Electrical Engineering 3 rd Year V Semester		L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
·	30 Marks	10 Marks	e	50 Marks	

CourseTo study and understand different types of induction machines and
synchronous machines, their construction, operating characteristics and
applications.

Course Outcomes (COs): Upon successful completion of the course, students should be able to:

- **CO1:** Understand the principle of operation, constructional details, winding layout, nature of magnetic fields produced by the stator and rotor windings, emf induced and torque development in induction and synchronous machines.
- **CO2:** Develop equivalent circuit of a three-phase induction machine and use it to determine the starting and running performance of an induction machine.
- **CO3:** Carry out performance calculations, investigate methods of starting and speed control of three-phase induction motor.
- **CO4:** Study the operating principle and application of various types of single-phase induction motors and some sub-fractional motors.
- **CO5:** Describe the constructional and operating differences, suitability of salient-pole and cylindricalrotor synchronous machines, develop circuit model of a synchronous machine and use it to determine the operating performance.
- **CO6:** Analyze the effect of load and excitation changes, active and reactive power control, parallel operation of alternators, starting methods of synchronous motors.

UNIT - I Basic Concepts in Rotating Electric Machines:

Operating principles of induction and synchronous machines, Magneto-motive force and flux distribution due to single-phase concentrated and distributed windings, Magnetic field due to three-phase winding-Rotating magnetic field, Flux per pole.

UNIT – II Three Phase Induction Machine:

Construction of 3-phase induction machine, Types, Emf induced in stator and rotor windings, Torque development and power developed, Equivalent circuit, Torque/speed characteristics, Effect of rotor resistance, Induction motor tests, Starting, Speed control, Effect of harmonic torques, Schrage motor

UNIT - III Single-Phase Induction Motors:

Two-revolving field theory, Torque-speed characteristics, Types of split-phase induction motors, shaded-pole motor, universal motor, repulsion motor.

UNIT - IV Synchronous Machines-1:

Constructional features, Types, emf induced, Effect of distributed winding and short-pitched winding, Harmonic elimination, Armature reaction, Circuit model of a cylindrical-rotor synchronous machine, Phasor diagrams, Synchronous reactance, saturation effect,

Compounding curves

UNIT - V Synchronous Machines-2:

Steady-state power-angle characteristics, parallel operation, Operation on infinite bus, Effect of varying power and excitation, V-curves, Synchronous compensator,

Salient-pole synchronous machine, Two-axis theory, power-angle characteristics, Reluctance motor, Damper windings, Excitation systems, Starting of synchronous motor, Synchronous-machine transients, Analysis of sudden 3-phase short circuit.

Text Books:

- 1. Electrical Machines, I.J Nagrath & D.P Kothari, Tata Mc Graw-Hill.
- 2. Electrical Machines, P.S. Bimbra, Khanna Publishers.

Reference Books:

- 1. Electric Machinery, Fitzgerald, Kingslay, Umans, Tata McGraw-Hill
- 2. Electric Machines, Vincent Del Toro, Prentice Hall
- 3. Electric Machinery and Transformer, Guru, Hiziroglu, Oxford University press
- 4. Electric Machinery Fundamentals, Chapman, McGraw-Hill.
- 5. Electric Machines-Direct and Alternating Current, Charles S Siskind, McGraw-Hill.
- 6. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata McGraw-Hill.

Course: Control Systems-II	Year & Semester: B. Tech Electrical Engineering 3 rd Year V Semester		Total Course Credit: 4		
(Code: EET303)			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks	6	0 Marks	

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** To understand linear algebra and its applications in modern control theory.
- **CO2:** To represent physical systems in continuous State-Space canonical forms.
- **CO3:** To solve the linear time-invariant (LTI) state equation and to access the controllability and observability of LTI state-space systems for stability analysis.
- **CO4:** To design state-feedback controllers and regulators with specific dynamic performance.

Module 1: Revisiting Linear Algebra:

Vector Spaces, subspaces, linear independence, linear span of a set of vectors, basis and dimension of a vector space. Matrices, determinant and inverse. Row-space, column-space, null-space and rank of a matrix. Change of basis and similarity. Block matrices. Cramer's Rule. Eigen values and eigen vectors, characteristic and minimal polynomials, Caley-Hamilton theorem and its applications. Matrix exponential. Systems of linear equations.

Module 2: Introduction to Modern Control Theory:

Linear Time-Invariant (LTI) systems, Mathematical modelling of LTI systems. Classical versus Modern Control. Examples of Second-Order Systems: Electrical and Mechanical systems. Concept of State, State variable and State model. State variable representations. Conversion of state variable models to transfer function and vice-versa.

Module 3: State Variable Analysis:

Similarity transformations and its properties. First and second companion forms. Jordan's canonical form with state diagrams. Solutions to homogenous and non-homogeneous cases. Computation of matrix exponentials using Laplace transforms and Jordan Normal form, positive definite matrices, quadratic forms.

Module 4: Controllability and Observability

Controllable and reachable subspaces, Physical examples and system interconnection. Controllability matrix (LTI), Eigen vector test of controllability. Stabilizable system. Unobservable and unconstructable subspaces, Physical examples. Duality theorem. Observable decompositions, Detectability, detectability tests.

Module 5: Design using State-Space Analysis:

Introduction to pole placement design. Stability improvements by state-feedback. Necessary and sufficient conditions for arbitrary pole-placement. State-regulator design. Design of state-observers.

Recommended Book:

S. No	Name of Book	Author	Publisher & Edition
1	Linear Control System Analysis and	John J. D'Azzo and	Marcel Dekker,
	Design	Constantine H.	Inc., Fifth edition
		Houpis	
2	Control System Engineering	Franklin and Powel	Prentice Hall
3.	Linear System Theory	Joao P. Haspanaha	Princeton
			University
			Press,2009.

Course: Digital	Year & Semester: B. Tech Electrical Engineering 3rd Year V Semester		Total C	Course Cr 3	edit:
Electronics and Logic			L	Т	Р
Design (Code: ECI5XX)			2	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks	6	0 Marks	

Objectives: To study number systems, simplification and implementation of digital functions, design & analysis of various combinational and sequential circuits, memory organization & its implementations.

Course Outcomes:

- **CO1** To represent numbers in different number systems, binary codes and to perform their conversions and arithmetic operations.
- CO2 To understand the Boolean algebra/theorems, K-Map and Q-M method and minimization of logic function using them, design and analysis of various combinational circuits.
- CO3 To understand lathes and flip flops and designing various sequential circuits using various flip flops.
- CO4 To understand basic concept of PLA, PAL, ADC, DAC, IEEE standards and notations

S. No.	Particulars			
1	Review of Binary, octal and hexadecimal number systems	. Various types of		
1	codes			
2	Boolean algebra and Boolean theorems			
3	Logic gates and implementation of Boolean functions with	h different types of		
5	logic gates. Circuit equivalence			
4	Simplification techniques and minimization by map method	ods. Tabular method		
5	Combination logic and arithmetic circuits. Encoders and I	Decoders, Multiplexers		
5	and Demultiplexers			
	Sequential circuits- state diagrams and state tables, design and analysis of flip			
6	flops, registers, counters, Synchronous and Asynchronous operation of			
	sequential circuits. State Machines, Analysis and Design using State Machines			
7	Analog to Digital converter, Digital to Analog converter			
8	Latches and memory organizations. ROM's, EPROM's ar	nd RAM's Dynamic		
0	and Static			
9	Introduction to PLA's, FPGA			
10	IEEE standards and notations			
Recomn	nended Books			
1	Digital System Design An Integrated Approach	Uyemura		
2	Digital Logic & Computer Design	M Morris Mano		
3	Digital Electronics	Gupta &Singhal		
4	Digital principles and applications	A P Malvino		

Marcus

Details of the syllabus:

5

Switching Circuits

Course: Communication	Year & Semester: B. Tech Electrical Engineering 3 rd Year V Semester		Total C	Course Cr 3	edit:
Systems (Code: ECT3xx)			L	Т	Р
			2	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks	60 Marks		

Objectives: To analyze various analog modulation & demodulation schemes, to understand operation of AM & FM radio receivers, to perform noise analysis of AM & FM systems, to understand the basics of random process.

Course Outcomes:

- **CO1** Understanding of basic principles of communication system and Fourier analysis of different signals.
- CO2 To understand and analyze various analog modulation and demodulation schemes
- **CO3** To understand the random processes and different sources, classification of noise effecting the communication system.
- CO4 To understand various reception techniques and the performance analysis of different radio receivers in presence of Noise
- CO5 To have knowledge of digital communication and digital modulation techniques

Details of the syllabus:

S. No	Particulars
1	Fourier Analysis of Signals; Fourier Transform, Fourier Transform, Signal, Bandwidth,
I	Spectrum of a signal, Power spectral density
2	Frequency translation, Modulation, Advantages of modulation,
	Amplitude Modulation:
2	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations,
5	Frequency discriminator, Demodulation of AM, Diode detector, Monodyne,
	Homodyne and Super heterodyne receiver
	Angle Modulation:
	Basic definitions, Frequency Modulation: Narrow Band FM, Wide Band FM, Spectral
4	characteristics of angle modulated signals, Transmission bandwidth of FM Signals,
4	Generation of FM Signals, Demodulation of FM Signals, FM Stereo Multiplexing,
	FM Receiver and Transmitter, Phase-Locked Loop: Nonlinear model of PLL, Linear
	model of PLL, Nonlinear Effects in FM Systems,
	Introduction to Random Process
5	Random Process, Mean Function, Autocorrelation function, Stationary Process,
5	Wide Sense Stationary Process, White Gaussian Noise (WGN), Random process
	through LTI (Linear Time Invariant) System.
6	Noise Analysis: Signal to Noise Ratio, Noise Figure, Performance of AM &FM
0	Systems in presence of noise, Preemphasis and Deemphasis,
7	Digital Communication; Benefits of digital communication, Sampling, quantization,
/	PCM, Digital modulation Techniques viz, ASK, OOK, FSK, QAM.

Recommended Books

1	Principles of Communication Systems	Taub &schling
2	Taub's Principles of Communication Systems	Taub, schling & G Saha
3	Communication systems	Simon Haykins
4	Electronic Communication Systems	G. Kennedy

Subject: Power Systems-I	Year & Semester:	Total Course Credit		redit: 1
LabB. Tech Electrical Engineer		L	Т	Р
(Code: EEL301)	3 rd Year V Semester	0	0	2
Evaluation Policy	Class Assessment (40 Marks)	E (6	nd-Tern 50 Marks	1)

Course Objective:

The main objective of the course is to understand, examine, and evaluate the electrical power system structure and its components.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- CO1: Estimate the electrical parameters of A.C. and D.C. distribution system.
- **CO2:** Analyze the Transmission line models.
- **CO3:** Understand the concept of Insulators and underground Cables.
- **CO4:** Perform the power system simulation in software packages.

List of Experiments:

S. No.

Name of the experiment

- 1 Determine the current and voltage circulating in a D.C. distribution network
- 2 Evaluate the phasor current and voltage for an A.C. distribution network.
- 3 Determine the generalized constants (A, B, C, D) of a Transmission line system.
- 4 Determine the Efficiency, Voltage Regulation of a Transmission line system.
- 5 Study of different types of Insulators.
- 6 Study of underground Cables and find the charging current.
- 7 Computer Simulation of Power System.

Outdoor Activity (Optional): Measurement of Earth Resistance using Earth Tester.

Course: Electric Machines - II LabYea B. Tech E 3rd Yea(Code: EEL302)3rd Yea	Year & Semester:	Total Course Credit: 1		
	B. Tech Electrical Engineering	L	Т	Р
	5 Tear V Semester	0	0	2
Evaluation Policy	Class Assessment 40 Marks	End-Term 60 Marks		l

Course Objective:

To familiarize the students with the operation and performance of induction and synchronous machines, and perform various tests on them.

Course Outcomes

(COs): Upon successful completion of the course, students should be able to:

- **CO1:** Carry out tests to determine the parameters of the equivalent circuit of a three-phase induction motor and determine losses and efficiency.
- **CO2:** To understand and implement various methods of starting and speed control of induction motors.
- **CO3:** Determine the torque-speed characteristics of a three-phase induction motor and ac series motor.
- **CO4:** Conduct tests on synchronous machine to determine its parameters and voltage regulation
- **CO5:** Determine the compounding and V-curves of synchronous machines.
- **CO6:** Synchronize synchronous generators and control active and reactive power division between them.

List of Experiments: The students will conduct a minimum of 10 experiments out of the following list:

S. No.	Name of the experiment
1	To study the constructional details of an induction machine.
2	To determine the equivalent–circuit parameters of a 3 -phase Induction motor by no- load and blocked rotor tests.
3	To determine the torque- speed characteristics of a 3-phase induction motor.
4	To study the starting of a three-phase SCIM.
5	To study the methods of speed control of a three-phase SCIM.
6	To study the starting and speed control of a WRIM.
7	To study the starting of various types of split-phase motors.
8	To determine the speed characteristics of a Schrage motor.
9	To determine the Torque-speed characteristics of an AC series motor (Universal motor).
10	To study the constructional details of a synchronous machine.

KASHMIDU	
11	To obtain the OCC and SCC of a synchronous machine and determine the synchronous
	reactance.
12	To determine the voltage regulation of an alternator by actual loading.
13	To obtain the compounding curves of an alternator.
14	To synchronize an alternator with bus bars using lamp method.
15	To synchronize two alternators and study the active and reactive load division between them.
16	To obtain the V-curves of a synchronous motor.

Subject: Control Systems-II	Year & Semester:	Total Course Credit		redit: 1
& V.I. Lab	B. Tech Electrical Engineering		Т	Р
(Code: EEL303)	3 rd Year V Semester	nester 0 0		2
Evolution Policy	Class Assessment	End-Term		1
Evaluation Policy	(40 Marks)	(60 Marks))

Course Objective:

To familiarize the students with Control System Analysis and Design on real-life systems.

Course Outcomes (COs):

- **CO1:** To study the performance of relay and combination of P, I and D control schemes in a typical thermal system (oven).
- **CO2:** To obtain the time response of a variety of simulated linear systems.
- **CO3:** To study the role of feedback in DC speed control system and in DC position control system.

List of Experiments:

S.No.

Name of the Experiment

- **1.** To study the basic functionality of a Digital Storage Oscilloscope.
- 2. To study the time-response of a variety of simulated linear systems and to correlate the studies with theoretical results.
- **3.** To study the performance characteristics of a D.C. motor speed control system.
- **4.** To study the performance characteristics of a D.C. motor angular position control system.
- **5.** To study the performance of various types of controllers and to control the temperature of an oven.
- **6.** To design and study the effects of different cascade compensation networks for a given system.

Subject: Computer Aided	Vear & Semester:	Total Course Credit: 1			
Simulation of Electrical Systems Lab (Code: EEL304)	B Tech Electrical Engineering	L	Т	Р	
	3 rd Year V Semester	0	0	2	
Evolution Policy	Class Assessment	End-Term		1	
Evaluation 1 oncy	(40 Marks)	(60 Marks)			

Course Objective:

To familiarize the students with MATLAB/SIMULINK modelling of electrical systems.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- CO1: To use MATLAB and SIMULINK Tool Boxes.
- **CO2:** To use Control system (State space), Fuzzy logic & neural network tool boxes.
- **CO3:** To learn the use of MATLAB in analysis of A.C/D.C circuits, Control systems, Electric machines and Transformers.

List of Experiments:

S. No.

1

Name of the experiment

- Use of MATLAB and SIMULINK Tool boxes Use of MATLAB in:
 - 1. Analysis of D.C Circuits
- 2 2. Transient and steady state analysis of A.C/D.C circuits.
 - 3. Analysis of control systems
 - 4. Analysis of Electric Machines and Transformers
- 3 Use of Control System (State Space), Fuzzy Logic & Neural Network Tool Boxes

Course: Digital Electronics & Logic	Year & Semester:	Total Course Credit: 1			
Design Lab	B. Tech Electrical Engineering 3 rd Year V Semester	L	Т	Р	
(Code: ECL3xx)	5 Tear V Semester	0	0	2	
Evaluation Daliay	Class Assessment	End-Term			
Evaluation Foncy	40 Marks	60 Marks			

Objectives: To acquire knowledge and become familiar with the different characterization techniques to analyze, and synthesize the digital logic, combinational and sequential circuits **Course Outcomes**:

Course	Jutcomes.
CO1	Identify relevant information to supplement the Digital Electronics & logic Design
COI	course
CO2	Develop competence in Combinational Logic Problem identification and solution
CO3	Develop design capability in the field of combinatorial logic using gates and blocks
CO4	Analysis and design of synchronous and asynchronous sequential circuits

Details of the syllabus:

S. No.	Particulars
	To verify the truth table of following logic gates:
1	d. AND OR and NOT
	e. NAND, NOR, XOR and XNOR
	f. To realize the above gates using discrete active and passive components.
2	To implement XOR and XNOR using universal logic gates.
2	a. To verify DeMorgans law using logic gates.
3	b. To implement typical Boolean expressions and check their equality.
	To design and realize:-
	a. Half adder and verify its truth table.
4	b. Full adder and verifyits truth table.
	c. Half subtractor and verify its truth table
	d. Full subtractor and verify its truth table.
5	To design a multiplexer/demultiplexer using two input NAND gates
6	To designa4 bit binary to decimal converter.
7	To designamodulo-10 counter.
8	Given a frequency f obtain the waveforms with frequencies $f/2, f/5 \& f/10$
	Design and realize the following flip flops using logic gates.
	a. RS flip flop
9	b. JK flip flop
	c. D flip flop
	d. T flip flop
10	Use PLL as: a. Frequency multiplier. b. Frequency demodulator.

6th semester

Course: Power Systems - II	Year & Semester: B. Tech Electrical Engineering 3 rd Year VI Semester		Total Course Credit: 4			
(Code: EET350)			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Internal Assessment	End-Term			
	30 Marks	10 Marks	6	50 Marks		

Course Objective: The course is introduced to the students to learn one step advance level of power system which assists to enable better understanding of power system operation and performance analysis with basics of advance power electronics devices.

Course Outcomes Upon successful completion of the course, student should be able to: (COs):

- **CO1:** Acquire and apply the knowledge of Per unit representation of Power system.
- **CO2:** Analysis of balanced faults & unbalanced faults.
- **CO3:** Investigating the concepts of Insulation co-ordination, over voltage, lightning surges, switching surges, and switching operations.
- **CO4:** Analysis of Surge Impedance Loading, performance of transmission lines, interference of power lines with communication circuits.
- **CO5:** Analysis and the basic knowledge of components and operation of power electronics, HVDC & FACTS Technology.

Unit I. Per Unit Representation of Power Systems:

(CO1)(6hr)

Single line diagram, impedance and reactance diagram of a system, per unit calculations, per unit representation of a power system.

Unit II: Fault Analysis (Balanced Faults):

(CO2)(6hr)

Faults, types of faults, symmetrical 3-phase balanced faults – calculation of fault currents, Symmetrical fault analysis using bus impedance matrix.

Unit III: Fault Analysis (Un-symmetrical Faults):

(CO2)(8hr)

Symmetrical components, sequence impedances, sequence networks, unsymmetrical faults –single line to ground, line-to-line, double line to ground faults on unloaded alternators and on power systems.

Unit IV: Insulation Co-ordination:

(CO3) (8hr)

Generation of over-voltages in a power system, lightning phenomena, lightning surges, switching surges-interruption of short circuits and switching operations, switching surges – interruption of capacitive circuits, resonance over voltages, protection of power system components against over voltages – ground wires, lightning arrestors. Concept of insulation coordination, Basic impulse insulation level, standard impulse test wave, volt-time curve, location and rating of lightning arrestors.

Unit V: Surge Performance of Transmission Lines:

(CO4)(6hr)

Traveling waves on transmission lines, open-end line, short-circuited line, line terminated through a resistance, line connected to a cable, reflection and refraction at a T-junction, line terminated through a capacitance, line terminated through an inductance, Attenuation of traveling waves.

Unit VI: Interference of Power Lines with communication Circuit:

(CO4)(2hr) Electrostatic and Electromagnetic effects.

Unit VII: High Voltage Direct Current Transmission & FACTS Technology: (CO5)(6hr)

Comparison of HVAC and HVDC transmission lines. Thyristors (brief revision). Basic converter and D.C system operation – rectification, inversion. Complete direction current link. Objective of FACTS. Basic types of FACTS controllers. Introduction to FACTS Devices.

Total contact hours = 42 hr

Suggested Books:

- 1 Power System Analysis: J.J. Grainger and W.D Stevenson, Tata McGraw Hill
- 2 Electrical Power Systems: C.L. Wadhwa, New age Publication
- 3 Power Systems Engineering: Nagrath and Kothari, Tata McGraw hill
- 4 Power System Analysis Hadi Saadat, McGraw Hill College

Course: Power Electronics	Year & Semester: B. Tech Electrical Engineering 3 rd Year VI Semester		Total Course Credit: 4			
(Code: EET351)			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Internal Assessment	End-Term			
•	30 Marks	10 Marks	e	50 Marks		

CO1: Understand the need for Power Electronics Devices and Circuits and their basic operation.

- CO2: Perform an analysis of driving and control and triggering circuits for Power Electronic converters
- CO3: Perform an analysis of AC to DC converters (Single phase and three phase, controlled and uncontrolled), A.C Voltage controllers, DC to DC converters(choppers), and single phase D.C to A.C converters (Inverters) in square wave mode.
- CO4: Perform Fourier analysis and knowledge of Power Quality issues associated with power electronic circuits.
- CO5: Understand different applications of power electronics.

Module 1:

Introduction to Power Electronics, Power Semi-conductor Devices: Power Diodes, power Transistors, power MOSFETs, IGBTs, GTOs, Thyristors, Basic theory of operation, characteristics, Ratings, Protection and cooling, Recent Advances in Power Semi-conductor Devices, Driving and control circuits

Module 2:

Power Electronic converters: 1-phase / 3 phase rectifier circuits, 1-phase / 3 phase phase-controlled converters (Semi-converters, full–converters and Dual converters). Analysis and performance with passive and active load, Harmonics and power factor, Introduction to power quality.

Module 3:

D.C-to-D.C converters (choppers): Buck, Boost and Buck-Boost type and various chopper configurations.

Module 4:

A.C-to-A.C converters: A.C voltage controllers, Cyclo-converters, Introduction to matrix converters

Module 5:

D.C–to-A.C converters (Inverters): 1-phase VSI in half bridge and full bridge configuration, CSI, Frequency and voltage control, Line-commutated inverters (LCIs). Some typical applications of power Electronics

Text Books

- 1. Power Electronics by Daniel W Hart, Tata Mc Graw Hill
- 2. Power Electronic Circuits by IssahBatterseh, Wiley.
- 3. N. Mohan, T.M. Undeland& W.P. Robbins, Power Electronics: Converter, Applications & Design, John Wiley & Sons, 1989
- 4. Power Electronics: Circuits, Devices, and Applications by Muhammad H. Rashid. Pearson, 2009

References

1. Power Electronics: Devices, Drivers, Applications, and Passive Components by Barry Williams

- Modern Power Electronics and AC motor Drives By Bimal K Bose- Pearson Publishers.
 Referred Journal/Conference publications.

Subject: Microprocessors	Year & Semester: B. Tech Electrical Engineering 3 rd Year IV Semester		Total Course Credit: 4			
(Code: EET352)			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		1	
	30 Marks	10 Marks	6	0 Marks		

Course Outcomes (COs):

- **CO1:** Getting an overview of 8085 Micro-processor and its basic terminology.
- **CO2:** Investigating and understanding of 8085 µp architecture.
- **CO3:** To learn the instruction set, interrupts, and interfacing.
- **CO4:** Introduction to 8086 microprocessor.

Module 1: Overview of Microprocessor:

Basic Terminology, Evolution of Microprocessors, State of Art of µP, Why we study 8085 µP.

Module 2: 8085 μ P Architecture, Instruction Set and Programming Techniques:

Pin diagram, Detailed Internal Architecture, State Transition Diagrams, T- states (clock cycles), Machine Cycles, Instruction Cycles, Instruction Formats, Different Addressing Modes, Complete Description of all instructions with macro and micro RTL (Register Transfer language), Programming examples, Simulation of time delays.

Module 3: Interrupts and Serial I/O:

Concept of interrupts, priority of interrupts signals, Software generated interrupts, Hardware generated interrupts, Introduction of Serial I/O with reference to 8085 μ P, General concepts.

Module 4: Interfacing and Microprocessor Applications:

Concept of fold back addresses, Memory maps, Memory mapped I/O, Isolated I/O, Interfacing of seven segment LED display, Toggle switches, Keyboard interfacing, Memory interfacing, Simplification of interfacing circuitry with the help of decoders, General purpose programmable peripheral devices, Interfacing of A/D and D/A conversion devices, Some illustrative examples of Microprocessor Applications.

Module 5: Introduction to 8086 µP:

Introduction to $8086 \mu P$.

Recommended Book:

S. No	Name of Book	Author	Publisher & Edition
1	Microprocessor Architecture Programming and	Ramesh S.	Prentice hall
	Applications with the 8085	Goankar	
2	Microprocessors and Programmed Logic	K.L. Short	Prentice hall
3	Microprocessors: Theory and Applications (Intel	М.	Prentice hall
	and Motorola)	Rafiquzzaman	

Course: Digital Signal	Year & Semester:		Total C	ourse Cro	edit: 4
Processing	B. Tech Electrical Engineering		L	Т	Р
(Code: EET353)	3 rd Year VI Semester		3	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks	6	60 Marks	

Course Objective: The primary objective of this course is to provide a thorough understanding and working knowledge of the analysis, design and implementation of discrete-time/digital signal processing systems.

Course OutcomesUpon successful completion of this course the students will have developed(COs):following skills/abilities:

- **CO1:** Mathematically interpret, represent and process discrete-time/digital signals and systems
- **CO2:** Thorough understanding of frequency-domain analysis of discrete-time signals.
- **CO3:** Demonstrate and appreciate effect of sampling of continuous-time signals
- **CO4:** Address practical implementation issues such as computational complexity, hardware resource limitations as well as cost of DSP systems
- CO5: Ability to analyze and design DSP systems like FIR and IIR Filters.

UNIT - I Discrete Time Signals & Systems

Sequences & sequence operations, Discrete-time systems, Linear time-invariant systems, impulse response, causality, stability. Frequency-domain representation of discrete-time signals and systems, Fourier transforms, properties, theorems.

UNIT – II Sampling of Continuous-Time Signals

Periodic sampling, frequency- domain representation of sampling, reconstruction of signals, discrete-time processing of continuous-time signals, continuous-time processing of discrete-time signals, changing the sampling rate of DT signals.

UNIT - III Transform Analysis of Linear Time-Invariant Systems

Z- transform, Region of convergence, properties, Inverse Z-transform, Frequency response of LTI systems, system functions, linear constant-coefficient difference equations, FIR and IIR systems, Frequency response.

UNIT - IV Structure of Discrete-Time Systems

Block diagram representation of linear constant-coefficient difference equations, signal-flow graph representation, Basic structures for IIR systems, Transposed forms, Basic network structures for FIR systems.

UNIT - V Filter Design Techniques

Design of discrete-time IIR filters from continuous -time filters. Impulse invariance, bilinear transformation, Butterworth, Chebyshev, Elliptic approximation, low-pass, high-pass, band-pass and band-stop filters, design of FIR filters by windowing, Kaiser, Hamming, Hamming windows.

Text Books:

3. Discrete Time Signal Processing, A.V Oppenheim and R. W Schafer; Prentice Hall International

4. Digital Signal Processing Principles, Algorithms and Applications, John G. Proakis and D.G Manolakis; Prentice Hall International

Reference Books:

- 7. Introduction to Digital Signal Processing, J.R Johnson; Prentice Hall
- 8. Theory and Application of Digital Signal Processing, L.R Rabinder and B. Gold; Prentice Hall

Subject: Electric Machine	Year	Total Co	ourse Cr 4	edit:	
Design (Code: FFT354)	B. Tech Electrical Engineering 3 rd Year VI Semester		L	Т	Р
(Couc. EE 1554)			3	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Ter		
	30 Marks	10 Marks	60	Marks	

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- CO1: To understand the principles of electrical machine design and magnetic circuit calculations
- **CO2:** To study and design of armature winding and D.C machines.
- **CO3:** To understand the design of induction and synchronous machines.
- **CO4:** To study and design of single-phase and three-phase transformers

Module 1:

Principles of Electrical Machine Design:

Considerations in design, design factors, limitations in design, modern trends in design.

Magnetic Circuit Calculations:

Magnetization curves, Magnetic leakage, calculation of mmf for air gap and teeth, effect of saliency.

Module 2:

Armature Winding Design:

Winding design, integrated approach for windings, A.C armature windings, production of emf in windings, mmf distribution of armature windings, eddy current losses in conductors.

Design of D.C Machines:

Output equation, main dimensions, armature design, armature windings, design of commutator and brushes, design of field systems, design of interpoles.

Module 3:

Design of Induction Motors (1-phase and 3-phase):

Output equation, main dimensions, stator winding, stator conductors, shape of stator slots, number of stator slots, stator core, rotor design.

Module 4:

Design of Synchronous Machines:

Output equation, main dimensions, length of air gap, stator.

Module 5:

Design of Single-phase and Three-phase Transformers:

Output equation, core design, winding design, yoke design, design of transformer tank with tubes, design of insulation.

Recommended Book:

S. No	Name of Book	Author	Publisher & Edition
1 2	Electric Machine Design Electrical Machine Design	A. K. Sawhney R. K. Agarwal	Dhanpat Rai and Sons S. S. Kataria and Sons
3	Design of Electrical Machines	Mittal and Mittal	Distributors
4	A Text Book of Machine Design	R. S. Khurmi and J.K. Gupta	S. Chand Publishers
5	Electrical Machine Design	V. Rajini and V.S. Nagarajan	Pearson Publications
5	Licenteur Muennie Design	Nagarajan	

24

National Institute of Technology, Srinagar

Subject: Power Systems-II Lab	Year & Semester: B. Tech Electrical Engineering	Total Course Credit: 1			
(Code: FFL 350)	3 rd Vear VI Semester	L	Т	Р	
(Couc. EEE550)	5 Tear VI Semester	0	0	2	
Evaluation Daliou	Class Assessment	End-Term		n	
Evaluation Policy	(40 Marks)	(60 Marks))	

Course Objective: The course is introduced to the students to enable laboratory scale practical knowledge about power system operation and performance analysis both hardware and software.

Course Outcomes (**COs**): Upon successful completion of the course, student should be able to:

- **CO1:** Acquire and apply the knowledge of Per unit representation of Power system.
- **CO2:** Analysis of balanced faults & unbalanced faults.
- **CO3:** Investigating the concepts of Insulation co-ordination, over voltage, and switching operations.

Lab. Experiments:

S.No	Experiments
1	Per unit representation of a power system.
2	Measurement of positive, negative and zero sequence impedance and currents.
3	Measurement of earth resistance.
4	Measurement of insulation resistance of insulators
5	Transmission line fault analysis
6	Application of software packages in power systems.

Subject: Power Electronics	Year & Semester:	Total (Course (1	Credit:
(Code: EEL351)	3 rd Year VI Semester	L	T	Р
		0	0	2
Evaluation Policy	Class Assessment (40 Marks)	E ((nd-Tern 50 Marks	n 5)

Course Objective: The course is introduced to the students to enable laboratory scale practical knowledge about power system operation and performance analysis both hardware and software.

Course Outcomes (COs): Upon successful completion of the course, student should be able to:

- **CO1:** Understand the basic concepts of device characteristics and triggering techniques
- **CO2:** Understand the operation of different type of rectifier/converter circuits with different loads
- **CO3:** Understand the operation of choppers, AC voltage controllers and inverters

List of Experiments:

1.	To study the characteristics of Silicon Controlled Rectifier (SCR) and to find its
	holding and latching current.
2.	To study the resistance triggering technique for SCRs.
3.	To study the RC triggering technique of SCRs.
4.	To study the characteristics of Uni-Junction Transistor (UJT) and to determine its
	peak and valley points.
5.	To study the half-wave converter circuit at different loads and firing angles.
6.	To study the full wave bridge rectifier circuit and understand its effects on power
	quality.
7.	To study the single phase semi-converter circuit at different loads and firing angles.
8.	To study the single phase full-converter circuit at different loads and firing angles.
9.	To study the single phase AC voltage controller circuit at different loads and firing
	angles.
10.	To study the performance of DC-DC buck converter circuit at different duty ratios.
11.	To study the performance of single phase full bridge inverter circuit operating in
	square wave mode.

Subject: Microprocessor Lab	Year & Semester: B. Tech Electrical Engineering	Total	Course (1	Credit:
(Code: FFL352)	3 rd Vear VI Semester	L	Т	Р
(Couc. EEL332)	5 Tear VI Semester	0	0	2
Evaluation Dalian	Internal Assessment	End-Term		
Evaluation Policy	(40 Marks)	((50 Marks)

Course Objective:

To familiarize the students with the architecture, working and programming of microprocessors.

Course (Course Outcomes (COs):		
CO1:	Get started with Microprocessor 8085 training kit.		
CO2:	To learn logical, arithmetic, counting and sorting programs on 8085.		
CO3:	To learn interfacing with ADC converters.		

List of Experiments:

S. No.

Name of the experiment

- 1 Microprocessors (8085) training kit and its working.
- ² Programs related to data transfer between registers, between registers and memory
- ³ Programs related to logic instructions.
- 4 Programming techniques with additional instructions. Looping, counting and indexing.
- 5 Programs related to Arithmetic Instructions, 8 bit and 16 bit Addition and Subtraction.
- 6 Copying Blocks of data from one part of memory to another, conditional copy.
- 7 Programs related to Counters and time delays
- 8 Programs related to use of stack and subroutines. Nesting.
- ⁹ Interfacing concepts. Switch and LED interfacing. Square wave generation.
- 10 ADC interfacing.

Subject: Power System	Yea	Total Course Credit:			
(Code: FFT401)	B. Tech Electrical Engineering 3 rd Year VII Semester		L	Т	Р
(Couc. 111401)			2	1	0
Evoluation Dollor	Mid-Term	Internal Assessment End-T		d-Term	
Evaluation Foncy	30 Marks	10 Marks	60	Marks	

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Understand the operating principles, functions and characteristics of various types of protective relays.
- **CO2**: Identification and implementation of the transformer protection schemes.
- **CO3**: Gain knowledge about the protection requirements and implementation of appropriate protection schemes for generators
- **CO4:** Identify, apply and calculate settings for over current, directional over current, distance, differential and pilot protection schemes for transmission lines.
- **CO5:** Study the structural and operational features of circuit breakers/fuses.

Module 1:Protective Relaying and Classification of Relays

Function of protective relaying, fundamental principles, primary and backup relaying, functional characteristics, Operating principles and characteristics of the following electromechanical relays: Current, voltage, directional, current balance, voltage balance, differential relays, and distance relays.

Module 2: Transformer Protection

Percentage differential relaying for power transformers (Y- Δ , Δ - Δ , Δ -Y configurations), unrestricted/restricted earth fault protection of transformers, transformer leakage protection, Buchholz relay.

Module 3: Generator Protection

Short- circuit protection of stator windings (Y- Δ configuration), protection against turn-toturn fault, stator ground-fault protection, stator open circuit protection, field ground fault protection, Over-heating protection, Over-voltage protection, Loss of excitation protection, rotor overheating protection, Protection against vibration, protection against motoring over speed protection, protection against unbalancing.

Module 4: Transmission Line Protection and busbar/feeder protection

Transmission line protection using: Over current relays, Distance relays, Pilot relays

Over current relays: selection of time/current settings, protection of radial feeders, parallel feeders and ring mains.

Distance relays: use of impedance, reactance and mho relays for transmission line protection.

Pilot relays: use of wire pilot, carrier current pilot and microwave pilot for the transmission line protection.

Protection of busbars/feeders etc.

Module 5: Fuses and Circuit Breakers

National Institute of Technology, Srinagar

Fusing element, classification of fuses, current carrying capacity of fuses, high rupturing capacity (H.R.C.) cartridge fuses, characteristics of H.R.C. fuses, selection of HRC fuses.

Types of circuit breakers, basic principle of operation, phenomena of arc, initiation of an arc, maintenance of arc, arc extinction, d. c. circuit breaking, a.c. circuit breaking, arc voltage and current waveforms in a.c. circuit breaking, restriking and recovery voltages, de-ionization and current chopping, ratings of circuit breakers, oil circuit breakers, air blast circuit breakers, SF6 Circuit breakers, Vacuum breakers.

Recommended Book:

S. No	Name of Book	Author	Publisher& Edition
1	Art and Science of Protective Relaying	Mason	John Wiley & Sons, 2 nd Edition
2	Protective relaying, Principles and	J. L Black	CRC Press, 4 th Edition
	Applications	Burn	
3	Power System Protection and Switchgear	Badri Ram	<u>Tata McGraw-Hill</u> Education, 2 nd Edition

Course: High Voltage	Year & Semester: B. Tech Electrical Engineering		Total (Course Ci 3	redit:
Engineering (Code: FFT402)			L	Т	Р
(Couc. EE1402)	+ 10a	r vii Semester	2	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks	6	50 Marks	

Course Objective: To study and understand the complications and problems associated with the generation, measurement and use of high voltages and considerations for design of efficient insulation systems.

- **CO1:** Understand the significance of high voltage testing of power system equipment and study the various methods of generation of high ac, dc and impulse test voltages and high impulse test currents.
- **CO2:** Understand the complications involved in the measurement of high voltages and study the various methods of measurement of high ac, dc and impulse test voltages and high impulse currents.
- **CO3:** Describe the mechanisms of conduction and breakdown in gaseous dielectrics; effect of uniform and non-uniform-field gaps, breakdown under dc and ac fields, impulse breakdown.
- **CO4:** Identify the breakdown mechanisms of solid and liquid dielectrics; describe the suitability of these dielectrics in high voltage equipment.
- CO5: Understand the significance and procedures of non-destructive testing of HV equipment.

UNIT - I Conduction and Breakdown in Gases:

Insulation breakdown, Electric field and field stress, uniform and non-uniform fields, Ionization in gases, Current in a uniform-field gap, Townsend's criterion for breakdown, Paschen's law, Effect of temperature on breakdown voltage, Electronegative gases, Streamer breakdown mechanism, Corona discharges, Polarity effect, Surge-voltage time lags for breakdown, Breakdown under uniform ac field, Breakdown under impulse voltages, Practical gaseous dielectrics.

UNIT – II Conduction and Breakdown in Solid and Liquid Dielectrics:

Factors affecting breakdown of solid dielectrics, Breakdown mechanisms, Intrinsic breakdown, Electromechanical breakdown, Thermal breakdown, Erosion breakdown, Breakdown due to tracking, Treeing, Conduction and breakdown in pure liquids and commercial liquids, Application of solid and liquid dielectrics.

UNIT - III Generation of High Voltages:

Applications of high voltages, High-voltage tests, Generation of high alternating voltages: High-voltage testing transformers, Transformer cascades, Series resonant circuits. Generation of high direct voltages: Rectifying circuits, Voltage multiplier circuits- Cockcroft-Walton voltage multiplier, Electrostatic generation. Generation of high impulse voltages: Basic

Course Outcomes (COs): Upon successful completion of the course, students should be able to:

impulse generator, Multistage impulse generator circuits-Marx and Goodlet impulse generator, Triggering of impulse generator.

UNIT - IV Measurement of High Voltages:

Measurement of high ac, dc and impulse voltages, High ohmic resistor in series with ammeter, High ohmic resistive voltage divider, Ammeter in series with HV capacitor, Chubb-Fortescue method, Electrostatic voltmeter, Voltage dividing systems, Types of voltage dividers, Signal cable matching, Sphere gap measurement, Measurement of high impulse currents.

UNIT - V Non-Destructive Testing of High-Voltage Equipment:

Measurement of d.c. resistivity, dielectric constant and dissipation factor, Partial discharge measurement.

Text Books:

- 5. High Voltage Engineering Fundamentals, E. Kuffel, W.S Zaengl; Newnes.
- 6. High Voltage Engineering, C. L. Wadhwa; New Age International Publishers
- 7. An Introduction to High Voltage Engineering, Subir Ray; Prentice Hall of India

Reference Books:

- 9. High Voltage Engineering, M.S. Naidu, V. Karamraju; Tata McGraw-Hill
- 10. High voltage test techniques, Dieter kind, Kurt Feser; Newnes

Course: Power Systems - III	Year & Semester: B. Tech Electrical Engineering 4 th Year VII Semester		Total Course Credit: 4		
(Code: EET403)			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks	6	0 Marks	

Course Objective: The course is introduced to the students to enable them to give optimal performance and to tackle every challenge during professional experience

Course Outcomes Upon successful completion of the course, student should be able to: (**COs**):

Gain knowledge of load flow techniques, mathematical analysis, and their comparison. **CO1:**

- **CO2:** Develop an overview of power system stability phenomenon.
- Discuss Automatic Generation Control by developing various models and their control **CO3**: strategies
- Understand and evaluation of generation and absorption of reactive power and study **CO4:** various voltage control methods.
- **CO5**: Formulation and analysis of the economic operation of the power system.

Unit 1. Load Flows: (CO1)

Nature and importance of the problem, Network model formulation, Algorithm for the formulation of Y_{bus} matrix, Formulation of Y_{bus} by singular transformation: by graph, by primitive network, and by bus incidence matrix, Load flow problem, Load flow equations, Bus classification - List of variables in load flow equations, Gauss - Seidel & Newton-Raphson method for solving load flow problem, Comparison of load flow methods, De-coupled & Fast de-coupled power flow method, Modeling of tap-changing transformers and phase-shifters.

Unit 2. Power System Stability:

(CO2)

Classification of power system stability, Dynamics of the synchronous machine and swing equation, Power angle equation, Node Elimination technique, Steady state and transient stability, Equal-area criterion of stability, Numerical solution of swing equation, Factors affecting transient stability.

Unit 3. Automatic Generation Control:

(CO3)

Real power balance and its effect on system frequency, Load frequency control of single area system - Turbine speed governing system, model of speed governing system, turbine and

(8hr)

(10hr)

(8hr)

National Institute of Technology, Srinagar

generator load model, Steady state analysis and dynamic response, proportional plus integral control, Economic dispatch control, Two area load frequency control.

Unit 4. Control of voltage and Reactive Power: (8hr) (CO4)

Generation and absorption of reactive power, Relation between voltage and reactive power, Reactive power flow and voltage control, mathematical formulation of voltage stability problem, Methods of voltage control – injection of reactive power, tap changing transformers, booster transformers, phase – shift transformers.

Unit 5. Economic Operation of Power System: (8hr) (CO5)

Introduction, system constraints, economic dispatch neglecting losses, penalty factor, economic dispatch with losses, transmission loss equation, automatic load dispatching.

Total contact hour: 42 hr

Text Books:

- 1. Power System Analysis J.J. Grainger and W.D Stevenson, Tata McGraw-Hill.
- 2. Electrical Power Systems B.M. Weedy and Cory John Wiley & sons.
- 3. Power Systems Engineering Nagrath and Kothari McGraw-Hill Education
- 4. Electric Power Systems C.L. Wadlhwa New Age Publications
- 5. Electric Energy System Theory O. I Elgard McGraw-Hill

Subject: Advanced Power	Year & Semester:		ter: Total Course Credit: 4			
Electronics	B. Tech Electrical Engineering		L	Т	Р	
(Code: EET405)	4 th Year VII Semester		3	1	0	
Evoluction Deliev	Mid-Term	Internal Assessment	Enc	l-Term		
Evaluation Policy	30 Marks	10 Marks	60	Marks		

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Understand three phase voltage source and current source inverters and their modulation strategies.
- **CO2:** Understand the operation of non-isolated DC-DC Converters
- **CO3:** Understand the operation of isolated DC-DC converter.
- **CO4:** Perform comparative assessment of different modulation techniques
- **CO5:** Understand the applications of power electronics in appliances such as Power conditioners and UPS.

Module 1:

Three phase Voltage source inverters in square wave mode. 120 and 180degree modes of conduction. Three phase Current Source Converter

Module 2:

Different modulation strategies- Sine PWM, Hysteresis Current Control Technique, Selective Harmonic Elimination, Space Vector Modulation.

Module 3:

Non Isolated D.C to D.C converters in CCM and DCM, Boundary conditions, Non-Ideal Behavior, Design of Passives for: Buck, Boost, Buck-Boost and Cukconverter circuits.

Module 4:

Isolated DC-DC converters: Flyback converter, Forward converter, Push-Pull converter, Half-Bridge converter and Full-Bridge converter

Module 5:

Power line disturbances and their effect on equipment, Power conditioners, offline and online UPS

Text Books

- 1. Power Electronics by Daniel W Hart, Tata Mc Graw Hill
- 2. N. Mohan, T.M. Undeland& W.P. Robbins, Power Electronics: Converter, Applications & Design, John Wiley & Sons, 1989
- 3. Fundamentals of Power Electronics, Erickson and Macsimovic

References

- 4. Power Electronics: Devices, Drivers, Applications, and Passive Components by Barry Williams
- 5. Modern Power Electronics and AC motor Drives By Bimal K Bose- Pearson Publishers.
- 6. Referred Journal/Conference publications.

Course: Electronic Measurements &	Year & Semester: B. Tech Electrical Engineering 4 th Year VII Semester		Total Course Credit: 3		
Instrumentation			L	Т	Р
(Code: ECT404)			2	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks	6	0 Marks	

Objectives: To introduce the instrumentation system, to teach the construction, operation of various transducers, sensors, etc, to develop the concept of function generators, frequency counters, data acquisition systems, interfacing of micro controllers and basic GPIB techniques.

Course Outcomes:

CO1	To familiarize with measurement standards and systems with their responses
CO2	To get a detailed understanding of various analog meters
CO3	To introduce transducers, sensors and actuators used in measurements
CO4	To understand the working of wave generators, analyzers and digital meters and to get knowledge about data acquisition system and interfacing with microcontrollers

Details of Syllabus:

S. No.	Particulars		
1.	Measurement System and Standards: Instrumentation System and its classification,		
	Primary and secondary standards, Standards of various electrical quantities, IEEE		
	standards, Static and Dynamic response, Errors, and accuracy of an instrumentation system.		
2.	Measurement of Basic Parameters: Galvanometer and its principle, Moving Coil,		
	Moving iron meters, true rms meter, Bridge measurements, Q meters, Measurement of		
	Voltage, Current, Power, Energy. Measurement of Resistance, Capacitance, Inductance.		
3.	Transducers, Sensors, and Actuators: Active and Passive, Transducers types: Resisti		
	Inductive, capacitive, Piezoelectric, Optical, Photo diodes; Measurement of Physical,		
	Physiological, And chemical quantities: (Temperature, pH, Luminescence, Flow, Pressure,		
	Torque, Speed, acceleration, Rotation, Stress, Strain, etc.), Sensors for hostile		
	environments, Actuators: Relays, Solenoids, Stepper motors.		
4.	Signal Generators and Analyzers: Function generators, RF Signal Generator,		
	Sweep Generator, Frequency synthesizer, Wave Analyzers for Audio and radio		
	frequency waves. Measurement of harmonic distortion. Spectrum analysis, RF		
	Power measurement.		
5.	Digital Instrumentation: Comparison of analog and digital techniques, Digital		
	voltmeter, Digital multimeter, Frequency counter, Measurement of frequency and		
	time interval, extension of frequency range, Measurement errors.		
6.	Data Acquisition System: Components of data acquisition system, Interfacing of		
	transducers, Single Channel and Multi-channel system, Multiplexing, interfacing with		
	micro controllers, IEEE 488 Bus, Automated data acquisition,		

National Institute of Technology, Srinagar

7.	Advanced topics: Virtual Instrumentation, Low level measurements and Noise rejection, GPIB based measurement techniques. Measurements using MEMS			
8.	Measurement System and Standards: Instrumentation System and its			
	classification, Primary and secondary standards, Standards of various electrical			
	quantities, IEEE standards, Static and Dynamic response, Errors, and accuracy of an			
	instrumentation system.			

Recommended Books:

1.	Electronic Measurements	W Cooper
2.	Electrical & Electronic Measurements	A K Sawhney

Subject: Power Station	Year & Semester: B. Tech Electrical Engineering 4 th Year VII Semester		Total Course Credit: 3		
(Code: FFT405)			L	Т	Р
(Couc. EE 1 403)			2	1	0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks	60) Marks	

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** To understand the economics of power generation
- **CO2:** To study various power factor improvement methods
- **CO3:** To study different types of tariffs and various types of grounding systems
- **CO4:** To understand an overview of power stations and substations

Module 1: Economic Aspects of Power Generation

Economics of generation, factors affecting the cost of generation, reduction of costs by interconnection of stations, curves useful in system operation, choice of size and number of generating units.

Module 2: Power Factor Improvement

Power factor, disadvantages of low power factor, methods of improving power factor, location of power factor improvement apparatus, economics of power factor improvement.

Module 3: Power Tariff and Neutral Grounding

Cost of generating station, fixed capital, running capital, annual cost, running charges, fixed charges, factors influencing the rate of tariff, designing tariff, different types of tariff, flat rate tariff, block rate tariff, two part tariff, maximum demand tariff, power factor tariff.

Neutral grounding, solid grounding, resistance grounding, reactance grounding, arc suppression coil grounding, earthing transformers

Module 4: Overview of different Types of Power Stations and their Auxiliaries

Thermal power plants, hydroelectric stations, nuclear power stations, diesel power stations, gas turbine plants.

Module 5: Overview of Substations and Substation Equipment

Introduction, type of substation, civil and electrical works in a substation, bus bars, layout, drawings.

National Institute of Technology, Srinagar

Recommended Book:

S. No	Name of Book	Author	Publisher & Edition	
1	A Course in Electrical Power	Soni, Gupta and Batnagar	Dhanpat Rai and Sons	
2	Elements of Power Station	Deshpande	Prentice hall	
3	The Art and Science of Utilization of Electric Energy	H. Pratab	Dhanpat Rai and Sons	
4	Substation Design and Equipment	Satnam	Dhanpat Rai and Sons	

Subject: Power System Protection Lab	Year & Semester: B. Tech Electrical Engineering 4 th Year VII Semester	Total Course Credit: 1			
(Code:FFI 401)		L	Т	Р	
(Couc.LLL+01)		0	0	2	
Evaluation Policy	Class Assessment	End-Term			
	(40 Marks)	(60 Marks)		3)	

Course Objective:

To familiarize the students about various protection schemes of electrical systems.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Gain the practical knowledge of various types of relays and characteristics of different types of relays.
- **CO2:** Visit to an electric Sub-station to understand various types of protective schemes circuit breakers and differential protection schemes.
- **CO3:** Study of structural and operational characteristics of circuit breakers/fuse wires

List of Experiments:

S. No. Name of the experiment

- ¹ Study of constructional details of various types of relays.
- 2 Characteristics of fuse wires of different materials.
- ³ Time current characteristics of an over current relay.
- 4 Study/simulation of differential relay.
- 5 Study of an oil circuit breaker.
- 6 Time/current grading of an over-current relay for distance protection.
- 7 Visit to an Electric Sub-station to study various protective schemes.
| Subject: High Voltage
Engineering Lab | Year & Semester:
B. Tech Electrical Engineering | Total Course Credit:
1 | | | |
|--|--|---------------------------|---|---|--|
| (Code: EEL 402) | A th Vear VII Semester | L | Т | Р | |
| (Code: EEL402) | 4 Tear VII Semester | 0 | 0 | 2 | |
| Evaluation Policy | Class Assessment | End-Term | | | |
| | (40 Marks) | (60 Marks) | | | |

Course Objective:

To familiarize the students with the generation and measurement of high voltages, and high voltage testing of power-system equipment.

Course Outcomes

(COs): Upon successful completion of the course, students should be able to:

- **CO1:** Handle equipment for generation and measurement of high ac, dc and impulse voltages.
- **CO2:** Carry out breakdown withstand tests and flashover tests on high-voltage equipment according to standards.
- **CO3:** Understand the effect of electrode geometry on the breakdown characteristics of gaseous gaps.
- **CO4:** Determine the breakdown voltage of insulating liquids according to standards.

	List	of	Ex	periments:
ſ	0	ЪT		

S. No.	Name of the experiment
1	To test the breakdown voltage of insulating liquids according to standards.
2	To carry out one-minute power-frequency withstand test and flashover test on 11kV / 33 kV pin insulator.
3	To determine the string efficiency of a three-unit suspension insulator.
4	To carry out breakdown studies of gaseous gaps using different electrode configurations.
5	To study the polarity effect of the point electrode of a point-plane gap on the breakdown characteristics of the gaseous gap.
6	To study the effect of front resistance, tail resistance, generator capacitance and load capacitance of an impulse generator on the impulse voltage wave shape.
7	To carry out impulse voltage withstand test on a pin insulator /string insulator as per international specifications.
8	To determine the 50% impulse flashover voltage of a pin insulator / suspension insulator.

Subject: Principles of	Ye	Total Course Credit:			
Management	B. Tech Electrical Engineering 4 th Year VIII Semester		L	Т	Р
(Code: HST454)			2	1	0
Evaluation Policy	Mid- Term	Internal Assessment	End-Term		1
	30 Marks	10 Marks		60 Marks	

8th Semester

Course Objectives:

- COB 1: To familiarize students with the basic concepts, principles and definitions of management.
- COB 2: To facilitate students in understanding specific theories related to perception, motivation, leadership, job design, and organizational change.
- COB 3: To help the student in understanding the contemporary issues in management.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Interpret basic concepts and theories of management.
- **CO2:** Outline plans and different organization structures.
- **CO3:** Classify different leadership styles in cross cultural environment.
- **CO4:** Develop rationale decision making and Problem-solving abilities.
- **CO5:** Cite contemporary issues and approaches to management.

UNIT 1:

Introduction of Management: Management: Definition– Importance– Managerial Roles– Functions of management – Classical theory – Scientific management - Administrative theory – Behavioral Theory – Management science – Integrative perspective – System theory – Socio – technical theory – Contingency theory – Comparing theories

UNIT 2:

Planning and Organizing: Nature and Definition of Planning – Principles of Planning – Objectives of planning – Planning process – Types of plans – Benefits and pitfalls of planning. Principles of organizing – Organization levels – Organizational designs and structure – Line and staff organizations – Approaches – Delegation of authority – Factors affecting delegation of authority – Span of management – Centralization and decentralization of Authority.

UNIT 3:

Directing and controlling: Definition of Co-ordination–Significance and principles of Coordination– Leadership behavior and styles – Leadership in cross cultural environment. Nature and importance of controlling– Controlling process– Requirements of effective control– Establishing controlling system – Controlling techniques.

UNIT 4:

Decision making: Meaning of decision – types of decisions – Rationale decision making process –Models of decision making – Problem solving and decision making – increasing participation in decision making – Vroom's Participative decision-making model – challenges and problems in decision making

UNIT 5:

Contemporary issues in Management: MBO-Management by Walking Around–Out of the Box Thinking– Balanced Score Card –Time Management–BPOs – Stress Management causes and remedies – JIT – TQM – Six Sigma – CMM levels

Relevant cases have to be discussed in each unit, and in examination case is compulsory from any unit.

Suggested Books:

- 1. Kumar, Rao, Chhalill: Introduction to Management Science. Cengage Publications, New Delhi
- 2. Dilip Kumar Battacharya, Principles of Management, Pearson, 2012.
- 3. Harold Koontz, Heinz Weihrich, A.R. Aryasri, Principles of Management, TMH, 2010.
- 4. V. S. P. Rao, Management Text and Cases, Excel, Second Edition, 2012.
- 5. K. Anbuvelan, Principles of Management, University Science Press, 2013.
- 6. Neeta Baporikar, Case Method Cases in Management, Himalaya Publishing House (HPH) 2009.
- 7. Deepak Kumar Bhattacharyya, Principles of Management-Text and Cases, Pearson, 2012.

Electives								
Subject: Advanced Control	Year & Semester:		Total Course Credit: - -					
(Code:)	B. Tech Elec	L	Т	Р				
(couc.))	5 & 4 Tear Semester		-	-	-			
Evaluation Policy	Mid-Term	Class Assessment	End-Term					
	30 Marks	10 Marks	60 Marks					

Flooting

Course Outcomes (COs):

- **CO1:** To get started with nonlinear systems.
- **CO2:** To obtain linear approximation of a nonlinear system.
- **CO3:** To understand nonlinear phenomenon and stability analysis.
- **CO4:** Extend modelling principles to discrete-time systems.
- **CO5:** Analyze and synthesize discrete-time control systems using the z-transform.

Module 1: Introduction to nonlinear systems:

Nonlinear system behavior. Types of nonlinearities. characteristic features of nonlinear systems, linearization and local stability.

Module 2: Analysis of nonlinear systems:

Phase plane analysis of linear and nonlinear systems, Existence of limit cycles. Describing function analysis, stability analysis using Lyapunov's method. Lyapunov's direct method, Invariant set theorems, Lyapunov analysis of LTI systems.

Module 3: Introduction to Digital Control:

Continuous versus digital control, hardware elements of a digital control system, sampling theorem, ZOH, effect of sampling rate, calculus of difference-equations, modelling discrete-time systems using pulse transfer function.

Module 4: Understanding Z-transform:

Frequency domain analysis, Z- transform, inverse Z-transform, difference equations, Relationship (in frequency domain) between s-plane (continuous-time) and z-plane (discrete-time).

Module 5: State Variable Analysis of Digital Control Systems, State space approach: Controllability, Observability, digital filter properties. PID controller, introduction to reduced order modelling.

S. No	Name of Book	Author	Publisher & Edition
1	Digital Control and State Variable Methods	M. Gopal	Tata McGraw-Hill
2	Automatic Control Systems	B. C. Kuo	Prentice-Hall
3	Advanced Control Engineering	R. S. Burns	Butterworth
			Heinemann
4	Nonlinear Systems	H. K. Khalil	Prentice-Hall
5	Modern Control Engineering	K. Ogatta	Prentice-Hall

Recommended Book:

Course: Mechatronics	Year & Semester: B. Tech Electrical Engineering 4 th Year VIII Semester		Total Course Credit: 3			
(Code: EET051)			L	Т	Р	
			3	0	0	
Evaluation Policy	Mid-Term	Internal Assessment	End-Term			
	30 Marks	30 Marks 10 Marks 60 Mark				

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- CO1: Explain the architecture of various mechatronics systems.
- CO2: Select and integrate various sensors and actuators to meet a mechatronic product requirement.
- CO3: Determine and analyze the dynamic response of the zero, first and second order mechatronic systems
- CO4: Understand modern control architectures for Mechatronic systems.

Module 1: Fundamentals of Mechatronics:

Definition of Mechatronics, Mechatronics in manufacturing, Products, and design. Comparison between Traditional and Mechatronics approach. Review of fundamentals of electronics. Data conversion devices, sensors, microsensors, transducers, signal processing devices, relays, contactors and timers.

Module 2: Microprocessor and Microcontrollers:

Microprocessors controllers and PLCs. 8086 Microprocessor and its Internal Architecture, Pin Configuration and their functions. Introduction to Microcontroller Interfacing and applications

Module 3: Sensors and Actuators:

Brief overview of measurement systems, classification, characteristics and calibration of different sensors. Measurement of displacement, position, motion, force, torque, strain gauge, pressure flow, temperature sensor sensors, smart sensor. Optical encoder, tactile and proximity, ultrasonic transducers, opto-electrical sensor, gyroscope.

Module 4: Modelling and Simulation of Mechatronic Systems:

Mechanical and electrical systems, physical laws. Modelling paradigms for mechatronic system, Block diagrams, mathematical models, systems of differential-algebraic equations, response analysis of electrical systems, mechanical rotational system, electrical-mechanical coupling. Solution of model equations and their interpretation, zeroth, first and second order system, solution of 2nd order electro-mechanical equation. Modelling of sensors and actuators

Module 5: Control of Mechatronic Systems:

Solution-time criterion, control-area criterion, performance indices; zero steady state step error systems; modern control performance index: quadratic performance index, Ricatti equation.

Recommended Book:

S. No	Name of Book	Author	Publisher & Edition
1	Mechatronics	HMT Ltd.	Tata Mcgraw-Hill, New Delhi, 1988
2	Fundamentals of Mechatronics	Musa Jouaneh	Cengage Learning, 2012
3.	Measurement, Instrumentation, and Sensors Handbook	John G. Webster	CRC Press (1999)
4.	Modeling of Dynamical Systems	L. Ljung, T. Glad	Prentice Hall Inc. (1994).

Course: Renewable Sources	Year	Total Course Credit: 3			
of Electrical Energy (Code: FFT052)	B. Tech Electrical Engineering		L	Т	Р
(Coue. EE 1052)	4 10a	3	0	0	
Evaluation Policy	Mid-Term	Internal Assessment	End-Term		
	30 Marks	10 Marks	60 Marks		

Course Objectives:

- 1. To Understand the Importance, Scope and Potential of Renewable Energy Resources.
- 2. To Impart Knowledge on the Technology and Applications of Renewable Energy.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Assess different energy resources; Understand energy, environment and need for renewables.
- **CO2:** Understand, analyze and apply the concepts of wind energy, solar energy: solar thermal & solar PV technology.
- **CO3:** Understand and analyze the principle of energy extraction from Ocean energy (Tidal, Wave, OTEC).
- **CO4:** Understand the energy conservation and future energy sources.

Module 1: Introduction

Review of Conventional & Renewable Energy resources, Energy problem, Energy & environment, Need for renewable, Rural Energy.

Module 2: Solar Energy – Basics & Technologies

Solar Energy Basics - Solar radiation and its measurement – Solar collectors – Energy Balance Equation and Collector Efficiency – Solar Cell Principles – Conversion Efficiency and Power Output – Photovoltaic system and Solar-Thermal system for Power Generation – Solar Cell Modules - Solar Energy Storage - Applications of Solar Energy.

Module 3: Wind Energy

Wind Energy profile - Basic Principles - Wind Energy Estimation – WEC System - Basic Components - Collectors - Rotor Types – Wind Turbine Types - Blade Forces – Aerodynamic Force – Braking systems – Tower - Control and Monitoring System – Performance of Wind Machines.

Module 4: Other Renewable Energy sources

Electric Power Generation from Tidal, Ocean Thermal and Geothermal energy. Simple power plant based on Tidal / OTEC / Geothermal.

Module 5: Energy conservation & Hybrid energy system:

Energy conservation in transport sector. Energy efficient buildings. Energy audit. Concept of hybrid energy systems and explore new energy sources.

- 1. B. H. Khan, "Non-Conventional Energy Resources", Tata McGraw-Hill, 2006.
- 2. John F. Walker & Jenkins. N, "Wind Energy Technology", John Wiley and Sons, 1997.

Reference

- 1. G.D. Rai, "Non-Conventional Energy Sources", First Edition, Khanna Publishers, Delhi, 1999.
- 2. Agarwal M.P., "Future Sources of Electrical Power", S. Chand Co. Ltd., New Delhi, 1999.
- 3. Van Overstraeton and Mertens R.P., "Physics, Technology and Use of Photovoltaics", Adam Hilger, Bristol, 1996.

Subject: Electric Drives	Year & Semester: B. Tech Electrical Engineering		Total Course Credit: 3			
(Code: EET053)			L	Т	Р	
	4 I Cai	3	0	0		
Evaluation Policy	Mid-Term	Class Assessment	End-Term			
	30 Marks 10 Marks		60 Marks			

Course Outcomes (COs):

- **CO1:** To understand the operation of AC-DC Converter Controlled DC Motor Drives
- **CO2:** To understand the operation of Chopper Controlled DC Motor Drives
- **CO3:** To understand the operation of Voltage Source Inverter Fed Induction Motor Drives
- **CO4:** To understand the operation of Current Source Inverter Fed Induction Motor Drives
- **CO5:** To understand the Rotor Side Control of Induction Motor Drives

Module 1:

Introduction to Electric Drives, Electric Drive Systems versus Mechanical Drive Systems. **Converter Controlled Dc Motor Drives:** Steady state analysis of semi-controlled and fully controlled converter fed series and separately excited D.C motor drives: Continuous and discontinuous conduction mode, open /closed loop control.

Module 2:

Chopper Controlled Dc Motor Drives: Four quadrant chopper circuit – closed loop control of chopper fed dc drive –Steady state analysis of chopper controlled DC motor drives.

Module 3:

Voltage Source Inverter Fed Induction Motor Drives: Scalar control- Voltage fed Inverter control-Open loop volts/Hz control-Speed control with slip regulation-Speed control with torque and Flux control-Current controlled voltage fed Inverter Drive.

Module 4:

Current Source Inverter Fed Induction Motor Drives: Current-Fed Inverter control-Independent current and frequency control-Speed and flux control in Current-Fed Inverter drive-Volts/Hz control of Current-Fed Inverter drive-Efficiency optimization control by flux program.

Module 5:

Rotor Side Control Of Induction Motor: Rotor resistance control- fixed resistance control, variable resistance control-converter controlled rotor resistance control, Slip power recovery schemes- Static Kramer drive-Phasor diagram-Torque expression-Speed control of a Kramer drive-Static scherbius drive-Modes of operation

Recommended Book:

S. No	Name of Book	Author	Publisher& Edition
1	Modern Power Electronics and AC	B.K.Bose	Pearson
	drives		
2	Control of Electric Drives	Werner Leonhard	Springer
3	Power Electronics and Motor Control	Shepherd, Hulley, Liang	Cambridge University Press
4	Electric Motor Drives Modeling, Analysis and Control	R. Krishnan	Prentice-Hall

Subject: Microcontroller and	Year & Semester: B. Tech Electrical Engineering 4 th Year VIII Semester		Total Course Credit: 03			
(Code: EET054)			L	Т	Р	
(Couc. EE 1034)			3	0	0	
Evaluation Policy	Mid-Term	Internal Assessment	End-Term			
	30 Marks	30 Marks 10 Marks 60 Mar		60 Marks		

Course Outcomes (COs):

- CO1: To get started with Microcontrollers
- **CO2:** To understand the hardware features of 8051 Microcontroller
- **CO3:** To understand the addressing modes and instruction set of 8051 Microcontroller
- CO4: To understand memory interfacing and data communication with 8051 Microcontroller
- **CO5:** To understand the basic concepts of embedded systems.

Module 1:

Microcontrollers– Introduction to different types of Microcontrollers, Hardware features, architecture and memory types.

Module 2:

Detailed study of 8051 Processor architecture and Memory organization, External memory Interfacing

Module 3:

Addressing modes of 8051 and Instruction Set – Data movement instruction, arithmetic instruction, Logic instruction, Branch group Instruction and Bit manipulation Instructions

Module 4:

8051 software and programming memory interfacing and address decoding, programming Input/ Output port/ timer/ ADC/DAC, interrupts controller and Serial data communication controller for different application with respect to instrumentation & control.

Module 5:

Embedded System Hardware, Embedded system software, Introduction to embedded development tools like cross assembler, simulator, HLL Cross compiler & in circuit emulator for system development

S. No	Name of Book	Author	Publisher& Edition
1	The 8051 Microcontroller &	M. A. Mazidi& J. G.	Pearson
	Embedded System	Mazid	
2	Design with Micro-controllers	John. B. Pitman	Mc-GrawHill
3	8051 Microcontroller Hardware,	V Udayashankara and	Tata Mc-GrawHill
	software and applications	Mallikarjunaswamy	

Recommended Book:

Course Code: EET055	Course Title: Maintenance and Design of Electrical Substations		Course Credit: 3		
Semester:	Session:		Contact Hours		
Minor Exam	Class Assessment	Major Exam	L	Т	Р
30 (Marks)	10 (Marks)	60 (Marks)	3	0	0

Course Outcomes

Upon successful completion of the course, student should be able to: (**COs**): CO:

- 1. To understand the planning and design of electrical substation.
 - To understand the design considerations of substations. 2.
 - 3. To explain the overall layout of substations.
 - 4. To impart knowledge about the concept of substation grounding.
 - 5. To understand protective relaying, substation automation and auxiliary systems.

UNIT-I Introduction

Purpose and scope; relationship of substation to overall power system; importance of adequate substation planning and engineering; types of substations: general, distribution substations, transmission substations, switching substations.

UNIT-II **General design considerations**

Initial and ultimate requirements; site considerations; environmental considerations; interfacing considerations; reliability considerations; operating considerations; safety considerations; maintenance considerations.

Physical Layout UNIT-III

Layout considerations; typical bus configuration; protection of substation insulation; substation insulators; electrical clearances; bare conductors; rigid bus design; strain bus design; application of mobile transformers and substations.

UNIT-IV Grounding

Definitions; soil resistivity measurements; area of ground grid; ground fault currents, ground conductor; safety considerations; tolerable touch and step voltages; protective surface material and reduction factor; design of substation grounding.

Protective relaying, substation automation and auxiliary systems UNIT-V

Fundamental considerations; basic relay types; relay schemes, Automation: Introduction; open vs proprietary systems; substation automation architecture; data acquisition and control elements, AC and DC auxiliary systems, Maintenance, uprating and expanding existing substations.

Text Books:

- 1. United States Department of Agriculture, Design Guide for Substations, Issued June 2001
- 2. The Aluminum Association, Aluminum Electrical Conductor Handbook, New York: The Aluminum Association, 1971.

Course Code: EET056	Course Title: Power System Transients			rse Cr	edit: 3
Semester: Session:		Contact Hours			
Mid Term	Int. Assessment	End Term	L	Т	Р
30 (Marks)	10 (Marks)	60 (Marks)	3	0	0

Course Outcomes

- Upon successful completion of the course, student should be able to: (**COs**): CO:
 - 6. To give overview of nature of power system transients
 - To understand the switching transients 7.
 - 8. To explain the phenomenon of switching surges and lightning surges and its modeling.
 - 9. To impart knowledge about the concept of traveling waves
 - 10. To understand transient in integrated power system

UNIT-I **Introduction and survey**

Origin and nature of transients and surges, lumped and distributed circuit representations. Line energisation and de-energisation transients, current chopping, short-line faults, trapped charge effects, effect of source, control of transients, Lightening, effect of tower footing resistance, travelling waves, insulation coordination, circuit breakers duty, surge arresters, overvoltage limiting devices, Source of transients, various types of power systems transients, effect of transients on power systems, importance of study of transients in planning.

UNIT-II Switching Transients

Introduction; circuit closing transients: RL circuit with sine wave drive, double frequency transients; observations in RLC circuit and basic transforms of the RLC circuit; Resistance switching: Equivalent circuit for the resistance switching problems, equivalent circuit for interrupting the resistor current; Load switching: Equivalent circuit, waveforms for transient voltage across the load, switch; normal and abnormal switching transients; Current suppression; current chopping; effective equivalent circuit; capacitance switching, effect of source regulation, capacitance switching with a restrike, with multiple restrikes, illustration for multiple restriking transients, ferro resonance.

Lightning Transients UNIT-III

Causes for over voltage, lightning phenomenon, charge formation in the clouds, rate of charging of thunder clouds, mechanisms of lightning strokes, characteristics of lightning strokes; factors contributing to good line design, protection afforded by ground wires, tower footing resistance. Interaction between lightning and power system: Mathematical model for lightning.

UNIT-IV Travelling Waves on Transmission Line Computation of Transients

Computation of transients: Transient response of systems with series and shunt lumped parameters and distributed lines. Travelling wave concept: step response, Bewely's lattice diagram, standing waves and natural frequencies, reflection and refraction of travelling waves.

UNIT-V Transients in Integrated Power System

The short line and kilometric fault, distribution of voltage in a power system: Line dropping and load rejection; voltage transients on closing and reclosing lines; over voltage induced by faults; switching surges on integrated system; EMTP for transient computation.

Text Books:

- 1. Allan Greenwood, Electrical Transients in Power Systems, Wiley-Blackwell; 2nd Edition edition, 1991.
- 2. Pritindra Chowdhuri, Electromagnetic Transients in Power Systems (High-Voltage Power Transmission), 2nd edition, PHI Learning.

Course: Distribution System	Year & Semester: B. Tech Electrical Engineering 4 th Year VIII Semester		Total Course Credit: 3			
Automation (Code: FFT057)			L	Т	Р	
(Couc. EE1057)			3	0	0	
Evaluation Policy	Mid-Term	Internal Assessment	End-Term			
	30 Marks	10 Marks	60 Marks			

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Understand and analyses the basic fundamentals and advance terminology for distribution system
- **CO2:** Analyze and evaluate the function of automated distribution system
- **CO3:** Understand and model the modern real time system for distribution system
- **CO4:** Understand and analyze the communication media for automation of distribution systems.

Module 1: Analysis of Distribution Systems (DS)

Distribution substation; Major components of DS: High side and low side switching, voltage transformation, voltage regulation, Protection, Metering; Radial feeder; Definition of nature of loads; Individual customer load: Demand, Maximum demand, Average demand, Load factor; Distribution transformer loading; "K" factor for voltage drop and voltage rise; Load flow analysis of balanced and weakly mesh distribution systems.

Module 2: Distribution Automation Functions:

Concept of distribution automation; Definition of automated devices preparedness; Components in automation systems; Functional scope of distribution management systems (DMS) and energy management systems (EMS); Steady state performance of DMS/EMS; Dynamic performance of DMS/EMS; Distribution topology; Architecture of distribution automation and control.

Module 3: Real Time Control System:

Illustrations of SCADA (Supervisory control and data acquisition); Function of SCADA: Supervisory control, Data acquisition and processing, Sequence of events (SOEs) registry, Misoperation revision, Tagging, Alarm processing, Historical information system; System architecture.

Synchrophasors: Definition, Application of PMUs (phasor measurement units); Line parameter calculations; State estimation; Transmission line thermal monitoring; Voltage instability.

Module 4: Commination Systems:

Data communication; Type of telecommunication media; Communication modulation indices; Asynchronous and synchronous communications; Communication network; Local area network and metropolitan area network; Interconnection standard and regulation; Distribution network protocols.

Recommended Book:

S. No	Name of Book				Author	Publisher & Edition		
1	Electric Automation, 1	Power Protection	Distribu , And Contr	ition, ol	James A. Momoh	CRC Press, Tylor and Francis group.		
2	Control And Power Distrib	Automation Sys	ion Of Elec tems	trical	James Northcote- Green and Robert Wilson	CRC Press, Tylor and Francis group		
3.	Distribution Automation	System	Analysis	and	Juan M Gers	IET Power And Energy Series 68		
4	Distribution Analysis	System	Modeling	and	William H. Kersting	CRC Press, Tylor and Francis group		

Course: Industrial Process	Year & Semester: B. Tech Electrical Engineering 4 Th Year VIII Semester		Total Course Credit: 3			
(Code: FET058)			L	Т	Р	
(Couc. EE 1058)			3	0	0	
Evaluation Policy	Mid-Term	Internal Assessment	End-Term			
	30 Marks	10 Marks	60 Marks			

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Understand the meaning and scope of telemetry and remote control systems.
- **CO2:** Learn about the fundamentals, theory and applications of telemetry in real time systems.
- **CO3:** Understand the working principles and design of controllers for industrial process equipment's.
- **CO4:** Develop the comprehensive understanding and applicability of PLCs, distributed and supervisory controls.

Module 1:Introduction to Telemetry

Meaning and importance of telemetry, remote control and remote signaling/supervision, Messages and signals; signal formation, conversion and transmission.

Signal transmission and transmission media: Physical and radio links; communication lines and operational paths of undertakings used for communications; noise in transmission channels, reliability and efficiency of transmission.

Module 2: Telemetry and SCADA system

Telemetry error, dc, pulse and digital telemetry methods and systems: Multichannel telemetry schemes. Remote control and Remote signaling: Principal of independent messages and combinatorial principle; Multi-wire FDM and TDM schemes. Layout, functions and operation of SCADA system.

Module 3:Review of Concepts of system response and control

Response of first order systems involving forcing functions, non-interacting and interacting systems. Basic concepts and working principles of sensors and transducers for various measuring process variables. Controller Principles; process characteristics; control system parameters; Discontinuous, continuous and composite controller modes. Analog and digital controllers; General features and design considerations.

Module 4: Control Characteristics, Equipment and Final Control Elements

Control system configuration; Multivariable control system; Control system quality and stability; Process loop tuning. Details of controllers including measurement unit, comparator, actuator and final control elements; Pneumatic, hydraulic and electric actuators; Control valve characteristics; Pneumatic to electric and electric to pneumatic converters, hydraulic and pneumatic power supply system.

Module 5: PLCs, Distributed and Supervisory Controls

Relays controllers and ladder diagrams; Relay sequences; PLC operation and programming.

Distributed control; Hardware components of distributed control; Introduction and necessity of supervisory control; Master control station and remote terminal units

Recommended Book:

S. No	Name of Book	Author	Publisher& Edition
1	Handbook of Telemetry and Remote Control	Gruenberg E. L	McGraw-Hill International Book Company
2	Electronic Communication Systems: Fundamentals	Tomasi W	5 th Ed., Pearson Education
3	Advanced Control System Technology	Chemsmond C. J	Viva Books
4	Process Control Analysis and Control	Coughanowr D. R	2 nd Ed., McGraw- Hill International Book Company
5	Process Control Instrumentation Technology	Johnson C. D	8 th Ed., Prentice Hall of India

POWER SYSTEM RELIABILITY

Course Code: EET059 C L T P

3 0 0 3

Co. No:	Course Outcomes	PO/PSO	BTL
CO 1	Understand the system reliability concepts	a, f, g	2
CO 2	Apply the frequency and duration techniques for component repairable system.	a, f, g	3
CO 3	Apply the network reliability concepts to generation system reliability analysis.	a, f, g	3
CO 4	Apply the network reliability concepts to transmission and distribution system reliability analysis.	a, f, g	3

Module-I

Network Modelling and Reliability Analysis: Reliability concepts – exponential distributions – meantime to failure – series and parallel system – MARKOV process – recursive technique - Bath tub curve - reliability measures MTTF, MTTR, MTBF.

Module-II

Frequency & Duration Techniques: Frequency and duration concept – Evaluation of frequency of encountering state, mean cycle time, for one, two component repairable models – evaluation of cumulative probability and cumulative frequency of encountering of merged states.

Module-III

Generation System Reliability Analysis: Reliability model of a generation system– recursive relation for unit addition and removal – load modeling - Merging of generation load model – evaluation of transition rates for merged state model – cumulative Probability, cumulative frequency of failure evaluation – LOLP, LOLE. Transmission System Reliability Analysis: System and load point reliability indices – Weather effects on transmission lines – Weighted average rate and Markov model.:

Module IV

Distribution System Reliability Analysis: Basic Techniques – Radial networks – Evaluation of Basic reliability indices, performance indices - Load point and system reliability indices – Customer oriented, loss and energy oriented indices – Examples. Parallel Configuration: Basic techniques – Inclusion of bus bar failures, scheduled maintenance – Temporary and transient failures – Weather effects –Evaluation of various indices – Examples.

Text Books:

- 1. R. Billinton, R.N.Allan, "Reliability Evaluation of Power systems" second edition, Springer.
- 2. Charles E. Ebeling, "An Introduction to Reliability and Maintainability Engineering", TATA Mc Graw Hill Edition.

Reference Books:

- 1. R. Billinton, R.N.Allan, "Reliability Evaluation of Engineering System", Plenum Press, New York.
- 2. Eodrenyi, J., "Reliability modelling in Electric Power System", John Wiley, 1980

Course Code: EET060	Course Title: Utilization & Traction			rse Cr	edit:3	
Semester: 8 th	Session: Spring		Session: Spring Cont		ntact H	lours
Mid Term Exam	Internal Assessment	End Term Exam	L	Т	Р	
30 (Marks)	10 (Marks)	60 (Marks)	3	0	0	

Course Objective: To understand the basic principle and types of lighting schemes, electric heating, electric welding, electric drives and electric traction system.

- **Course Outcomes** (COs): Upon successful completion of the course, student should be able to:
 - **CO1:** Select a proper lighting system and implement it in real life applications.
 - **CO2:** Recognize different process of utilizing electric energy for heating and welding purposes in commercial and domestic applications.
 - **CO3:** Apply the knowledge of drives and use them effectively.
 - **CO4:** Choose proper traction systems depending upon application.
 - **CO5:** Differentiate between conventional and alternate energy vehicles.

UNIT-I Illumination:

Introduction, terms used in photometry and their units, laws of illumination, various types of lighting scheme, illumination at a point due to one and several points sources, street lighting, flood lighting, various types of lamps: incandescent, fluorescent, vapour, CFL and LED.

UNIT-II Electric Heating & Welding:

Electric heating: Advantages of electric heating, direct and indirect resistance heating, properties and design of heating element, electric oven, induction heating, dielectric heating, high frequency eddy current heating.

Electric welding: Arc welding: metal arc welding and carbon arc welding, welding equipments, welding machine.

UNIT-III Electric Drives:

Definition, advantages of electric drives, components of electric drives, four quadrant operation of Lift, electric braking, characteristic of different types of mechanical load, steady state stability of motor load system.

UNIT-IV Electric Traction:

Advantages and disadvantages of electric traction, types of railway electrification, overhead equipment, speed-time curve, tractive effort, accelerating force, specific energy consumption, specific energy output, types of railway services: urban, sub-urban, and main lines with their speed-time curves.

UNIT-V Electric & Hybrid Electric Vehicles:

Conventional vehicle and its components, concept of electric vehicle and its components, concept of hybrid electric vehicles (HEVs) and its components, architectures of HEVs: series HEVs, parallel HEVs and complex HEVs.

- 5. H. Partap, Art and Science of Utilization of Electrical Energy, Dhanpat Rai & Sons.
- 6. J. B. Gupta, Utilization of Electric Power & Electric Traction, S. K. Kataria & Sons.
- 7. G. K. Dubey, Fundamentals of Electric Drives, Narosa Publications, New Delhi.
- 8. Iqbal Husain, "Electric and Hybrid Vehicles: Design Fundamentals" CRC Press.

Reference Books:

6. Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory and Design" CRC Press.

Course Code: EET061	Course Title: Advanced Control of Power Systems		Course Credit		edit:3
Semester: 8 th	Session: Spring		Cor	ntact H	ours
Mid Term Exam	Internal Assessment	End Term Exam	L	Т	Р
30 (Marks)	10 (Marks)	60 (Marks)	3	0	0

Module 1:

Automatic Generation Control (AGC): Modes of control viz. Flat frequency – Tie-line control and Tie-line Bias control; Static and Dynamic response of controlled two-area system. Module 2:

Automatic Voltage Regulator (AVR): Types of alternator exciters, AVR for generator excitation control, static and dynamic performance of AVR loop

Module 3:

Energy Storage Devices and their applications to power system control. <u>Module 4:</u>

Application of Advanced Control Techniques: Optimal, Adaptive, Intelligent (fuzzy & neural) and predictive control techniques

Text books:

- Olle I Elgard, "Electric Energy systems Theory An Introduction" Tata McGraw Hill, 2nd Edition.
- 2. Roland Burns,"Advanced Control Engineering" Butterworth-Heinemann,2001
- 3. Gopal, "<u>Digital control and state variable methods : conventional and intelligent control systems</u>", 2012

References

- 1. Prabha Kundur, "Power System Stability and Control", McGraw Hill, 2006.
- Allen J.Wood and Wollenberg B.F, "Power Generation Operation and control", John Wiley & Sons, 2nd Edition, 1996.

5 th Semester		_		
Course Cod	le Title	LTP	С	Faculty
ECT 301	Microprocessor	3 1 0	4	
ECT 302	VLSI Design	3 1 0	4	
ECT 303	Digital Communication	2 1 0	3	
ECT 304	Applied EMF & Waves	3 1 0	4	
ECT 305	Information Theory & coding	2 1 0	3	
MAT 3xx	Mathematics V	3 1 0	4	
ECL 306	Microprocessor Lab	0 0 2	1	
ECL 307	VLSI Design Lab	0 0 2	1	
ECL 308	Digital Communication Lab	0 0 2	1	
<u>Total</u>		28	25	

Electronics & Communication Engg.

6th semester

Course Code	Title	LTP	С	Faculty
ECT 350	Antenna and Wave Propagation	2 1 0	3	
ECT 351	Electronic Devices	3 1 0	4	
ECT 352	Computer Organization & Architecture	3 1 0	4	
ECT 353	Data Comm. & Networking	3 1 0	4	
ECT 354	Power Electronics	3 1 0	4	
ECT XXX	Elective-I	2 1 0	3	
ECL 355	Electronic DA Tools I (Lab)	0 0 2	1	
ECI 356	Industrial Training		1	
EEL 3xx	Power Electronics Lab	0 0 2	1	
Total		28	25	

7 ather 2021

7th Semester

Course Code	Title	LTP	С
ECT 401	Embedded Systems	3 1 0	3
ECT 402	Digital Signal Processing	2 1 0	3
ECT 403	Wireless Communication	2 1 0	3
ECT 404	Electronic Measurement & Instrumentation	3 1 0	4
ECT 405	Microwave Engineering	2 1 0	3
ECT 406	Project Pre work & Seminar	0 0 4	3
ECT 4xx	Elective II (Swayam Course)	2 1 0	3
ECL 407	Embedded & Signal Processing Lab	0 0 2	1
ECL 408	EDA Tools II	0 0 2	1

ECL 409	Microwave Engineering Lab	0 0 2	1
Total		30	25

8^h Semester

Course Code	Title	LTP	С	Faculty
ECT 450	Project Major	0 0 16	8	
ECT 451	Optical Fiber Comm.	2 1 0	3	
ECT 452	Computer &Network Security	2 1 0	3	
ECT 4XX	Elective-III	2 1 0	3	
HSL 4xx	Industrial Organization & Management	3 1 0	4	
ECT 4XX	Elective-IV (Swayam Course)	2 1 0	3	
ECT 453	Optical Fiber Comm. Lab.	0 0 2	1	
Total		34	25	

1 28 01 202

Elective I (3rd Year 6th semester level)

Course Code	Title	LTP	С	Faculty
(ECT 356)	Multimedia Information System	2 1 0	3	
(ECT 357)	Advanced Microprocessor	2 1 0	3	
(ECT 358)	VLSI Technology	2 1 0	3	
(ECT 359)	Network Synthesis	2 1 0	3	
(CST 310)	Python Programming*	2 1 0	3	
(MAT 603)	Numerical Analysis & Techniques#	2 1 0	3	
(ECT 360)	Online Course	2 1 0	3	
Elective II	(4thYear 7 th semester level)			
Course Code	Title	LTP	С	Faculty
(ECT 410)	Radar Systems	2 1 0	3	
(ECT 411)	System Design	2 1 0	3	
(ECT 412)	Analog CMOS Design	2 1 0	3	
EET 3xx)	Advanced Power Electronics	2 1 0	3	

(CST 306)	Design & Analysis of Algorithms*	2 1	0	3	
(MAT xxx)	Neural Networks and Fuzzy logic#	2 1	0	3	
(ECT 413)	Online Course	2 1	0	3	
Elective III	(4thYear 8 th semester level)				
Course Code	Title	LΊ	C P	С	Faculty
(ECT 454)	Millimeter wave communications	2 1	0	3	
(ECT 455)	Biomedical & Image Processing	2 1	0	3	
(ECT 456)	Molecular Electronics	2 1	0	3	
(EET 3xx)	Power System@	2 1	0	3	
(CST 352)	Artificial Intelligence & Machine Learning*	2 1	0	3	
(MAT 802)	Optimization Techniques#	2 1	0	3	
(ECT 457)	Online Course	2 1	0	3	

28/01/2021

Elective IV (4thYear 8th semester level)

Course Code	e Title	LTP	С	Faculty
(ECT 458)	TV Engineering	2 1 0	3	
(ECT 460)	Telemedicine	2 1 0	3	
(ECT 461)	RF Design	2 1 0	3	
(ECT 462)	Smart Grid Communications	2 1 0	3	
(CST 354)	Computer Networks*	2 1 0	3	
(MAT 801)	Discrete Mathematics#	2 1 0	3	
(ECT 463)	Online Course	2 1 0	3	

7 ather 28/01/2021

Note: For subjects under Elective head the missing course number have to be provided by the respective departments.

5th Semester B Tech ECE Syllabus

Subject: Microprocessors	Year & Semes Electronics & C	Total Course Credit: 4			
(Code:ECT301)	Engineering	L	Т	Р	
	3 rd Year & 5 th Semester		3	1	-
Evaluation Policy	Mid-Term	Class Assessment	End-Term		
	30 Marks	10 Marks	60	Marks	

Objectives: To study the basics of microprocessors, programming the microprocessor for different

control operations and interfacing it with peripherals. To understand the fundamentals of microcontrollers and using it in the areas of process control, robotics etc.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

CO1: To introduce 8085 architecture and programming in assembly language.

CO2: To introduce basic concepts of interfacing memory and peripheral devices to a microprocessor.

CO3: To design real life applications of process control through microprocessors.

CO4: To introduce advanced versions of Microprocessors and peripheral chips like 8255

S.No.	Particulars				
1.	Microcomputer Structure and Operations: Basic Microcomputer Elements, Typical				
	Microcomputer Structure, CPU, Memory System, Input Output.				
2.	Microprocessors and Memory: Typical 8, 16 and 32 bit Microprocessors, 8085				
	Microprocessor Specification, Memory Technologies.				
3.	Assembly Language Programming I: Programming Model of 8085, Registers, Fetch,				
	Execute, Operation of CPU, Instruction Set.				
4.	Assembly Language Programming II: Addressing Modes, Basic Operations,				
	Microprocessor Arithmetic, Program Flow Control Using Looping and Branching.				
5.	Assembly Language Programming III: Stack, Subroutines, Interrupts, Resets.				
6.	Bus System I: System Bus Structure, Bus Operations, Cycle by Cycle Operations,				
	Timing and Control, Priority Management, Address Decoding.				
7.	Microprocessors Interfacing I: Interfacing concepts, Parallel Input Output, Memory				
	Interfacing, Direct Memory Access.				
8.	Microprocessors Interfacing II: The Serial Subsystems.				
9.	Microprocessor Interfacing III: Programmable, Peripheral Interface, Analog				
	Converter Subsystem.				
10.	Introduction to INTEL 8086: Basic features.				
11.	Micro controller: 8051, 68HC11.				
12.	Application Examples: Process Control, Robotics, CAI, Medical physics.				
13.	Latest Developments in Microprocessor Technology.				
Recomm	ended Books:				

S. No	Name of Book			Author
1.	Microprocessor An	chitecture, programming and applicat	ion	Ramesh Goankar
2	Microprocessor an	d Applications		Leventhal
3.	Microprocessors			Mathur
Subj	ect: VLSI Design		То	tal Course Credit: 4

(Code:ECT302)	Year & Semester: B. Tech Electronics & Communication Engineering 3 rd Year & 5 th Semester		L	Т	Р
			3	1	-
Evolution Dollar	Mid-Term	Class Assessment	End-Term		n
Evaluation Folicy	30 Marks	10 Marks	60 Marks		

Objectives: To understand mosfet mechanism as a building block of digital circuits, technology to manufacture them and operation of various logic families.

Course Outcomes: Upon course completion ,the students should familiarize with the following:

- **CO1:** Understand the physics of MOSFET and its operation as a switch and inverter.
- **CO2:** Acquire knowledge about the fabrication processes for MOS devices.
- **CO3:** Design of universal logic gates, compound gates, multiplexers, RAM cell based on CMOS technology and transmission gates.
- **CO4:** Understanding of CMOS logic structures, switching characteristics, transistor sizing and layout.

S.No.	Particulars			
1.	Review of MOSFET : Constructional & Operational features of MOSFET, I-V Equation,			
	2ND Order Effects, MOS Capacitor, C-V Characteristics, MC	OSFET Switch, Transmission		
	gate, CMOS Inverter (Pull-up & Pull-down), Inverter Static	Characteristics, ßn/ ßp Ratio,		
	?n/ ?p Rtaio, Noise Margin, Switching characteristics of Inve	erter (Fall Time, Rise Time,		
	Delay Time), Dynamic Characteristics, Power Dissipation			
2.	VLSI Technology: Wafer Processing, Oxidation, Epitaxy, De	position, Ion-Implantation		
	& Diffusion, The Silicon gate Process, n-well CMOS Process,	p-well Process, Twin-Tub		
	Process, Silicon On Insulator.			
3.	CMOS Logic Design (Gates): CMOS Logic Gate Design (NAND & NOR Logic),			
	Switching Characteristics (Delay Time, Power, Fan-in, Fan-out), Transistor Sizing, The			
	Compound Gates.			
4.	CMOS Logic Structures: CMOS Logic, Pseudo-nMOS Logic, Dynamic CMOS Logic,			
	C2MOS Logic, BiCMOS Logic, NP Domino Logic.			
5.	Layout: Design Rules/Floor planning, Simple Layout Example	es.		
6.	CMOS Logic Design (Circuits): Multiplexers, MUX Implem	nentation in CMOS &		
	Transmission Gate, RAM Cell Implementation, Implementation	on of Flip-Flop,		
	Register/Counter			
Recom	nended Books:	-		
S.No	Name of Book	Author		
1	CMOS VLSI Design: A Systems Perspective	N. Weste & K.Eshraghian		
2	CMOS VLSI Design: A Circuits & Systems Perspective	N. Weste, D. Harris & A.		
		Bannerjee		
3	Digital Integrated Circuits: A Design Perspective	Rabaey		

Subject: Digital communication (Code:ECT303)	Year & Semester: B. Tech Electronics & Communication Engineering 3 rd Year & 5 th Semester		Total Course Credit: 3			
			L	Т	Р	
			2	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term			
	30 Marks	10 Marks	60 I	Marks		

Objectives: The objective of this course is to provide the student the understanding of fundamental concepts of digital communication starting from sampling theorem to the digital modulation techniques like BPSK, QPSK, M-PSK, M-QAM. In this course the student is supposed to understand the design of digital modulator and demodulator and also to analyze the performance in the presence of noise. Lectures should be supplemented with the hands on sessions of simulation using modern simulation tools like MATLAB/Octave/Scilab. The student should also get the exposure of recent trends in the field of digital communication like understanding of next generation systems like 5G/6G, LTE, WiFi etc.

Course Outcomes: Upon completion of the course, student should be able to:

- **CO1:** To understand how analog signal are converted to digital ones via sampling, quantization and various pulse coded modulation techniques
- **CO2:** To be able to represent signals as vectors in vector space and understand various digital modulation schemes, their modulator and demodulators.
- **CO3:** To analyze and simulate error performance of various digital modulation schemes in the presence of noise
- **CO4:** To get exposure of recent trends in the field of Digital Communication.

S.No.	Particulars			
1.	Analog to Digital Conversion: Sampling Theorem, Anti-Aliasing Filters, Pulse			
	Amplitude Modulation (PAM), Quantization, Non-Uniform Quantization, Pulse			
	Coded Modulation (PCM), Delta Modulation, Delta-Sigma Modulation,			
	Differential Pulse Code Modulation.			
2.	Digital Modulation Techniques: Binary Phase Shift Keying (BPSK), Phase Shift			
	Keying (PSK), Frequency Shift Keying (FSK), M-ary Digital Modulation Scheme,			
	M-Quadrature Amplitude Modulation (M-QAM), Signal Space diagram of various			
	modulation schemes			
3.	Noise in Digital Communication Systems: Bit Error Rate (BER), Q-Function,			
	Optimum Detection of BPSK, QPSK, M-PSK, M-QAM, FSK in presence of			
	Additive White Gaussian Noise (AWGN), Simulation of BER of various digital			
	modulation schemes.			
4.	Recent Trends in Digital Communication: Digital Modulation used in IoTs,			
	Receiver design of modern digital communication system, Other recent trends in			
	digital communication.			

Recommended Books:

Recommended Doons.				
S. No	Name of Book	Author		
1.	An Introduction To Analog And Digital Communications.	Haykin, Simon		
	India, Wiley India Pvt. Limited, 2009.			
2.	Modern Digital and Analog Communication Systems. United	Lathi, B. P., Ding, Z.		
	States: Oxford University Press.	(2010		

References:

S. No	Name of Book	Author	
1.	Digital Communication Systems. United Kingdom, Wiley,	Haykin, Simon	
	2014.		
2.	Digital Communications. United States, McGraw-Hill, 2008.	Proakis, John G.&	
		Salehi Masoud	
3.	Selected papers from relevant IEEE Journals and other reputed journals/conference		
	papers related to Information Digital Communication.		

Subject: Applied	Year & Semester: B. Tech		Total Course Credits: 4		
Electromagnetic Fields Electronics and Communication		L	Т	Р	
(Code: ECT304)	3rd Year & 5th Semester		3	1	0
Evaluation Policy	Mid Term Class Assessment			End Term	
	30	10		60	

Objectives: To understand EMF in theory and practice, laws governing propagation of EMF in dielectric, transmission lines, standing wave ratios and impedance issues.

Course Outcomes:

CO1	To understand the interaction between electric and magnetic fields
CO2	To understand the basic theory behind Maxwell's equations and electromagnetic
02	waves
CO3	To learn the Propagation behavior of Electromagnetic waves in lossless and lossy
005	media
CO4	To study the behavior of electromagnetic waves at discontinuities of media

S No	Particulars
1	Review of coordinate systems and Vectors: Cartesian, cylindrical and spherical
	coordinate systems, Vector operations; Vector calculus; gradient, divergence and curl
	of a vector function, gradient theorem, divergence theorem and Stokes theorem. Some
	important identities of vector calculus
2	Static Electric Field: Coulomb's law; Electric field and Electric field intensity due to
	point charge and summation of point charges; Electric scalar potential;
	Equi-potential surfaces and their properties; Relation between electric potential and
	electric field intensity; Electric dipole and Electric field due to a dipole; Electric flux
	and electric flux density; Electric flux over a closed surface: Gauss law, Poisson and
	Laplace equations Electric field due to linear, surface, spherical and cylindrical charge
	distributions. Induced charges; Dielectrics and permittivity; Electric field in a
	dielectric; boundary conditions; Parallel plate capacitor; Dielectric strength; Energy in
	a capacitor; Capacitance of Co-axial transmission line, two wire transmission line and
	Single wire transmission line
3	Electric Charge in motion: Electric current density; Ohm's Law in point form,
	Resistivity and conductivity of a medium; Conductor and Insulator; Divergence of J
	and continuity of current; Current and field at conductor-Insulator boundary;
4	Magnetic effects of current: Effect of current on magnet; Effect of magnet on
	current carrying conductor; Magnetic field due to a current carrying conductor;
	BiotSavart Law; Magnetic field due to a infinite linear conductor; Force between two
	linear parallel conductors; Ampere's law, Faradays' law of induction, self and mutual
	inductance, inductance of two wire transmission line, single wire and coaxial cable,
	displacement currents, Magnetic vector potential
5	Maxwell equations and wave equations: Maxwell's Equations general form,
	Maxwell equations for free space, Boundary conditions, Wave equation and its
	solution. Transverse Electromagnetic Waves, Poynting vector, intrinsic impedance of
	medium, Phase and group velocity, Plane waves in lossless and lossy media.
6	Polarization, reflection and refraction of waves: Polarization of
	electromagnetic waves and different cases, Normal and oblique incidence at plane
	conducting boundary, Normal and oblique incidence at plane dielectric boundary.

Recommended Books:

S. No	Name of Book	Author
1.	Electromagnetic Waves & radiating systems, PHI	Jordan E and Balman K
2.	Field and Wave Electromagnetics, Addison Wesley	David K Cheng
3.	Electromagnetics, Mc Graw Hill	Krauss
4.	Introduction to Electrodynamics, PHI	Griffiths

	Year & Semester: B. Tech Electronics & Communication Engineering 3 rd Year & 5 th Semester		Total Cou	irse Cre	dit:3
Subject: Information Theory			L	Т	Р
& Counig (Code.EC1505)			2	1	-
Evolution Dolion	Mid-Term	Class Assessment	End	l-Term	
Evaluation Foncy	30 Marks	10 Marks	60	Marks	

Objectives: The objective of this course is to understand the notion of information and measures of information. The fundamental quantities of information measure are Entropy and mutual information. The student should understand the notion of source coding for compression and be able to prove that entropy is the fundamental limit for compression. Also student should be able to understand to notion of channel coding for combating errors and prove that mutual information is the upper limit of maximum achievable rate under probability of error constraint. Also in this course the student is expected to learn about various practical source coding and channel coding techniques like Huffman Coding, Shannon-Fano Coding, Linear Block coding, Cyclic codes, Convolutional coding theory including: Coding for 5G/6G, Information theory and Machine Learning, Polar Coding, LDPC Coding. In this course the instructor is supposed to supplement lectures with demonstrations in MATLAB/Octave/Scilab packages.

Course	Upon successful completion of the course, the student should be able to :
outcomes	
CO1	To understand the source coding, various techniques for source coding and entropy as fundamental limit for compression.
CO2	To the channel coding, discrete memoryless channel, mutual information, random coding and notion of channel capacity.
CO3	To understand and demonstrate error control coding in particular Linear block codes, Cyclic Codes, Convolutional codes
CO4	To get exposure of recent trends in the field of information and coding theory.

S.No.	Particulars			
1.	Source Coding: Entropy and its properties, Relative Entropy, Instantaneous codes,			
	Construction of instantaneous codes, Kraft's inequality, Source coding theorem.			
	Construction of basic source codes – Shannon Fano coding, Shannon Fano Elias			
	coding, Huffman coding.			
2.	Channel Coding: Mutual information and its properties, information rate, channel			
	capacity, Shannon's Channel Coding Theorem, Discrete channels – Symmetric			
	channels, Binary Symmetric Channel, Binary Erasure Channel, Differential			
	Entropy, Capacity of AWGN Channel.			
3.	Error Control Codes: Repetition Coding, Linear Block Codes, Cyclic Codes,			
	Syndrome Decoding, Convolutional Codes, Viterbi Decoding.			
4.	Recent Trends in Information and Coding Theory: Codes for 5G/6G: LDPC			
	Codes, Polar Codes; Information theory for machine learning; Quantum			
	Information and computing.			

Recommended Books:

S. No	Name of Book	Author	Publisher & Edition
1.	Elements of Information Theory	Thomas, Joy A., and	Wiley, 2012.
		Cover, Thomas M.	
2.	Digital Communication Systems	Haykin, Simon.	United Kingdom, Wiley

References:

S. No	Name	Author	Publisher & Edition
1.	Digital Communications	Proakis, John G., and	United States,
		Salehi, Masoud	McGraw-Hill, 2008.
2.	Information theory: coding	Csiszar, Imre, and János	Cambridge University
	theorems for discrete memoryless	Körner	Press, 2011
	systems.		
3.	Error control coding	Lin, Shu, and Daniel J.	Pearson Education
		Costello	India, 2011.
4.	Selected papers from IEEE Transactions on Information Theory and other reputed		
	journals/conference papers related to Information Theory and Coding		

	Year & Semester: B. Tech Electronics & Communication		Total Course Credit:4		
Subject: Mathematics-V (Code:MAT3xx)			L	Т	Р
	3 rd Year & 5 th Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		
	30 Marks	10 Marks	60 Marks		

Objectives: To study complex variables, their functions and theorems, special functions and wavelet transform.

Course Outcomes: Upon successful completion of the course, student should be able to:

- **CO1:** Determine Analytic functions their Harmonic conjugates and Laplace equation.
- **CO2:** Differentiate and Integrate complex functions and develop the concepts of elementary functions in complex domain.
- **CO3:** Expand complex valued functions in terms of Taylor, Laurant series and Classify singularities of a complex function and calculation of residues.
- **CO4:** Learn and Apply Bessel and Legendre functions. Apply the concept of wavelet transform as a two parameter transform and use the methods for generating new wavelets.

Details of the syllabus:

S.No.	Particulars
1.	Complex Variables: Analytic functions, Cauchy Riemann equations, complex integration, Cauchy's fundamental theorem, Cauchy's integral theorem, Cauchy's inequality and Liouville's theorem on integral function, Taylor's and Laurent's expansions, Zeroes and poles of analytic functions, Residues and contour integration.
2.	Special Functions: Solution of series, Legendres functions, Rodriguess formula, generating functions for Legendres Polynomials and recurrence formulae. Bessel's functions, Recurrence formulae and Bessel's functions of integral order.
3.	Wavelet Transform: Continuous wavelet transform, Basic properties of wavelet transform, Discrete wavelet transform, Orthonormal wavelets, multi Resolution analysis, Construction of Orthonormal wavelets, Daubchies wavelets and algorithms. Band limited wavelets, Balian low theorem.

Recommended Books:

S. No	Name of Book	Author		
1.	Complex Variables & Applications	R. V. Churchill		
2.	Theory of Functions of Complex Variables	E. I. Copson		
Subject: Microprocessors	Year & Semester:	Total Course Credit:		redit: 1
--------------------------	---	----------------------	---	----------
Lab.	B. Tech Electrical Engineering	L	Т	Р
(Code:ECL306)	3 rd & 5 th Year Semester	0	0	2
Evoluction Deliev	Internal Assessment	End-Term		
Evaluation Foncy	(40 Marks)	(60 Marks))

Course Objective: To develop programs using 8085 instruction set, understanding of usage of microprocessor as an automatic controller. To develop programs for interaction between microprocessor and peripherals, understand usage of PPI-8255.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Assess and solve basic binary arithmetic operations using the microprocessor.
- **CO2:** Apply knowledge and demonstrate programming proficiency using various addressing modes and data transfer instructions of the target microprocessor.
- **CO3:** Demonstrate use of conditional branch and loop instructions.
- **CO4:** Demonstrate use of logical instructions and use of call instructions for implementing stacks and subroutines in a program.

List of Experiments:

S. No. Name of the experiment

1. i) To develop a program to add two double byte numbers.

ii)To develop a subroutine to add two floating point quantities.

2. i)To develop program to multiply two single byte unsigned numbers, giving a 16 bit product.

ii) To develop subroutine which will multiply two positive floating point numbers.

- **3.** To write program to evaluate P* Q+R*S where P,Q,R & S are 8 bit binary numbers.
- **4.** To write a program to divide a 4 byte number by another 4 byte number.
- 5. To write a program to divide an 8 bit number by another 8 bit number upto a fractional quotient of 16 bit.
- 6. Write a program for adding first N natural numbers and store the results in memory location X.
- 7. Write a program which decrements a hex number stored in register C. The Program should half when the program register reads zero.
- 8. Write a program to introduce a time delay of 100 ms using this program as a subroutine display numbers from 01H to OAH with the above calculated time delay between every twonumbers.
- **9.** N hex numbers are stored at consecutive memory locations starting from X. Find the largest number and store it at location Y.
- **10.** Interface a display circuit with the microprocessor either directly with the bus or by using I/O ports. Write a program by which the data stored in a RAM table is displayed.
- **11.** To design and interface a circuit to read data from an A/D converter, using the 8255 A in the memory

mapped I/O.

- **12.** To design and interface a circuit to convert digital data into analog signal using the 8255 A in the memory mapped I/O.
- **13.** To interface a keyboard with the microprocessor using 8279 chip and transfer the output to the printer.
- 14. To design a circuit to interface a memory chip with microprocessor with given memory map.

Subject: VI SI Design I ab	Year & Semester:	Total Course Credit: 1		
(Code:ECL 307)	B. Tech Electrical Engineering	L	Т	Р
(Code.LCL307)	3 rd & 5 th Year Semester	0	0	2
Evaluation Daliay	Internal Assessment	End-Term		
Evaluation Policy	(40 Marks)	(60 Marks))

Course Objective: To familiarize the students with the practical aspects of MOS device such as its working, characteristics, application, layout using tool based software. **Course Outcomes:**

Upon completion of the course, student should be able to:

- **CO1:** To understand the MOS model parameters using simulation and analysis of the MOS characteristics.
- **CO2:** To understand CMOS based inverter using a tool and analysis of the related parameters.
- **CO3:** To get familiarized with the operation of ring oscillators and the multiplexers .
- **CO4:** To be able to implement the layout of CMOS based inverter and CMOS based gates for detailed analysis of their performances.

List of Experiments:

S. No. Name of the experiment

- 1. Familiarization with MOS model parameters in a circuit simulation software
- 2. To Plot the transfer characteristics and output characteristics of a MOSFET
- 3. Simulation of CMOS Inverter with different loads.
- 4. Simulation of CMOS Inverter for different parameters K_n , K_p as a design variable.
- 5. Study of the switching characteristics of CMOS Inverter and find out noise margins.
- 6. To design and plot the output characteristics of a 3-inverter ring oscillator.
- 7. Study of the switching characteristics of 2-input CMOS NAND/NOR gate.
- 8. Layout design of a CMOS Inverter using a layout design tool.
- 9. Layout design of a 2-input CMOS NAND/NOR gate using a layout design tool and their comparison.
- 10. To design and plot the characteristics of a 4x1 digital multiplexer using pass transistor logic.

Subject: Digital	Year & Semester: B. Tech Total Course (redit: 1
Communication Lab.	Electrical Engineering	L	Т	Р
(Code:ECL308)	3 rd & 5 th Year Semester	0	0	2
Evaluation Policy	Internal Assessment (40 Marks)	End-Term (60 Marks))

Course Objective:

To familiarize the students with the fundamental concepts on TDM, Pulse modulations, digital modulation techniques, source coding techniques and Error-control coding techniques.

C Course Outcomes:

p Upon completion of the course, student should be able to:

- **CO1:** To understand how analog signal are converted to digital ones via sampling, quantization and various pulse coded modulation techniques.
- **CO2:** To be able to represent signals as vectors in vector space and understand various digital modulation schemes, their modulator and demodulators.
- **CO3:** To analyze and simulate error performance of various digital modulation schemes in the presence of noise.
- **CO4:** To get exposure of recent trends in the field of Digital Communication

List of Experiments:

S. No. Name of the experiment

- 1. To study the sampling theorem and to plot waveforms for different sampling rates. To analyze a Pulse amplitude modulation (PAM), Pulse width modulation (PWM) and
- Pulse position modulation (PPM) modulation system and interpret the modulated and demodulated waveforms.
- 3. To analyze a PCM system and interpret the modulated and demodulated waveforms.
- 4. To analyze a Delta modulation system and interpret the modulated and demodulated waveforms.
- 5. To analyze Amplitude Shift Keying (ASK) modulation system and interpret the modulated and demodulated waveforms.
- 6. To analyze a Frequency Shift Keying (FSK) modulation system and interpret the modulated and demodulated waveforms.
- 7. To analyze a Binary Phase Shift Keying (BPSK) modulation system and interpret the modulated and demodulated waveforms
- 8. To demonstrate Time Division Multiplexing and de-multiplexing process.

Synabus						
Subject: Antenna and	Year & Seme	ester: B. Tech	Total Cou	rse Credits	: 4	
Wave Propagation	Electronics an	Electronics and Communication				
(Code: ECT250)	Enginopring			Т	Р	
(Code: EC1550)	Engineering		3	1	0	
	3rd Year & 6t	h Semester	5	I	0	
Evaluation Policy	Mid Term Class Assessment			End Term		
	30	10		60		

6th Semester B Tech ECE,

Objectives: To understand Propagation of waves in guided and unguided media and Basic theory behind the Antenna theory.

Course Outcomes:

CO1: To understand Propagation of Waves through Transmission lines

CO2: To understand the Propagation of waves through unguided media particularly the free space and atmosphere.

CO3: To understand the antenna basics and theory behind EM radiations

CO4: To have an understanding of different types of antennas and their operations.

Details of the Syllabus:

S No	Particulars
1	Transmission Lines: Transmission Line equations and solutions, Characteristic
	impedance and propagation constant, Reflection and transmission coefficients,
	SWR, Open and short circuit lines-their use as circuit elements at UHF, Line
	impedance and admittance, Smith Chart, Impedance Matching
2	Waveguides and Cavity Resonators: Transverse Electric and Transverse
	magnetic Waves, Wave propagation through rectangular and circular
	waveguides, Power transmission and attenuation in waveguides,
	Electromagnetic Resonators, Rectangular & Circular cavities
3	Strip Lines: Propagation Constant, Characteristic impedance and attenuation
	characteristics of strip lines and microstrips.
4	Propagation of Waves: Waves in free space, Attenuation, Absorption and
	polarization, effects of environment, Ground wave propagation, sky wave
	propagation, space wave propagation, Tropo-spherical propagation and Extra-
	terrestrial propagation
5	Radiation: Retarded Potential and Electromagnetic field, Radiation from a short
	current element, Half wave dipole, Radiation Resistance, Effect of ground on
	radiating elements
6	Antennas: Basic Antenna parameters, Radiation pattern, Directivity and
	Antenna Gain, Bandwidth and beam-width, Polarization, Folded dipole and
	applications. Antenna arrays, Parabolic reflector, Properties and feed
	mechanism, Horn Antenna, Loop Antenna.

1	Electromagnetic Waves and radiating Systems PHI	Jordan and Balman
2	Antennas and Wave Propagation	Krauss

Subject: Electronic Devices	Year & Seme	Total Course Credits: 4			
(Code: ECT351)	Electronics and Communication Engineering 3rd Year & 6th		L	Т	Р
	Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment]	End-Term	l
	30 Marks	10 Marks		60 Marks	

Objectives: To understand free electron theory, band theory of electronic conduction, semiconductor physics and optical devices.

Course Outcomes:

- **CO1** Understanding of free electron theory and band theory of electronic conduction.
- **CO2** Understanding of semiconductor physics, mechanism of charge carrier generation, transport and recombination phenomenon
- **CO3** Acquire knowledge of construction, basics of operation and performance analysis of the devices like pn-junction diodes, BJT, MOSFETs.
- **CO4** Understanding of the physics of optical devices and mechanisms like stimulated emission, photo-detection, photo-conduction.

Details of the Syllabus:

S. No.	Particulars			
1.	Overview of Free Electron Theory			
	Band Theory of Electronic Conduction: Kroning Penny model, block wave Brillion			
2.	zones, effective mass, density of states & energy discontinuity, electron and hole			
	conduction.			
	Semiconductor Physics: Fermi Dirac distribution functions, Fermi energy and contact			
	potential, electronic conductivity and means free time. Intrinsic and Extrinsic			
3.	semiconductors, free carrier concentration and Fermi level, donor and acceptor states,			
	derivation of fermi level, carrier concentration and mobility, scattering			
	mechanisms, semiconductor materials and their energy band structures.			
4.	Transport and Recombination Phenomenon.			
	Physics of: Metal semiconductor contact, p-n junction diodes, bipolar junction			
5.	transistor, thyristor, junction field effect transistor, metal insulator semiconductor			
	structure, MOSFET.			
	Optical Devices: Junction, luminescence and energy band gap, spontaneous			
6.	emission and carrier life time for band to band transition, stimulated emission, p-n			
	junction laser, photo-detective and photo conductive devices.			

1.	Electronic Processes & Materials	Azaroff & Brophy
2.	Fundamentals of Solid-State Devices & Circuits	Barlev
3.	Solid State Electronic Devices	Ben G. Streetman
4.	Fundamentals of Semiconductor Theory	S. Wang

Subject: Computer	Year & Seme	Year & Semester: B. Tech			redits: 4
Organization and	Electronics an	Electronics and Communication		Т	Р
Architecture	Engineering 3	Engineering 3rd Year & 6th		1	0
(Code: ECT352)	Semester		-		-
Evaluation Policy	Mid-Term	Mid-Term Class Assessment		End-Term	
	30 Marks	10 Marks		60 Ma	arks

Objectives: To study the basic structure and organization of computer and its modules, instruction execution, peripheral devices, memories and organization.

Course Outcomes:

- CO1 To Discuss the basic concepts and structure of computers.
- CO2 To Explain different types of Addressing Modes.
- CO3 To Understand the theory and architecture of Central Processing Unit.
- **CO4** To understand the organization of Memory and Input/output units. Introduce the concepts of Pipelining and parallel processing.

Details of the Syllabus:

Particulars			
Introduction to computer architecture and organization: Basic structure of computers,			
Operational concepts, performance.			
Computer Organization and instruction cycle control: Machine Instructions &			
Programs, Memory location & Addresses, Instruction & Instruction Sequencing,			
addressing modes, Stacks & Queues, Subroutines, Additional Instructions and			
Encoding of Machine Instructions.			
CPU organization: Fundamental concepts, Execution of a complete Instruction,			
Multiple Bus organization, Hardwired control, Microprogrammed control.			
I/O devices and Organization: Accessing I/O devices, Interrupts, DMA, Buses,			
Interface Circuits, Standard I/O Interfaces & Computer peripherals.			
Types of memories and memory organization: Basic Concepts, Semiconductor RAM			
Memories, ROM's Cache Memories, performance Considerations, Virtual Memories,			
Secondary Storage.			
Arithmetic addition & Subtraction of Signed numbers, Design of fast adders,			
Multiplication of Positive numbers, Signed-Operand Multiplication, Fast			
Multiplication, Integer Division, Floating Point Numbers & Operations.			
Introduction to Pipelining & Embedded Systems.			

1.	Computer Organization & Architecture	M. Mano
2.	Computer organization	Hamachar

Subject: Data Comm.	&Year & Sen	nester: B. Tech	Total	Course C	redits: 4
Networking (Code: ECT353)	Electronics a Engineering	Electronics and Communication Engineering 3rd Year & 6th		Т	Р
	Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-T	'erm	L.
	30 Marks	10 Marks	60 Ma	ırks	

Objectives: To study the techniques of data communication, encoding and protocols, error detection, correction, multiplexing and understand network topologies, routing and switching techniques of data transmission.

Course Outcomes:

- **CO1** Understand fundamental principles of computer communication in data networks and the Internet.
- **CO2** Understand network topologies, multiplexing and various error detection and correction techniques.
- **CO3** Understand data encoding and recognize the different internetworking devices and their functions.
- **CO4** Understand the principles and the role of protocols in networking.

Details of the Syllabus:

S.No.	Particulars
1.	Data Transmission, data encoding, digital data communication technique
2.	Error detecting and error correcting technique, nature of transmission errors, error
	detecting codes, error correcting codes, retransmission techniques.
3.	Multiplexing and de-multiplexing techniques viz, TDM, FDM.
4.	Synchronous and asynchronous communications, carriers, bit and frame
	synchronization.
5.	OSI reference model.
6.	Introduction to transmission media and network topologies, MAN, LAN, WAN.
7.	Circuit switching, message switching and packet switching, relative advantages and
	disadvantages.
8.	Routing techniques, flooding static routing, centralized routing, distributed routing.
9.	Multiple access scheme viz., TDMA, FDMA, ALOHA, CSMA techniques.
10.	Integrated services, digital network, broadband ISDN.
11.	Link level protocols.

1.	Data Communications and Computer Networking	W. Stallings
2.	Data Communications and Computer Networking	Behrouz Forouzan

Subject: Power Electronics	Year & Seme Electronics an	Year & Semester: B. Tech Electronics and Communication		Total Course Credits: 4		
(Code: EET3)	Engineering 3	Engineering 3rd Year & 6th		Т	Р	
	Semester		3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-7	Term	·	
	30 Marks	10 Marks	60 Ma	arks		

Objectives: To understand the fundamentals of power devices like diodes, transistors, Thyristors, phase control circuits, converters etc.

Course Outcomes:

- **CO1** Explain the need for Power Electronics Devices and Circuits and their basic operation.
- CO2 Analysis of driving and control and triggering circuits for Power Electronic converter.
- **CO3** Analysis of AC to DC converters (Single phase and three phases, controlled and uncontrolled), A.C Voltage controllers, DC to DC converters (choppers), and single-phase D.C to A.C converters (Inverters) in square wave mode.
- **CO4** Fourier analysis and knowledge of Power Quality issues associated with power electronic circuits.

Details of Syllabus

S.No.	Particulars
1.	An Introduction to Thyristor Engineering.
	Power Electronic Devices: Heavy current and high voltage solid state devices, power
2.	diodes, power transistors, SCR's. Triacs Diacs and other Thyristors, Basic theory of
	operation and characteristics of SCR, Ratings, protection, series and parallel operation
	of SCRs. Driving circuits, GIO"s, IGBT, MOSFET.
3.	Firing Circuits: Line commutation of SCRs and forced commutation techniques.
4.	Line Commutated Converters: 2 pulse, 3 pulse, 6 pulse and higher pulse
	configurations.
5.	AC Phase Control: Integral cycle control.
6.	Choppers: Principle and basic chopper circuits.
7.	Inverters: Series parallel and bridge inverters and voltage control.
8.	Application of Thyristor Technology to Electric Drives.
9.	Design of transformers, pulse transformer and design of inductors.

1.	Power Electronics	Rashid
2.	Power Electronics	Ned Mohan

Subject: Electronic	Year & Semester: B. Tech	Total	Course C	redit: 1
Design & Automation	Electronics and	L	Т	Р
(Code: ECL354)	3rd Year & 6th Semester	0	0	2
Evaluation Policy	Mid-Term/ Class Assessment		End-T	erm
	40 Marks	60 M	arks	

Objectives: To study the design of various electronic circuits and systems using automatic simulation tools.

Course Outcomes:

CO1: To develop the working knowledge of Vivado tool and any other electronic simulator available.

CO2: To develop the VHDL code for implementing the digital circuits.CO3: To implement combinational or sequential circuits.CO4: To test the hardware (FPGA Boards) using the implemented code.

Details of Syllabus

S.No.	Particulars
1.	SPICE
2.	MATLAB
3.	ANSYS
4.	Any other electronic simulator available

Subject: Industrial	Year & Semester: B. Tech	Total	Course C	redit: 1	
Training	Electronics and Communication	L	Т	Р	
(Code: ECI355)	Engineering 3rd Year & 6th Semester	0	0	2	
Evaluation Policy	Mid-Term/ Class Assessment	End-7	Гerm		

Objectives: Students are required to be a part of industrial organization and understand the implementation of technology there. The practical knowledge gained is to be presented in form of detailed report of work experience. The course will be evaluated on basis of viva and report.

Course Outcomes:

- **CO1** Acquaint themselves with the essential practical tasks emphasized in their Professional study.
- CO2 Ability to identify, formulate & model problems & find engineering solutions based On a systems approach.
- CO3 Learn professional ethics & economic aspects of industry.
- CO4 Learn industrial settings, gaining hands-on experience in designing & manufacturing.

Subject: Power	Year & Semester: B. Tech	Total	Course C	redit: 1
Electronics Lab	Electronics and Communication Engineering	L	Т	Р
(Code. EEL $3\underline{X} \underline{X}$)	3rd Year & 6th Semester	0	0	2
Evaluation Policy	Mid-Term/ Class Assessment	End-T	erm	
	40 Marks	60 Ma	irks	

Objectives:

Course Outcomes:

CO1 CO2 CO3 CO4

Details of Syllabus

S.No.	Particulars
1.	To obtain V-I Characteristics of an SCR.
	To obtain V-I Characteristics of a Triac.
2.	To obtain the Static Emitter Characteristics of a UJT.
3.	To study the Line-synchronized UJT Relaxation Oscillator as a triggering agent for a
	thyristor and plot load voltage Vs. firing angle.
	To study various firing schemes of an SCR and draw the traces for various
	waveforms: Resistance Triggering Technique,
4.	R-C Triggering Technique,
	Linear Firing Scheme,
	Inverse Cosine Firing Scheme.
5.	To study a Single-Phase Half-Wave Converter and plot Source voltage, Load voltage
	and load current for R and R-L loads.
6.	To study a Single-Phase Semi-Converter and plot Source voltage, Source current,
	Load voltage and load current for R, R-L and Motor Loads.
7.	To study a Single-Phase Full-Converter and plot Source voltage, Source current,
	Load voltage and load current for R, R-L and Motor Loads.
8.	To study a Three-Phase Semi-Converter and plot Source voltage, Source current,
	Load voltage and load current for R, R-L and Motor Loads.
9.	To study a Three-Phase Full-Converter and plot Source voltage, Source current, Load
	voltage and load current for R, R-L and Motor Loads.
10.	To study a Single-Phase Dual Converter on Motor Load.
11.	To study a DC-DC Buck Converter (Step Down Chopper) for R, R-L and DC Motor
	Load and plot Load voltage Vs. Duty Ratio.

_

12.	To study a Single-Phase Voltage Source Inverter on R and R-L Loads.
13.	To study a Three-Phase Voltage Source Inverter on R and R-L Loads.

Elective I

Subject: Multimedia	Year & Semester:		Total Course Credit: 3		redit: 3
Information Systems	B. Tech Electronics &				
(Code: ECT- 356)	Communication Engineering		L	Т	Р
	3rd Year & 6 th Semester		2	1	0
Evaluation Policy	Mid-Term Class			End-Tern	n
	Assessment				
	30 Marks	10 Marks		60 Marks	

Objectives: The course is aimed to give students exposure to various audio, image and video standards so that the students gain enough skills to understand and handle multimedia systems. **Course Outcomes (COs):** Upon successful completion of the course, student should be able to:

CO1: understand various digital audio standards and their utility in the practical systems.

CO2: comprehend various image data formats & their practical applications.

CO3: handle video systems used in practice.

CO4: understand various data compression standards used in practice.

Details of the Syllabus:

S. No.	Particulars					
1	Introduction: Multimedia systems: Components, Functional Requirements and					
	Applications					
	Multimedia Data Acquisition and formats					
2	Digital Audio: Sound digitization, Representation- Time Domain & Transform					
	Domain Representation, Coding for Digital Audio - Pulse code modulation,					
	Differential Coding Techniques					
3	Graphics & Image Data: Graphics/ Image Data Types, Image Data Formats					
	Colour Models in Images RGB, CMY, CMYK					
4	Fundamental of Video Processing: Types of Video Signals- Composite Video , S-					
	video;					
	Analog and Digital Video Standards					
5	Multimedia Data Compression:					
	Lossless Compression Run Length Coding, Variable Length Coding					
	Lossy Compression Discrete Cosine Transform, Wavelet Transform					

S. No.	Name of Book	Author	Publisher
1	Fundamentals of	Li, Ze-Nian, Drew,	Pearson Education
	Multimedia	Mark, Liu, Jiangchuan	
2	Multimedia Systems and	Prabat K Andleigh and	Pearson Education
	Design	Kiran Thakrar	

Subject: Advanced	Year & Semester: B. Tech		Total Course Credits: 3		
(Code: ECT357)	Engineering		L	Т	Р
(Code. LC1557)	3rd Year & 6th Semester		2	1	0
Evaluation Policy	Mid Term Class Assessment		End Term		
	30 10		60		

Objectives: To make students familiar about different types of Processor/Architectures and induce in them the sense of inquisitive thinking about design and implementation issues related to computer processors/architectures taking MIPS architecture as an example.

Course Outcomes:

CO1: Computer architectures, their significance and difference

CO2: Performance measures of processors and their evaluation

CO3: Design of data path for single cycle MIPS-32 implementation and introduction to multicycle implementation

CO4: Performance enhancement of the computer system using pipelining and memory management

Syllabus Details:

S.No	Particulars			
1	Familiarization and importance of CISC and RISC processors, their design issues.			
	Hardware and Software interaction in Computers			
2	Performance of Computers. Understanding and evaluation of CPU performance.			
	Factors used for enhancement of performance. Performance bench marks			
3	Introduction to MIPS-32 and MIPS-64 processors and their instruction			
	formats/addressing modes.			
	Single Cycle Data Path implementation of MIPS-32 and introduction to multipath			
	implementation.			
4	Performance enhancement of MIPS-32 using pipelining. Pipeline Hazards and the			
	resolution of Pipeline Hazards			
5	Memory hierarchy and use of memory hierarchy for improvement of computer			
	performance. Virtual memory importance and implementation in the computer system.			

Subject: VLSI	Year & Semester: B. Tech Electronics and Communication Engineering 3rd Year & 6th Semester		Total Course Credits: 3		
(Code: ECT358)			L	Т	Р
(Code. EC1558)			2	1	0
Evaluation Policy	Mid Term Class Assessment		End Term		
	30 10		60		

Objectives: To introduce students with the basic concepts of VLSI and ULSI theory and technology. Profound understanding of the latest fabrication techniques, with emphasis on the ultra deep submicron technology and their issues and challenges

Course Outcomes:

CO1: Develop the concept of crystal growth and wafer preparation.

CO2: Develop the knowledge of various fabrication processes such as Epitaxy, Oxidation, Lithography and Etching.

CO3: Study the methodology of doping in detail and process of metallization.

CO4: Apply the concept of fabrication processes for process simulation, integration and understanding of different assembly and packing techniques.

Details of Syllabus:

S. No.	Particulars
	Crystal Growth, Wafer Preparation, Epitaxy and Oxidation
1	Electronic Grade Silicon, Czochralski crystal growing, Silicon Shaping, processing
	consideration, Vapor phase Epitaxy, Molecular Beam Epitaxy, Silicon on Insulators,
1	Epitaxial Evaluation, Growth Mechanism and kinetics, Thin Oxides, Oxidation
	Techniques and Systems, Oxide properties, Redistribution of Dopants at interface,
	Oxidation of Poly Silicon, Oxidation induced Defects.
	Lithography and Relative Plasma Etching
2	Optical Lithography, Electron Lithography, X-Ray Lithography, Ion Lithography,
2	Plasma properties, Feature Size control and Anisotropic Etch mechanism, Relative
	Plasma Etching techniques and Equipments
	Deposition, Diffusion, Ion Implantation and Metallization
	Deposition process, Polysilicon, plasma assisted Deposition, Models of Diffusion in
3	Solids, Flick's one dimensional Diffusion Equation – Atomic Diffusion Mechanism –
	Measurement techniques – Range theory- Implant equipment. Annealing Shallow
	junction – High energy implantation – Physical vapour deposition – Patterning.
	VLSI Process Integration and Process Simulation
1	Ion implantation – Diffusion and oxidation – Epitaxy – Lithography – Etching and
+	Deposition- NMOS IC Technology – CMOS IC Technology – MOS Memory IC
	technology - Bipolar IC Technology - IC Fabrication. Introduction to process simulation
	Assembly Techniques and packaging of VLSI Devices
5	Analytical Beams – Beams Specimen interactions - Chemical methods – Package types
5	– banking design consideration – VLSI assembly technology – Package fabrication
	technology.

Recommended Books:

1.	VLSI Technology McGraw Hill	Sze
2.	ULSI Technology McGraw Hill	Chang and Sze
3.	Silicon VLSI Technology: Fundamentals, Practice, and Modeling Pearson	Plummer
4	VLSI Fabrication Principles: Silicon and Gallium Arsenide Wiley Student edition	S K Gandhi

_

Subject: Network	Year & Semester: B. Tech Electronics and Communication Engineering 3rd Year & 6th Semester		Total Course Credits: 4		
(Code: FCT359)			L	Т	Р
(Code. LC1337)			2	1	0
Evaluation Policy	Mid Term Class Assessment			End Term	
	30 10			60	

Objectives: To introduce students with the basic concepts of Electric Circuit design theory and familiarize them how to synthesis the circuits to get transits as well as steady state response of the proposed system with emphasis on synthesis in frequency domain using different techniques.

Course Outcomes:

CO1	Comprehensive understanding of synthesizing techniques for circuits and systems	
CO2	Understanding of causality, stability, and realizability theory; Hurwitz polynomial; Positive real functions	
CO3	Synthesis procedure for driving point and transfer immittance functions for RLC circuits	
CO4	Synthesis and filter design, transient response, magnitude and frequency normalization, frequency transformation	

Details of the syllabus:

S. No	Particulars
1	Introduction: Frequency domain representation of networks, Laplace transforms of shifted functions, transient & steady response. Time domain behaviors from poles and zeros, Convolution Theorem.
2	Network Synthesis: Network functions, Impedance & Admittance function, Transfer functions, Relationship between transfer and impulse response, poles and zeros and restrictions, Network function for two terminal pair network.
3	Poles and Zeros: Sinusoidal network in terms of poles & zeros. Real liability condition for impedance synthesis of RL & RC circuits, Network synthesis techniques for 2-terminal network, Foster and Cauer forms.
4	Filters Synthesis: Classification of filters, characteristics impedance and propagation constant of pure reactive network, Ladder network, T section, IT section, terminating half section, Pass bands and stop bands. Design of constant-K, m-derived filters, Composite filters.

Suggested Books:

1.	Network Synthesis	Van Valkenberg
2.	Network Synthesis	IVS Iyer
3.	Network Analysis & Synthesis	Franklin F Kou

Subject: Python Programming	Year & Semester: B. Tech		Total Cour	Total Course Credit: 4		
(Code: CST 310)	Electronics &	Communication	L	Т Р		
	3 rd Year & 5 th	Semester	2	1 -		
Evaluation Policy	Mid-Term	Class Assessment	End-Term			
	30 Marks	10 Marks	60 Marks			

Objectives: (Maximum 25 Words): The course is designed to provide Basic knowledge of Python. Python programming is intended for software engineers, system analysts, program managers and user support personnel who wish to learn the Python programming language.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Understand Python syntax and semantics and self-assured in the use of Python flow control and functions.
- **CO2:** Implement Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- **CO3:** Learn to approach real world problems as a programmer, including skills necessary to contribute to a production development team.
- **CO4:** Gain functional knowledge of Python, SQL databases and the Django framework.

Details of the syllabus:

S.No.	Particulars					
1.	Introduction to Python:					
	What is Python and history of Python? Unique features of Python, Python-2 and Python-3					
	differences, Install Python and Environment Setup, First Python Program. Python					
	Identifiers, Keywords and Indentation, Comments and document interlude in Python,					
	nand line arguments, Getting User Input, Python Data Types, What are variables?					
2.	Control Statements:					
	Python Core objects and Functions, Number and Maths, if-else, if-elif-else, while loop, for					
	loop, break, continue, assert, pass, return.					
3. List, Ranges & Tuples in Python:						
	Introduction to Lists in Python, More about Lists, Understanding Iterators ; Generators,					
	Comprehensions and Lambda Expressions, Understanding and using Ranges, More About					
	Ranges, Ordered Sets with tuples					
4.	Input and Output in Python:					
	Reading and writing text files, writing Text Files, Appending to Files and Challenge,					
	Writing Binary Files Manually, Using Pickle to Write Binary Files					
5.	Python built in function and Data Science Using Python:					
Python user defined functions, Python packages functions, Defining and calling Fu						
	The anonymous Functions, Loops and statement in Python, Python Modules & Packages.					
	Introduction to numpy, Creating arrays, Indexing Arrays, Array Transposition, Universal					
	Array Function, Array Processing, Array Input and Output					

6.	Exceptions & Python Regular Expressions:				
	Errors in Python, Compile-Time Errors, Runtime Errors, Logical Errors, What is Exceptio				
Handling an exception, tryexceptelse. What are regular expressions? The match					
	Function, The search Function, Matching vs searching, Search and Replace, Extended				
	Regular Expressions				

Recommended Books:

S. No	Name of Book	Author
1.	"Python for Everybody: Exploring Data Using Python 3", 1st Edition,	Charles R. Severance
	CreateSpace Independent Publishing Platform, 2016.	
	(http://do1.drchuck.com/pythonlearn/EN_us/pythonlearn.pdf)	
	(Chapters 1 – 13, 15)	
2	"Think Python: How to Think Like a Computer Scientist",	Allen B. Downey
	2ndEdition, Green Tea Press, 2015.	
	(http://greenteapress.com/thinkpython2/thinkpython2.pdf) (Chapters	
	15, 16, 17)	
3	"Introduction to Computer Science Using Python", 1st Edition, Wiley	Charles Dierbach,
	India Pvt Ltd. ISBN-13: 978-8126556014	
4	"Data Structures and Algorithms in Python",1stEdition, Wiley India	Roberto Tamassia,
	Pvt Ltd, 2016. ISBN-13: 978- 8126562176	Michael H
		Goldwasser, Michael
		T Goodrich,

Subject: Numerical Analysis	Year & Semester: H	Total Credit: 3			
& Techniques (Code: MAT	Communication Eng	L	Т	Р	
603)	3 rd year & 6 ^m Semest	2	1	-	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		
	30 Marks 10 Marks		60 Marks		

Objectives: The objective of this subject is to make the students aware of the numerical methods for the solution of scientific problems which cannot be solved analytically.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

CO1: Error estimate and Solve algebraic and transcendental equations using numerical techniques

CO2: Solution of Simultaneous Linear Algebraic Equations

CO3: Construction of Interpolating polynomial and finding intermediate value

CO4: Solve ordinary differential equations by numerical techniques

CO5: Apply Numerical techniques in Electronics & Communication Engineering problems **Details of the syllabus:**

S. No.	Particulars		
1.	Errors in Numerical Calculations:(3 lectures)		
	Floating- point form of numbers, Round-off, Algorithm, Stability, Programming errors, Errors		
	of Numerical Results, Error propagation, Basic error principle, Loss of significant digits.		
2.	Interpolation:(11 lectures)		
	Difference Table and its usage. The difference operators Δ , $\mathbf{\nabla}$ and the operator E. Interpolation		
	Forward, Backward and Shift operators, Central differences , over-raging operator μ . Relations		
	between the operators, their relations, Existence, Uniqueness of interpolating polynomial,		
	Interpolation with equal intervals: Newton's advancing difference formula. Newton's		
	backward difference formula.		
	Interpolation with unequal intervals. Newton's divided difference formula. Lagrange's		
	interpolation formula. Gauss forward and backward interpolation formula		
3.	Numerical solution of algebraic and Transcendental Equations: (4 lectures)		
	Graphic Method, Regula-Fast method, Bolzano's Process of bisection of intervals, Newton-		
	Raphson Method and its geometrical significance		
4.	Numerical Integration: (4 lectures)		
	Numerical Integration, General Quadrature Formula, Simpson's 1/3 rd and 3/8 th rules,		
	Weddle's' rule, Trapezoidal rule.		
5.	Numerical Solution of ordinary differential equations: (4 lectures)		
	Numerical solution of ordinary differential equations, Picard's method. Taylor's series method,		
	Euler's method, Runge Kutta Method		

Recommended Books:

S. No	Name of Book	Author
1.	Numerical Methods for Scientists and Engineering, Wiley Eastern	M.K. Jain, S. R.
	Ltd New age international publishers, 7 th Edition, 2019, ISBN:	Iyengar & R.K. Jain
	9789387477254, 9387477258	
2	Introductory methods in Numerical Analysis, 5 th Edition, Prentice	S.S. Sastry,
	Hall India learning Pvt Ltd, ISBN: 9788120345928, 9788120345928	
3.	Elementary Numerical Analysis, , 3 rd Edition, 2006, Wiley India Pvt	Kendall E. Atkinson,
	Ltd, ISBN-13: 978-9754142747	Han
4	Elementary Numerical Analysis An algorithmic approach, McGraw-	S. D. Conte and C. de
	Hill, 1980, ISBN-13: 978-0070124479	Boor
5	Mathematical Numerical Analysis, Oxford and IBH Publishers, 6 th	J.B. Scarborough
	Edition, 2020, ISBN: 9788120417595, 9788120417595	

_

7th Semester B Tech ECE Syllabus

Subject: Embedded Systems	Year & Sem	Total Course Credits: 3			
(Code: ECT401)	Electronics &	L	Т	Р	
	Engineering 4	2	1	0	
Evaluation Policy	Mid-term Class assessment		End-term	l	
	30 Marks 10 Marks		60 Marks	3	

Objectives: Develop an understanding of the technologies behind the embedded computing systems. To introduce students to the design issues of embedded systems. Enable students to analyze and develop software programs for embedded systems.

Course Outcomes:

CO1	Knowledge about Embedded systems and its architecture with basic of memory System and I/o Sub-system
CO2	To analyze various memory devices and their characteristics with component (Memory and I/O device) interfacing
CO3	To understand programming languages and basic compilation techniques
CO4	To understand features of operating system along with real-time memory management and network fundamentals

Details of Syllabus:

S.No	Particulars				
1.	Introduction: Characteristics of Embedding Computing Applications, Concept of Real time Systems, Challenges in Embedded System Design, Design Process				
2	Real time Systems, Chanenges in Embedded System Design. Design Process.				
2.	Embedded System Architecture: Instruction Set Architecture - CISC and RISC				
	instruction set architecture, Basic Embedded Processor/Microcontroller Architecture,				
	Memory System Architecture, I/o Sub-system, Co-processors and Hardware				
	Accelerators, Processor Performance Enhancement, CPU Power Consumption.				
3.	Designing Embedded Computing Platform: Using CPU Bus, Memory Devices and				
	their Characteristics – RAM, ROM, UVROM, EEPROM, Flash Memory, DRAM.				
	I/O Devices. Component Interfacing - Memory Interfacing, I/O Device Interfacing,				
	Interfacing Protocols. Designing with Processors.				
4.	Programming Embedded Systems: Program Design, Programming				
	Languages - Desired Language Characteristics, Use of High Level Languages,				
	Programming and Run-time Environment, Basic Compilation Techniques,				
	Analysis and Optimization of - Execution Time, Energy and Power, Program				
	Size.				
5.	Operating System: Basic Features of an Operating System, Kernel Features,				
	Processes and Threads, Context Switching, Scheduling, Inter-process				
	Communication, Real-time Memory Management, I/O, Evaluating and				
	Optimizing Operating system performance. Power Optimization Strategies for				
	Processes.				
6.	Network Fundamentals: Layers and Protocols, Distributed Embedded Architectures,				
	Elements of Protocol Design, High Level Protocol Design Languages, Network Based				
	Design, Internet-Enabled Systems, Wireless Applications – Bluetooth.				

S.	Book Name	Author Name			
No.					
1	Embedded Systems: Architecture, Programming and	Raj Kumar			
	Design				
2	Embedded System Design- A unified Hardware/software	Frank Vahid, Tony			
	Introduction	Givargis			
3	Programming Embedded Systems in C and C ++	Michael Barr, O'Reilly			
4	Real-Time Concepts for Embedded Systems	Q. Li and C. Yao			

Subject: Digital Signal	Year & Sem	Total Course Credits: 3			
Processing	Electronics &	L	Т	Р	
(Code: ECT402)	Engineering 4	2	1	0	
Evaluation Policy	Mid-term Class assessment		End-term	1	
	30 Marks 10 Marks		60 Marks	3	

Objectives: To acquire knowledge and become familiar with various types of signals, 2D signals, different types of systems, filter design & to develop the concept of various mathematical tools like Fourier transform, z transform, finite modeling, etc.

Course Outcomes:

CO1	Thorough understanding of the discrete time signals and systems and the system properties based on Fourier analysis, Z transform, FFT
CO2	To understand various algorithms and their computational complexities.
CO3	Design, implementation and analysis of IIR and FIR filters and their modeling effects in signal processing.

CO4 Understand the architecture of Digital Signal Processing

Details of Syllabus:

Details	of Synasabi
S.No	Particulars
•	
1.	Introduction:-Discrete time signals and systems frequency domain representation
2.	Transforms :-Z- transform, Discrete Fourier transform. Discrete correlation and correlator, Two dimensional signals and systems and their frequency domain representations. Discrete Hilbert transform. Fast Fourier transform
3.	Algorithms: - Computational consideration. Bluestein chirp – z transform Algorithm.
4.	Filters: - Digital filters. Representation, form realization. Design of digital filters, specification and design techniques. IIR and FIR digital filters.
5.	Finite modeling effect in digital signal processing applications.
6.	Introduction to DSP processors.

1.	Digital Signal processing	Proakis
2.	Digital Signal Processing	Chittod

		Total Course Credits: 3
--	--	-------------------------

Subject: Wireless	Year & Semester: B. Tech		L	Т	Р
Communication	Electronics & Communication		2	1	0
(Code: ECT403)	Engineering 4 th year 7 th semester				
Evaluation Policy	Mid-term	Class assessment	End-term		
	30 Marks	10 Marks		60 Marks	

Objectives: To introduce basic cellular concepts & to develop the understanding of frequency reuse, cell splitting, shadowing, fading, GSM standards, mobility management, IS-95, GPRS, etc.

Course Outcomes:

CO1	To understand basic concepts of wireless communication, performance parameters, noise, spectrum and interference limitations.
CO2	To understand cellular communication principles and perform the analysis using the concepts of frequency reuse, handover and interference management.
CO3	To understand large scale and small scale channel propagation models and obtain quantitative results for link budget, BER analysis and different diversity techniques.
CO4	To learn various multiple access techniques, performance analysis issues and get exposure of recent trends in wireless communication.

Details of Syllabus:

S.N	0.	Particulars		
1.	1. Introduction: Classification of wireless systems Types of Services, Requirements the services, Performance parameters in wireless communications, Multipath propagation, Spectrum Limitations, Noise and Interference limited systems, Econor		Types of Services, Requirements for communications, Multipath reference limited systems, Economic	
	considerations, Standards			
2.		Propagation Channels: Radio Propagation Mechanisms (Qualitative treatment), Propagation effects with mobile radio, Channel Classification, Link calculations, Narrowband and Wideband models.		
3.		Diversity : Diversity modeling, BER performance Improvement with Diversity, Types of Diversity – Frequency, Time, Space		
4.		Cellular Communication: Introduction to Cellular Communications, Frequency reuse, Basic theory of cell layout, Cellular Processes - Call Setup, Handover etc,		
5.	Multiple Access Schemes: FDMA, TDMA, CDMA, and Random multiple accesses, Comparison, Performance Analysis issues, and Design.			
6.	6. Recent Trends: UWB, MIMO, 4G & 5G, Cognitive Radio, Network on a chip.		tive Radio, Network on a chip.	
Recor	nme	nded Books:		
1.	Wireless Communications Andreas F. Molisch.			

1.	wireless Communications	Andreas F. Monsch.
2.	Wireless Communications Principles and Practice	Rappaport.
3.	Wireless Communications and Networks	Stallings.

Subject: Electronic Measurements &	Year & Semester: B. Tech Electronics & Communication		Total Course Credits: 4		
Instrumentation	Engineering 4 th year 7 th semester		L	Т	Р
(Code: ECT404)			3	1	0
Evaluation Policy	Mid-term	Class assessment	End-term		
	30 Marks	10 Marks	60 Marks	S	

Objectives: To introduce the instrumentation system, to teach the construction, operation of various transducers, sensors, etc, to develop the concept of function generators, frequency counters, data acquisition systems, interfacing of micro controllers and basic GPIB techniques.

Course Outcomes:

CO1: To familiarize with measurement standards and systems with their responses

CO2: To get a detailed understanding of various analog meters

CO3: To introduce transducers, sensors and actuators used in measurements

CO4: To understand the working of wave generators, analyzers and digital meters and to get knowledge about data acquisition system and interfacing with microcontrollers

Details of Syllabus:

S.No.	Particulars
1.	Measurement System and Standards: Instrumentation System and its classification,
	Primary and secondary standards, Standards of various electrical quantities, IEEE
	standards, Static and Dynamic response, Errors, and accuracy of an instrumentation
	system.
2.	Measurement of Basic Parameters: Galvanometer and its principle, Moving Coil,
	Moving iron meters, true rms meter, Bridge measurements, Q meters, Measurement of
	Voltage, Current, Power, Energy. Measurement of Resistance, Capacitance,
	Inductance.
3.	Transducers, Sensors, and Actuators: Active and Passive, Transducers types:
	Resistive, Inductive, capacitive, Piezoelectric, Optical, Photo diodes; Measurement of
	Physical, Physiological, And chemical quantities: (Temperature, pH, Luminescence,
	Flow, Pressure, Torque, Speed, acceleration, Rotation, Stress, Strain, etc.), Sensors for
	hostile environments, Actuators: Relays, Solenoids, Stepper motors.
4.	Signal Generators and Analyzers: Function generators, RF Signal Generator,
	Sweep Generator, Frequency synthesizer, Wave Analyzers for Audio and radio
	frequency waves. Measurement of harmonic distortion. Spectrum analysis, RF
	Power measurement.
5.	Digital Instrumentation: Comparison of analog and digital techniques, Digital
	voltmeter, Digital multimeter, Frequency counter, Measurement of frequency and
	time interval, extension of frequency range, Measurement errors.
6.	Data Acquisition System: Components of data acquisition system, Interfacing of
	transducers, Single Channel and Multi-channel system, Multiplexing, interfacing
	with micro controllers, IEEE 488 Bus, Automated data acquisition,

7.	Advanced topics: Virtual Instrumentation, Low level measurements and Noise rejection, GPIB based measurement techniques. Measurements using MEMS
8.	Measurement System and Standards: Instrumentation System and its
	classification, Primary and secondary standards, Standards of various electrical
	quantities, IEEE standards, Static and Dynamic response, Errors, and accuracy of
	an instrumentation system.

1.	Electronic Measurements	W Cooper
2.	Electrical & Electronic Measurements	A K Sawhney

Subject: Microwave	Year & Sem	Total Co	ourse Cred	lits: 4	
Engineering	Electronics & Communication		L	Т	Р
(Code: ECT405)	Engineering 4 th year 7 th semester		3	1	0
Evaluation Policy	Mid-term Class assessment		End-term		
	30 Marks	10 Marks	60 Marks	3	

Objectives: To understand basics of microwave communication, various active and passive devices, microwave amplifiers and oscillators.

Course Outcomes:

CO1	To have good idea about microwaves, microwave communication and wave propagation through waveguides.
CO2	To understand microwave cavities, scattering parameters and microwave passive devices
CO3	To be able to understand the working and construction of various Active microwave devices
CO4	To have in-depth understanding about high frequency semiconductor active devices and to be able to design microwave amplifiers and oscillator circuits

Details of Syllabus:

S.No.	Particulars
1.	Introduction to Microwave Communication: Need, Advantages and application of
	microwave signals.
2.	Waveguides and Cavity Resonators: Transverse Electric and Transverse magnetic
	Waves, Wave propagation through rectangular and circular waveguides, Power
	transmission and attenuation in waveguides, Electromagnetic Resonators, Rectangular
	& Circular cavities.
3.	Microwave Passive Devices: Scattering Matrix (S Parameter) representation of multi-
	port networks, Tees, Directional Coupler, Circulator and Isolator.
4.	Microwave Active Devices: Limitations of conventional vacuum tubes at microwave
	frequencies, Klystrons, Traveling wave tube, Magnetron, Microwave Detectors, Mixers-
	Single ended and Balanced.
5.	High Frequency Devices: PIN diode, Varactor diode, Tunnel diode, Read diode,
	IMPATT, TRAPATT and Gunn diode, Microwave Switches
6.	Microwave Amplifiers and Oscillators: Microwave Transistors-Bipolar and Field
	Effect Transistor Characteristics, Gain and Stability, Microwave Amplifier design,
	Gunn and transistor oscillators.

1.	Microwave Devices & Circuits, PHI	Liao, S. Y
2.	Microwave Engineering, John Wiley	David Pozar
3.	Foundations for Microwave Engineering	R E Collin

Subject: Pre-Project &	Year & Semester: B. Tech	Total Course Credits: 2		
Seminar	Electronics & Communication	L	Т	Р
(Code: ECP406)	Engineering 4 th year 7 th semester	0	0	2
Evaluation Policy	Mid-term/Class assessment	End-Term		
	40	60		

Objectives: The main objective of this course is to attain skills for literature survey, writing report, preparing presentations and aural presentation of Technical subjects.

Course Outcomes:

- **CO1** Review literature on a given advance topic related to the specific stream.
- **CO2** Summarize the concept of the chosen topic systematically after considerable study of the content from primary as well as secondary sources
- **CO3** Learn and present the structure and format of technical reports as per specified norms
- CO4 Interpret graphs/results of various kinds and discuss the concept and conclusion in an open seminar

Subject: Embedded Systems	Year & Semester: B. Tech		Total Course Credits: 1		
LAB	Electronics & Communication		L	Т	Р
(Code: ECL 407)	Engineering 4 th year 7 th semester		0	0	2
Evaluation Policy	Mid Term		End Term		
	40		60		

Objectives: To introduce the basics programming of Microcontroller along with interfacing with different real time modules.

Course Outcomes:

- **CO1** Knowledge about programming of Microcontroller.
- CO2 Interfacing of the Microcontroller with various modules like LED, Seven Segment Display, LCD, Keypad and ADC.
- CO3 Use of on chip modules like timers and interrupts.
- **CO4** Implementation of serial communication using Microcontroller.

List of Experiments (8051 Programming):

- 1. Write a program for performing simple arithmetic operations.
- 2. Write a program for square waveform generation, with different frequencies and duty cycles.
- 3. Write a simple program for flashing LEDs using software delays.
- 4. Write a program for flashing LEDs using timers and interrupts.
- 5. Write a program for interfacing Seven Segment Display with 8051.
- 6. Write a program for interfacing LCD with 8051 and display message on LCD.
- 7. Write a program for interfacing Keypad with 8051 and display keypad input on LCD.
- 8. Write a program for serial communication through UART using polling and interrupt methods.
- 9. Write a program for interfacing ADC 0804 with 8051.
- 10. Write a program to interface sensor to I/O ports.

Subject: EDA Tools II	Year & Semes Electronics & C	Total Course Cred 4			
Lab (Code: ECL 408)	Engineering 3 rd Year & 7 th Semester		L	Т	Р
			0	0	2
Evaluation Policy	Mid- Term	Class Assessment	End-Term		
		10 Marks	90 Marks		

Objectives: To understand the use of MATLAB and Verilog-A as languages for implementation of models for device and circuit simulation

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- CO1: Use MATLAB as a language for simulating device models
- CO2: Use Verilog-A for device simulation
- CO3: Implement a SPICE netlist using Verilog-A models
- CO4: Get familiarity with Industry Standard Compact Models for Electronic Design Automation

List of Experiments:

S. No.	Particulars
1.	Installation of MATLAB with the basic information of MATLAB workspace and working directory.
2.	Creating matrices and some simple matrix operations.
3.	Statistics and working with basic programs.
4.	MATLAB Programming language-looping and branching.
5.	Writing MATLAB functions.
6.	Graphics and Plotting- 2D graphs.
7.	Introduction to Verilog HDL Basics.
8.	Working with Verilog MODELING for SPICE
9.	Verilog Syntax, Data type, Fundamentals.
10.	Working with Verilog Structure.

Subject: Microwave	Year & Semester: B. Tech	Total Course Credits: 1		
Engineering Lab	Electronics & Communication	L	Т	Р
(Code: ECL409)	Engineering 4 th year 7 th semester	0	0	2
Evaluation Policy	Mid-term/Class assessment	End-Term		
	40 Marks	60 Marks		

Objectives: The experimental setups are introduced to and performed by the students to enable them to give optimal performance in professional life.

Course Outcomes:

CO1: Explain and Perform the Reflex klystron Characteristics using Microwave bench set

CO2: Explain and Perform the Gunn diode Characteristics using Microwave bench setup

CO3: Measure the Frequency, attenuation, VSWR, Impedance using Klystron Bench Setup

CO4: Analyze various characteristics of microwave junctions and design of microwave communication links

Details of Syllabus:

S.No.	Particulars
1.	To determine the characteristic impedance of lumped constant delay line.
2.	To study the voltage distribution along a lumped constant delay line in the cases when it
	is: (i) Open Circuited ii. Short Circuited (ii) iii. Terminated in Zo and hence determine
	attenuation constant, phase constant, propagation constant and wavelength.
3.	To study the method of measuring VSWR at the input of the component under test
	or unknown load when (i) VSWR<10 and (ii) VSWR>10
4.	To set up an LOS link using microwave horn antennas and study the link performance
	under different obstructions.
5.	To study the method of evaluation of an unknown load impedance by measuring VSWR
	and the position of voltage minimum
6.	i. To study the characteristic of wave propagation in a waveguide by studying standing
	wave pattern and hence to plot W.B. diagram.
	ii. To verify relationship between guide wavelength and free space wavelength
7.	To study the method of measurement of VSWR at the input of the component under test
	(say pyramidal horn) and hence to determine its input impedance.
8.	To measure the frequency of a microwave source.
9.	To study Gunn oscillator as a source of microwave power and hence to study.
	i. I-V Characteristics
	ii. Power frequency characteristics
10.	To measure main line and auxiliary line VSWR of a directional coupler
11.	To study the properties of E and H-plane waveguide tee junctions and to determine
	isolations, coupling coefficients and input VSWR.

Elective II

Subject: Radar	Year & Semester: B. Tech		Total Course Credit: 3		
Systems	Electronics & Communication		L	Т	Р
(Code: ECT- 410)	Engineering		2	1	0
	4 th Year & 7 th Semester				
Evaluation Policy	Mid-Term	Class	End-Term		
		Assessment			
	30 Marks	10 Marks	60 Marks		

Objectives: The course is aimed to expose students to radar techniques for target detection in presence of noise and clutter. The course will enable students to gain insight into the emerging applications of radar technology.

Course Outcomes : Upon successful completion of the course, student should be able to:

CO1: understand the radar operation and its applications in practice.

CO2: design a radar signal for a given problem.

CO3: choose a suitable detection method for detecting a target in presence of noise and clutter.

CO4: understand the tracking methods in a radar system. **Details of the Syllabus:**

Details	T the Synabus.			
S. No.	Particulars			
6.	Introduction to Radar Systems:			
	Radar Equation, Radar Cross section, Area and volume Targets			
7.	Radar Signals: Radar Signal Types and their LTI response,			
	Matched Filter Response for stationary and moving targets, Ambiguity function			
	Pulse compression of Radar Signals. Basic Concept and compression techniques.			
8.	Radar Detection: Basic Detection principles, Optimum decision rule, Detection			
	criteria for different target models.			
9.	Radar measurements: Range, Doppler frequency and angle measurement.			
	Optimum Receiver Design, Radar Tracking			
10.	Emerging Trends in Radar technology:			
	3D Radar, Active Scanned Arrays for RADARs, Broadband Multifunction Radar,			
	Distributed Aperture Radar Systems, Use of Light Detection and Ranging(LIDAR)			
	sensors in Radar systems.			

S.	Name of Book	Author	Publisher
No.			
3.	Radar Principles	P.Z.Peebles	Wiley
4.	Introduction to Radar	Merrill I. Skolink	Tata MG Graw Hill
	Systems, (3/e)		

Subject: System Design (Code: ECT 411)	Year & Semester: B. Tech Electronics & Communication		Total Co 4	urse Cre	edit:
× ,	Engineering		L	Т	Р
	3 rd Year & 7 th Semester		2	1	0
Evaluation Policy	Mid-Term	Class Assessment	Enc	l-Term	
	30 Marks	10 Marks	60	Marks	

Objectives: To learn basic techniques for the interfacing between system components, metastability, and techniques for handling them; to study Layout strategies at IC and board level for local and global signals

Course Outcomes: Upon successful completion of the course, student should be able to:

CO1: Understand the System partitioning techniques in different forms and Interfacing in linear and digital systems.

CO2: Design finite state machines, and implement state assignment strategies.

CO3: Carry out implementation of DSP algorithms, and comprehend signal integrity and high speed behavior of interconnects.

CO4: Get familiar with the Layout strategies at IC level.

Details of the syllabus:

S.No.	Particulars		
1.	Module I: Basics of system hardware design. Hierarchical design using top-down and		
	bottom-up methodology.		
2.	Module II: System partitioning techniques, interfacing between system components.		
	Handling multiple clock domains, Synchronous and asynchronous design styles.		
	Interface between synchronous and asynchronous blocks. Meta-stability and techniques		
	or handling it. Interfacing linear and digital systems, data conversion circuits.		
3.	Module III: Design of finite state machines, state assignment strategies. Design and		
	optimization of pipelined stages. Use of data flow graphs, Critical path analysis, retiming		
	and scheduling strategies for performance enhancement. Implementation of DSP		
	gorithms. Signal integrity and high speed behavior of interconnects: ringing, cross talk		
	and ground bounce.		
4.	Module IV: Layout strategies at IC and board level for local and global signals. Power		
	supply decoupling.		

S. No	Name of Book	Author
1.	System Analysis & Design	V K Jain
2.	Modern Systems Analysis and Design	Jeffrey A. Hoffer
3.	System Analysis & Design	Silver and Silver Addison Wesley, last edition.

4.System Analysis & DesignKenneth E. Kendall	
--	--

Subject: Analog	Year & Semester: B. Tech Electronics		Total Course Credit: 4		
CMOS Design	& Communication	L	Т	Р	
(Code: ECT 412)	^{3rd} Year & ^{7rd} Ser	2	1	0	
Evaluation Policy	Mid-Term Class Assessment		End-Term		
	30 Marks	10 Marks	60	Marks	

Objectives: As the course title suggests, the course will be specific to Analog CMOS circuit implementations. In particular, the course will focus on different configurations of CMOS analog amplifier and different differential amplifier topologies and their analysis. The course will also cover voltage references and current mirrors.

Course Outcomes:

CO1	To design and analyze Basic CMOS Amplifier configurations Analysis using small
COI	signal model; and Large signal Analysis of Amplifiers
cor	Able to analyze and design analog circuits such as Differential Amplifier, OP-AMP,
CO2	Current mirrors, Biasing, Voltage references, Frequency Synthesizers
CO^{2}	Ability to analyze high-frequency response of amplifiers and stability compensation for
COS	amplifiers
CO4	Performance Analysis and Design of Multistage amplifiers

1 Details of Syllabus:

S. No.	Particulars		
1	Introduction to analog VLSI and mixed signal issues in CMOS technologies.		
1	Basic MOS models, SPICE Models and frequency dependent parameters.		
2	Basic NMOS/CMOS gain stage, CS, CG, CD configurations, cascade and		
Z	cascode circuits. Frequency response, stability		
3	Differential amplifier and OP-AMP design, Frequency response, stability		
4	Current Sources and Voltage references, Frequency Synthesizers, Voltage		
4	Controlled Oscillators and Phased lock-loop		
5	Multi stage Amplifiers		
6	Noise issues in Amplifiers.		

2 Suggested Book :

1.	Design of Analog CMOS Integrated Circuits McGraw Hill	Behzad Razavi			
2.	CMOS Analog Circuit Design, Oxford University Press	Allen and Holberg,			
3	CMOS Circuit Design, Layout, and Simulation, PHI	Baker, Li, and Boyce			
Subject: Advanced Power	Year & Semester: B. Tech		Total Course Credit: 4		
-------------------------	--	-------------------------	------------------------	-------	---
	Electronics and communication		L	Т	Р
(Code: EET 4xx)	Engineering 4 th Year VII Semester		3	1	0
Evoluction Dolioy	Mid-Term	Class Assessment	End-Term		
Evaluation Policy	30 Marks 10 Marks		60	Marks	

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

- **CO1:** Understand three phase voltage source and current source inverters and their modulation strategies.
- **CO2:** Understand the operation of non-isolated DC-DC Converters
- **CO3:** Understand the operation of isolated DC-DC converter.
- CO4: Perform comparative assessment of different modulation techniques
- **CO5:** Understand the applications of power electronics in appliances such as Power conditioners and UPS.

Details of syllabus

S.No.	Particulars			
1	Unit 1: Three phase Voltage source inverters in square wave mode. 120 and 180degree			
	modes of conduction. Three phase Current Source Converter			
2	Unit 2:Different modulation strategies- Sine PWM, Hysteresis Current Control			
	Technique, Selective Harmonic Elimination, Space Vector Modulation.			
3	Unit 3: Non Isolated D.C to D.C converters in CCM and DCM, Boundary conditions,			
	Non-Ideal Behavior, Design of Passives for: Buck, Boost, Buck-Boost and			
	Cukconverter circuits.			
4	Unit 4: Isolated DC-DC converters: Flyback converter, Forward converter, Push-Pull			
	converter, Half-Bridge converter and Full-Bridge converter			
5	Unit 5: Power line disturbances and their effect on equipment, Power conditioners,			
	offline and online UPS			

Text Books

- 4. Power Electronics by Daniel W Hart, Tata Mc Graw Hill
- 5. Power Electronics: Converter, Applications & Design, by N. Mohan, T.M. Undeland & W.P. Robbins, John Wiley & Sons, 1989
- 6. Fundamentals of Power Electronics, Erickson and Macsimovic

References

- 7. Power Electronics: Devices, Drivers, Applications, and Passive Components by Barry Williams
- 8. Modern Power Electronics and AC motor Drives By Bimal K Bose- Pearson Publishers.
- 9. Referred Journal/Conference publications.

Subject: Design & Analysis	Year & Semester: B. Tech		Total Course Credit: 3		
of Algorithms	Electronics & Communication		L	Т	Р
(Code: CST 306)	Engineering		2	1	-
	3 rd Year & 5 rd Semester				
Evaluation Policy	Mid-Term Class Assessment		End-Term		
	30 Marks 10 Marks		60 Marks		

Objectives: (Maximum 25 Words) This course covers, principles of algorithm design, elementary analysis of algorithms, and fundamental data structures. The emphasis is on choosing appropriate data structures and designing correct and efficient algorithms to operate on these data structures.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

CO1: Learn how to analyze algorithms and estimate their worst-case and average-case behavior (in easy cases);

CO2: Analyze the asymptotic performance of algorithms. Write rigorous correctness proofs for algorithms

CO3: Accustomed to the description of algorithms in both functional and procedural styles;

CO4: Learn how to apply their theoretical knowledge in practice (via the practical component of the course).

S.No.	Particulars				
1.	Analysis of Algorithms: Algorithm Design paradigms, motivation. Review of algorithmic				
	strategies, asymptotic analysis: upper and lower complexity bounds. Identifying differences				
	among best, average and worst Case Behaviors. Big O, little O, omega and theta notations,				
	Standard complexity classes. Empirical measurements of performance. Time and space				
	trade-offs in algorithms. Analyzing recursive algorithms using recurrence relations.				
2.	Divide & Conquer: Structure of divide and conquer algorithms: examples, Binary search,				
	Quick sort, analysis of divide and conquer run time recurrence relations.				
	Greedy Algorithms: Overview of the greedy paradigm, examples of exact optimization				
	solution (minimum cost spanning tree), approximate solution (Knapsack problem), single				
	sourceshortest paths.				
3.	Dynamic Programming: Overview, difference between dynamic programming and divide				
	and conquer, applications: shortest path in graph, matrix multiplication, travelling salesperson				
	problem, longest common sequence.				
4.	Graph Algorithms: Graphs and their Representations, Graph Traversal Techniques: Breadth				
	First Search (BFS) and Depth First Search (DFS), Applications of BFS and DFS, Minimum				
	Spanning Trees (MST), Prim's and Kruskal's algorithms for MST, Connected Components,				
	Dijkstra's Algorithm for Single Source Shortest Paths, Warshall's Algorithm for finding				
	Transitive Closure of a Graph, Floydd's Algorithm for All-Pairs Shortest Paths Problem.				
5.	Back Tracking: Overview, 8-Queens problem and Knapsack problem.				
	Branch & Bound: LC searching, bounding, FIFO branch and bound, Applications: 0/1				
	Knapsack problem, Travelling salesperson problem.				

6.	Co	omputational complexity: Complexity measure	ires, Polynomial vs non-polynomial time			
	complexity; NP hard and NP complete classes, Examples.					
Rec	comm	ended Books:				
S	. No	Name of Book	Author			
	1.	"Introduction to Algorithms", PHI.	Thomas H. Cormen, Charles E.			
			Leiserson, Ronald L. Rivest and			
			Clifford Stein			
	2	"Data Structures and Algorithm Analysis in	Mark Allen Weiss Third Edition,			
		C++",	Pearson Education, 2006			
	3	"Fundamentals of Computer Algorithms",	Ellis Horowitz, Sartaj Sahni and			
		Second Edition, Universities Press, 2011	Sanguthevar Rajasekaran.			

Subject: Fuzzy Logic and	Year & Semester: B. Tech Electronics & Communication		Total Course Credit: 3		
Neural Networks (Codo: MAT yyy)	Engineering		L	Т	Р
(Code: MAT XXX)	4 th Year & -8 th Semester		2	1	-
Evoluation Doliny	Mid-Term	Class Assessment	End-Term		
Evaluation Foncy	30 Marks	10 Marks	60	Marks	

Objective: The principle objective of this course is to have a knowledge of Fuzzy logic and natural neural networks and thereby develop the artificial neural networks for solving real life problem

Pre – requisites :

Fundamental of Computing Assumed knowledge: fuzzy control system is a control system based on fuzzy logic—a mathematical system that analyzes analog input values in terms of logical variables that take on continuous values between 0 and 1, in contrast to classical or digital logic.

MICROCONTROLLED BASED SYSTEM DESIGN,

AUTOMOTIVE ELECTRONICS,

VIRTUAL INSTRUMENTATION

Course Outcomes

CO1: To understand the Fuzzy logic systems

CO2: To study the basic architecture of neural networks and applications

CO3: To understand the basic neural network operations

CO4: To have knowledge of various types of neural networks, their operations and applications in real life problems.

S.No.	Particulars				
1.	FUNDAMENTALS OF FUZZY LOGIC: Basic concepts: fuzzy set theory- basic				
	concept of crisp sets and fuzzy sets- complements- unionintersection- combination of				
	operation- general aggregation operations- fuzzy relations-compatibility relations-				
	orderings- morphisms- fuzzy relational equations-fuzzy set and systems				
2.	ARCHITECTURE OF NEURAL NETWORKS: Architectures: motivation for the				
	development of natural networks-artificial neural networks-biological neural networks-				
	area of applications-typical Architecture-setting weights-common activations				
	functionsBasic learning rules- Mcculloch-Pitts neuron- Architecture, algorithm,				
	applications-single layer net for Page 1 of 7 pattern classification- Biases and				
	thresholds, linear separability - Hebb'srule- algorithm -perceptron - Convergence				
	theorem-Delta rule				

3.	BASIC NEURAL NETWORK TECHNIQUES: Back propagation neural net:standard				
	back propagation-architecture algorithm- derivation of learning rulesnumber of hidden				
	layersassociative and other neural networks- hetro associative memory neural net,				
	auto associative net- Bidirectional associative memory-applications-Hopfield nets-				
	Boltzman machine				
4.	COMPETITIVE NEURAL NETWORKS: Neural network based on competition: fixed				
	weight competitive nets- Kohonenself organizing maps and applications-learning				
	vector quantization-counter propagation nets and applications adaptive resonance				
	theory: basic architecture and operation-architecture, algorithm, application and				
	analysis of ART1 & ART2				
5.	SPECIAL NEURAL NETWORKS : Cognitron and Neocognitron - Architecture,				
	training algorithm and application-fuzzy associate memories, fuzzy system				
	architecture- comparison of fuzzy and neural systems.				

Recommended Books:

S. No	Name of Book	Author
1.	Fuzzy System & Fuzzy logic	T1. Kliryvan- Prentice Hall of
		India, First Edition.
2	Fundamental of Neural network	Lawrence Fussett- Prentice Hall,
		First Edition.
3.	Neural network and Fuzzy System	Bart Kosko, Prentice Hall-1994.
4	Introduction to artificial neural systems -	J.M.Zurada, Jaico Publication
		house,Delhi 1994.

_

8th Semester B Tech ECE Syllabus

Subiect: Project Major	Year & Semester: B. Tech Electronics and Communication Engineering 4 th Year & 8 th Semester		Total Course Credits: 8		
(Code: ECP450)			L	Т	Р
			0	0	16
	Mid-Term	Class Assessment	End-Term		n
Evaluation Policy					

Objectives: Students need to select a standard project related to electronics and communication. The project has to be workable to be demonstrated practically. Extensive literature review is to be carried out related to the project and same is to be submitted in form of a thesis. Related project will be completed with a power point presentation and viva.

Course Outcomes:

- CO1 Identify methods & materials to carry experiments / develop code.
- CO2 Reorganize the procedure with a concern for society, environment and ethics.
- CO3 Analyze and discuss the results to draw valid conclusions.
- CO4 Prepare a report as per recommended format and defend the work
- CO5 Explore the possibility of publishing paper in peer reviewed journal/conference proceedings.

Subiect: Optical Fiber	Year & Semester: B. Tech Electronics		Total Course Credits: 3		
Communication	and Communication Engineering		L	Т	Р
(Code: ECT451)	4 th Year & 8 th Semester		2	1	0
	Mid-Term	Class Assessment	End-Term		1
Evaluation Policy	30 Marks 10 Marks			60 Marks	3

Objectives: To make the students aware about the basic theory and working of various subsystems of optical fibre communication systems, their design and integration into a communication setup.

Course Outcomes:

CO1 Basic concepts about Optical Fibers, Ray optics and overview of modes.

Basic knowledge about various degradation phenomenon including attenuation, scattering CO₂ dispersion and bending in optical fibers.

- CO3 To understand concepts related to various optical fiber sources including LED and LASERS and their coupling with optical fibers. To understand operation of various Fiber Optical Receivers including PIN and APD diodes.
- To understand point to point link considerations including link power budgets and rise time CO4 budgets. To understand operational principles of WDM, Soliton and analyze Noise effects on system performance including EDFA, Sonnet/ SDH networks.

S.No	b. Particulars	Particulars			
1.	INTRODUCTION TO OPTICAL FIBERS: Evolution of f	iber optic system- Element of an Optical			
	Fiber Transmission link- Ray Optics-Optical Fiber Modes and	l Configurations -Mode theory of Circular			
	Wave guides- Overview of Modes-Key Modal concepts- Linearly Polarized Modes - Single Mode				
	Fibers-Graded Index fiber structure.				
2.	SIGNAL DEGRADATION OPTICAL FIBERS: Attenuation - Absorption losses, Scattering losses,				
	Bending Losses, Core and Cladding losses, Signal Distortion	in Optical Wave guides-Information			
	Capacity determination - Group Delay-Material Dispersion, W	Vave guide Dispersion, Signal distortion in			
	SM fibers-Polarization Mode dispersion, Intermodal dispersio	n, Pulse Broadening in GI fibers-Mode			
	Coupling -Design Optimization of SM fibers-RI profile and cu	it-off wavelength.			
3.	FIBER OPTICAL SOURCES AND COUPLING: Direct a	nd indirect Band gap materials-LED			
	structures -Light source materials - Quantum efficiency and L	ED power, Modulation of a LED, lasers			
	Diodes-Modes and Threshold condition -Rate equations -Exte	rnal Quantum efficiency -Resonant			
	frequencies -Laser Diodes, Temperature effects, Introduction	frequencies -Laser Diodes, Temperature effects, Introduction to Quantum laser, Fiber amplifiers- Power			
	Launching and coupling, Lencing schemes, Fibre – to - Fibre joints, Fibre splicing.				
4.	FIBER OPTICAL RECEIVERS: PIN and APD diodes -Pho	oto detector noise, SNR, Detector Response			
	time, Avalanche Multiplication Noise -Comparison of Photo of	letectors -Fundamental Receiver Operation -			
	preamplifiers, Error Sources -Receiver Configuration -Probability of Error - Quantum Limit.				
5.	DIGITAL TRANSMISSION SYSTEM: Point-to-Point links System considerations -Link Power				
	budget -Rise- time budget -Noise Effects on System Performance-Operational Principles of WDM,				
	Solitons-Erbium-doped Amplifiers. Basic on concepts of SONET/SDH Network.				
Reco	nmended Books				
1.	Optical Fiber Communication	By Gerd Keiser			
	Optical Communication Principles and Practice By I Senior				

	Year & Semester: B. Tech		Total Course Credits: 3		
Subject: Computer & Network	Electronics and Communication Engineering 4 th Year & 8 th Semester		L	Т	Р
Security (Code: EC1452)			2	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n
	30 Marks	10 Marks	60 Marks		5

Objectives: To develop an understanding of security on computer networks, various cipher techniques, public key cryptography, authentication, virtual private networks, firewalls.

Course Outcomes:

- CO1 Develop concept of security needed in communication of data through computers and networks along with various possible attacks
- CO2 Understand various encryption mechanisms for secure transmission of data and management of key required for encryption
- CO3 Understand authentication requirements and study various authentication mechanisms
- CO4 Understand network security concepts and study different web security mechanisms

Details of the syllabus:

S.No.	Particulars				
1.	Introduction: Need of security, Security attacks, services and mechanisms, Network security,				
	Model.				
2.	Symmetric Ciphers: Substitution and transposition techniques, Block cipher Principles and				
	Modes of operation DES, Triple DES, Stream Ciphers and RC4.				
3.	Public Key Cryptography: Need and principles of Public key cryptosystems, RSA				
	Algorithm, Key, Distribution and management, Diffie-Hellman Key Exchange, Digital				
4.	Authentication: Authentication Requirements, Message Authentication Codes, Hashes,				
	MD5and SHA, User Authentication: Password, Certificate based and biometric				
5.	Network Security: Firewalls, IP Security, Virtual Private Networks and Intrusion				
	Detection, Web Security-SSL and TLS.				

Suggested Books:

1.	Cryptography and Network Security, PHI	William Stalling
2.	Cryptography and Network Security, Mc Graw Hill	Atul Kahate
3.	Cryptography and Network Security, PHI 4.	Forouzan

Subject : Industrial Organization & Management (Code: HSL4)	Year & Semester: B. Tech		Total Course Credits: 4		
	Anagement (Code: HSL4) 4 th Year & 8 th Semester		L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n
	30 Marks	10 Marks	60 Marks		5

Objectives: The experimental setups are introduced to and performed by the students to enable them to give optimal performance in professional life.

Course Outcomes:

CO1 Develop the ability to explain economic terms and concepts, Understand and explain the function of market, its types and determination of price under various competencies.

CO2 Demonstrate the ability to employ the economic way of thinking like application of marginal analysis, use of benefit/cost analysis, utility and demand forecasting techniques.

CO3 Practice the process of management's four functions: planning, organizing, directing and controlling to make an appropriate staffing decision which includes recruitment and selection design, implement and evaluate training programmes.

CO4 Understand an organization's characteristics and how they might impact on management practices and analyze both qualitative and quantitative information to isolate issues and formulate best control methods.

S.No.	Particulars			
1.	Industry, meaning of Industrialization, Industrial revolution, Ne	ed problems and prospects of		
	Industrial change in the developing countries.			
2.	Industrial Evolution in India. Downfall of early industries, evol	ution of modern industry, effects		
	of partition, industrial policy and progress after independence.			
3.	Forms of Industrial Organization: a) Single Proprietorship	b) Partnership c) Joint Stock		
	companies			
4.	Growth of Industry and Management Meaning of industrial man	nagement, functions		
	and tools of management, growth of management concepts.			
5.	Objectives of Industrial Management: Defining management objectives, managerial activity and			
	objectives, tests of management of objectives, primary, seconda	ary personal and social objectives		
	of management.			
6.	Management Organization: Various forms of organization of departmentalization line staff,			
	functional and committee organization, formal and non formal organization.			
7.	Management and Authority, Decision Making in Management			
8.	Leadership, Definition, Traits, inborn traits, acquired traits, ana	lyticaletc.		
9.	Marketing of Industrial Products and the Sales Manager.			
10.	Personal Management: Recent changes in personal management function of personal			
	departments, sections, training and placement other functions of personal department.			
Sugge	ested Books:			
1	Principles of Management	C D Torry		

1.	Principles of Management	G. R. Terry
2.	Industrial Organization & Management	Tara Chand
3.	Business Organization & Management	M. C. Suckla

Subject: Optical Fiber	Year & Semes	Year & Semester: B. Tech		Total Course Credits: 1		
Communication Lab	Electronics and	Electronics and		Т	Р	
(Code: ECL454)	Communication 4 th Year & 8 th	Communication Engineering 4 th Year & 8 th Semester		0	2	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
	Marks	Marks		Marks		

Objectives: To understand basic concepts about Optical Fibers and ray optics. To understand concepts related to various optical fiber sources including LED and LASERS and their coupling with optical fibers.

Course Outcomes:

- CO1 Basic concepts about Optical Fibers, Ray optics and overview of modes.
- CO2 Basic knowledge about various degradation phenomenon including attenuation, scattering dispersion and bending in optical fibers.
- CO3 To understand concepts related to various optical fiber sources including LED and LASERS and their coupling with optical fibers. To understand operation of various Fiber Optical Receivers including PIN and APD diodes.
- CO4 To understand point to point link considerations including link power budgets and rise time budgets. To understand operational principles of WDM, Soliton and analyze noise effects on system performance including EDFA, Sonnet/ SDH networks.

S. No	Particulars
1	Voice transmission through optical link.
2	AM system using Analog & Digital Input Signals.
3	Frequency Modulation System
4	Pulse Width Modulation system.
5	Study of Propagation Loss in optical fiber System.
6	Study of Bending Loss
7	Measurement of Numerical Aperture
8	Characteristics of E-O Converter (LED)
9	Fiber optic digital link
10	PC to PC communication Link using optical fiber.

Elective III

Subject: Millimetre Wave Communication (Code:ECT454)	Year & Semes	al Course credit:4			
	Electronics & Communication		L	Т	Р
	Engineering (ear & -8 th Seme	ester	2	1	-
Evolution Doliou	Mid-Term	Class assessment	End-Term		
Evaluation Foncy	30 Marks 10 Marks		60 I	Marks	

Objectives: To familiarise students with Millimetre wave communication technology which is a major part of future WLAN as well as cellular systems.

Course Outcomes Upon successful completion of the course, student should be able to: **CO1:** Understand significance of Millimetre Wave(mmWave) Communication for future mobile applications

CO2: To know fundamentals of mmWave Propagation, devices and circuits

CO3: Understand various components of mmWave Communications system

CO4: To know antenna design at mmWave frequencies and mmWave MIMO and mmWave Standards

).	Particulars
	INTRODUCTION : Millimeter Wave (mmWave) Wireless, mmWave Implementation
	Challenges, Emerging Applications of mmWave Communications, propagation
	characteristics of mm waves: Large scale propagation channel effects, small scale
	channel effects, Outdoor and Indoor channel models, Coverage and capacity in
	mmWave.
	MM WAVE DEVICES AND CIRCUITS: Millimeter wave generation and
	amplification: Peniotrons, Ubitrons, Gyrotrons and Free electron lasers. HEMT, models
	for mm wave Transistors, transistor configurations, Analog mmWave components:
	Amplifiers, Mixers, VCO, PLL. Metrics for analog mm Wave devices, Consumption
	factor theory, Trends and architectures for mm wave wireless, ADC's and DAC's.
	MM WAVE COMMUNICATION SYSTEMS: Modulations for mmWave
	communications, mmWave link budget, Transceiver architecture, Transceiver without
	mixer, Receiver without Oscillator, mmWave calibration, production and manufacture,
	Future considerations.
	ANTENNAS FOR MM WAVE SYSTEMS:
	Antenna beamwidth, polarization, mmWave antenna design considerations, mmWave
	antennas for 5G, On-chip and In package mm wave antennas, Techniques to improve
	gain of mmwave antennas, mm wave adaptive antenna arrays, Advanced beam steering
	and beam forming for mmWave applications.
	MM WAVE MIMO : mmWave MIMO, Massive MIMO, Noise coupling in MIMO
	system, Multiple Antennas, Multiple Transceivers, Spatial, Temporal and Frequency
	diversity, Potential benefits of advanced diversity for mmWave communication,
	mmWave MIMO for 5G applications

MM WAVE STANDARDIZATION: Introduction, mmWave Spectrum Regulations, International Recommendations, IEEE 802.15.3c, IEEE 802.15.3 MAC, IEEE 802.15.3c mmWave PHY, Wireless HD, ECMA-387, IEEE 802.11ad, WiGig.

Recommended Books:

S. No	Name of Book	Author
1.	Millimeter Wave Communication Systems", Wiley-IEEE	K.C. Huang, Z. Wang
	Press	
2	Millimeter Wave Wireless Communication", Prentice Hall,	Robert W. Heath, S.
	2014	Rappaport,
3.	Millimeter - Wave Wireless Communication Systems:	Chia-Chin Chong et al.
	Theory and Applications, Hindawi Publishing Corporation	
4	Millimeter-Wave Integrated Circuits, Springer	Eoin Carey
		-

Subject: Biomedical & Image Processing	Year & Seme Electronics &	Total Co 3	urse Cre	edit:	
(Code:ECT455)	Engineering	L	Т	Р	
	4 th Year & 8 th	2	1	0	
Evaluation Policy	Mid- Class		End-Term		
	Term	Assessment			
	30 Marks	10 Marks	60 Marks		

Objectives: This course presents the applications of digital signal processing to biomedical signals and images. This course provides practical experience in processing physiological data, with examples from cardiology.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

CO1: Understanding of Fundamental concepts in signal processing and design of digital FIR/IIR filters.

CO2: Understanding of Wavelet theory with applications to medical signals and images **CO3:** Understanding of various data acquisition techniques for biomedical signals; methods for removal of artifacts in biomedical signals and biomedical signal analysis.

CO4: Understanding of Image enhancement and feature extraction methodologies.

Details of the syllabus:

S. No.	Particulars
1.	Background and review of DSP: Digital filter design and structures: Basic FIR/IIR
	filter design & structures, design techniques of linear phase FIR filters, IIR filters by
	impulse invariance, bilinear transformation
2.	Wavelets in Biomedical Signal Processing: Introduction to wavelets, Scaling and
	wavelet functions, Multiresolution analysis, Filter Banks and Discrete wavelet transform,
	wavelets based signal processing and applications- Denoising, compression.
3.	Biomedical Signal analysis: Introduction to biomedical signals (ECG,EEG,PCG and
	EMG), Objectives of biomedical signal analysis, Filtering for removal of artifacts,
	Adaptive noise canceller; Cancellation of 60 Hz interference in electrocardiography,
	Time Domain filters, frequency domain filters, wiener filtering, adaptive filters,
	Illustration of the Problem with Case-studies, canceling method to enhance fetal ECG
	monitoring, Event detection. Heart rate variability-analysis;
4.	Digital Image Processing: Digital Image fundamentals, Image enhancement in spatial
	domain, Image enhancement in frequency domain, Image restoration, Image
	segmentation, wavelets based image processing

Recommended Books:

S. No	Name of Book	Author
1	Digital Signal Processing, Principles Algorithms and	John G, Proakis and
	Applications	Dimitris G Manolakis

2	Introduction to Wavelets and Wavelet Transforms- A	C. Sidney Burrus, Ramesh A.
	Primer	Gopinath and
		Haitao Guo
3	Biomedical signal analysis-A Case-Study Approach	Rangaraj M Rangayan
4	Biomedical Digital Signal Processing	Willis J. Tompkins
5.	Digital Image Processing	Rafael C. Gonzalez, Richard
		E. Woods

_

Subject: Molecular	Year & Semester: B. Tech Electronics &		Total Course Credit: 3		
Electronics	Communication Engineering		L	Т	Р
(Code: ECT 456)	4 th Year & 8 th Semester		2	1	-
Evaluation Policy	Mid-Term Internal Assessment			End-Ter	rm
	30 Marks	10 Marks		60 Mar	ks

Objectives: The course treats the emerging field of molecular electronics from basics. Organic semiconductors will be an important introductory part of this course. The theory and practice of fabricating discrete and integrated molecular electronic devices and their applications in diverse fields will be covered. Lessons from biological molecular behaviour for molecular electronics will be addressed.

Course Outcomes:

CO1	Understand the physics behind organic semiconductors
con	Transport properties in the molecular systems, Identify the molecules that can be used
CO2	for different functions in molecular electronics
co^{2}	Choose a proper method or combined several methods for fabricating and
COS	characterizing organic systems.
CO4	Exploit the behaviour of the biomolecules for molecular electronic

Details of Syllabus:

S. No.	Particulars
1	Introduction to organic electronic materials and their basic properties; Electronic
	Structure of Molecules and energy structure of organic electronics
	Electronic Properties; Optical properties: Energy levels, color changes, light
2	emission and absorption; Charge transport Mobility, Doping and its
	Determination
3	Techniques to grow / Fabricate Organic films / Materials
4	Organic electronic circuit components: conductors, resistors, capacitors, diodes,
4	transistors.
5	Organic electronics photovoltaics
6	Organic Memory
7	Characterization Techniques for organic Electronic materials
8	Organic bioelectronics : Applications in neuroscience and plant biology
9	An overview of current applications and commercialization: cost, implementation,
	environmental consideration, printed and flexible electronics

3 Suggested Book :

1.	Electronics Processes in Organic Crystals and	Martin Pope & Charles L.
	Polymers	Swenberg
2.	Polymer Electronics	Hsin – Fei Meng
3	Organic Electronic Materials and Devices	Shuichiro Ogawa

Subject: Electrical	Year & Semester: B. Tech Electronics		Total Course Credit: 3		
Power Systems	& Communication Engineering		L	Т	P
(Code: EET4xx)	4 th Year & 8 th S	Semester	2	1	-
Evaluation Policy	Mid-Term Internal Assessment		End-Term		
	Marks	10 Marks	60) Marks	

Objective: To introduce the concept of power systems, AC & DC distributors, transmission lines and to develop the concept of mechanical design of transmission lines.

Course Outcomes (COs):

Upon successful completion of the course, student should be able to:

CO1: Explain the knowledge of power systems generation, transmission & distribution.

CO2: Explain the knowledge of overhead line insulators and string efficiency.

CO3: Explain the modelling, design, capacity and various parameters of transmission lines.

CO4: Acquire knowledge of sag and tension calculations of overhead Transmission lines.

CO5: Explain concept of corona and its effect on line design.

Details of the syllabus:

S. No	Particulars
	DC and AC Distribution System: - Introduction to a power system, definition and
1	classification of distribution systems, connection schemes, various types of DC and AC
	distributors, voltage drop calculations.
	Overhead AC Transmission lines: - Line Parameters and their calculations, types of
2	conductors, skin effect and proximity effect, classification of overhead AC transmission lines,
	performance of transmission lines.
	Insulators for overhead lines:- Overview of insulators and materials used, types of insulators
3.	and their uses, potential distribution over a string of suspension insulators, string efficiency,
	methods for equalizing the potential.
	Interference of power lines with communication circuits:- Electrostatic and
4	electromagnetic effect, definition and theory of Corona formation, factors affecting corona,
4.	critical disruptive and visual critical voltage, power loss due to corona, methods of reducing
	corona effect.
5.	Mechanical design of transmission lines. Sag and tension calculations, effect of wind and
	ice loading, stringing charts.

Recommended Books:

S. No.	Name of Book	Author (s)
1.	Elements of Power System Analysis	W. D. Stevenson
2.	Transmission & Distribution of Electrical Energy	H. Cotton & Barber
3.	Power System Engineering	Nagrath & Kothari
4.	Electrical Power Systems	C. L. Wadhwa

Subject: Artificial	Year & Semeste	er: B. Tech,	Total Course Credit: 4		
Intelligence &	Electronics & Co	Electronics & Communication		Т	
Machine Learning	Engineering 4 th	Year & 8 th Semester	3	1	
(Code: CST 352)					
Evaluation Policy	Mid-Term	Class Assessment	End Terr	n	
	30 Marks	10 Marks	60 Marks	s	

Objectives: (Maximum 25 Words) The objective of the course is to understand the fundamentals of computational intelligence, to know about the various knowledge representation methods, to understand the features of neural network and its implementation, to study about various data clustering methods. To gain knowledge in evolutionary computation and neuro – fuzzy systems. **Course Outcomes (COs):**

Upon successful completion of the course, student should be able to:

CO1: Implement computational intelligence through applications

CO2: Understand knowledge representation methods and apply approximate reasoning

CO3: Apply evolutionary algorithm to solve the optimization problem

CO4: Gain research Knowledge to develop applications using hybrid systems

CO5: Able to Model Flexible Fuzzy Inference systems for dynamic nonlinear data sets.

S.No.	Particulars
1.	Introduction to AI: Philosophy of artificial intelligence, Course structure and
	policies. History of AI. Proposing and evaluating AI applications.
2.	Search and Planning: Fundamental and advanced search techniques Problem spaces
	and search, Heuristic search strategies, Search and optimization (gradient descent),
	Adversarial search, Planning, and scheduling (A*, local search, suboptimal heuristic
	search, search in AND/OR graphs), Constraint optimization
3.	Knowledge Representation and Reasoning: Logic and inference, Temporal
	reasoning, Knowledge representation and reasoning through propositional and first-
	order logic, modern game playing. Ontologies, Bayesian reasoning,
4.	Fuzzy Logic Crisp set and Fuzzy set, Basic concepts of fuzzy sets, membership
	functions. Basic operations on fuzzy sets, Properties of fuzzy sets, Fuzzy relations.
	Propositional logic and Predicate logic, fuzzy If-Then rules, fuzzy mapping rules, and
	fuzzy implication functions,
5.	Applications in Machine learning: Supervised and Unsupervised methods
	What is machine learning? Supervised vs. unsupervised learning, Regression linear,
	logistic, ridge, Classification – decision trees, SVM, random forests Reinforcement
	learning, Introduction to probabilistic graphical models (Bayesian networks, Hidden
	Markov models, Conditional random fields), Introduction to information systems
	(information retrieval, information extraction).

Recommended Books:

S.	Name of Book	Author
No		
1	A First Course in Artificial Intelligence, McGraw Hill	Deepak Khemani.
	Education (India), 2013	
2	Artificial Intelligence: A Modern Approach, 3rd Edition,	Stuart Russell and Peter
	Prentice Hall, 2009.	Norvig.
3	Heuristics: Intelligent Search Strategies for Computer	Judea Pearl.
	Problem Solving, Addison-Wesley, 1984.	

Subject: Optimization	Year and Semester: B. Tech			Total Course Credit: 3		
Techniques (Code: MTH 802)	Electronics & Communication Engineering. 4 th Year & 8 th Semester		L		T P)
(Code. WITH 802)			2		1	0
luation Policy	d-Term Class Assessment			End -Term		m
	Marks	10 Marks		60 Marl	KS	

Course Outcomes (COS): Upon successful completion of the course, students should be able to: **CO1:** Identify, formulate, and solve the practical Engineering design problems by applying the optimization techniques.

CO2: Figure out the optimal value of the objective function besides presenting an organized strategy for evaluating a feasible region's vertices.

CO3: Determine the schedule for transporting goods from source to destination in a way that minimizes the shipping cost.

CO4:

- Solve multitude of operations research situations through conveniently modeling as networks (nodes connected by branches).
- Find sequence of processing jobs to minimize total elapsed time.
- Determine performance of queuing situation for deciding an appropriate level of service for the facility.

	Particulars
	Unit-I: Introduction & Concepts of Optimization Formulation of Linear Programming
	Problems, General Statement of LPP, Assumptions Underlying LP, Solution of Linear
	Programming Problems: Graphic Method. Some Special Cases of Graphic Method,
	Convex Set: Extreme points of Convex Set, Convex hull.
	Unit-II: Simplex Techniques LP Model in Equation Form, Transition From Graphical
	To Algebraic Solution, Simplex Algorithm, Artificial starting solution: Big M-Method,
	Two-phase Method, Special cases in Simplex Method: Degeneracy, Alternative Optima,
	Unbounded solution, infeasible solution.
	Unit-III: Transportation Models Mathematical Model of Transportation Problem,
	Methods of finding Initial basic feasible solution by NWC Rule, LCM, VAM, Test for
	optimality by Stepping Stone and MODI method, Balanced and Unbalanced
	Transportation Problems, Degeneracy. Assignment Model: Mathematical Model of
	Assignment Problem, The Hungarian Method, Simplex Explanation of the Hungarian
	Method.
	<u>Unit-V: Engineering Applications</u> Network Models: Shortest route Algorithm, network
	Construction, Rules for network diagram, Techniques in project planning and
	Construction, CPM, Project Crashing.
	Sequencing Model: Advantages of Sequencing, Johnsons Algorithm of Sequencing
	problems, Type I: n jobs two machines, Type II: n jobs three machines,
4.	Type III: two jobs m machines.
	- Jr

General Structure of Queuing System, Operating Characteristics of Queuing System, Queuing Models, Role of Poisson and Exponential Distributions, Pure Birth and Death Models, Generalized Poisson Queuing Model, Specialized Poisson Queues: Single, Multiple and Machine Serving Models.

Recommended Books:

- 1. Linear Programming by G. Hadlay, Addison Wasley.
- 2. Operations Research An Introductory by Hamidi A. Taha, Macmillan.
- 3. Operations Research Methods and problems by M. Sasieni, A. Yaspam and L. Friedman, John Wily and Sons Inc. London.

References:

- 1 Linear Programming by S.I. Gass, Mc-Graw Hill.
- 2 Introduction to Operations Research. John Wiley and Sons, New York.
- 3 Operations Research: An Introduction. Prentice Hall of India Private Limited, New Delhi Wagner.

Elective IV

Subject. TV Engineering	Year & Semester: B. Tech Electronics		otal Course Credit: 4		
Subject: 1 v Engineering	& Communication Engineering		L	Т	Р
IE. ECE438)	4 th Year & 8 th Semester		3	1	-
Evaluation Dalies	Mid-Term	lass Assessment	En	nd-Term	
Evaluation Policy	40 Marks	10 Marks	50) Marks	

Objectives: This course will develop the subject of TV Engineering from the basics. Starting from the analysis and theory of TV Pictures, Composite Video Signal, Receiver Picture Tube, we move on to the study of Monochrome Television Transmitter and Receiver systems. Aspects of Color TV systems theory will also be covered in detail.

Course Outcomes Upon successful completion of the course, student should be able to: **CO1:** To study the analysis and synthesis of TV Pictures, Composite Video Signal,

Receiver Picture Tubes and Television Camera Tubes

CO2: To study the principles of Monochrome Television Transmitter and Receiver systems.

CO3: To study the various Color Television systems with a greater emphasis on PAL system.

CO4: To study the advanced topics in Television systems and Video Engineering.

0	Particulars			
	FUNDAMENTALS OF TELEVISION: Geometry form and Aspect Ratio -			
	Image Continuity - Number of scanning lines - Interlaced scanning - Picture			
	resolution - Camera tubes- Image orthicon - vidicon-plumbicon-silicon diode array			
	vidicon-solid state image scanners- monochrome picture tubes- composite video			
	signal-video signal dimension- horizontal sync. Composition- vertical sync. Details			
	- functions of vertical pulse train - scanning sequence details. Picture signal			
	transmission – positive and negative modulation – VSB transmission sound signal			
	transmission – standard channel bandwidth.			
	MONOCHROME TELEVISION TRANSMITTER AND RECEIVER: TV			
	transmitter - TV signal propagation - Interference - TV transmission Antennas -			
	Monochrome TV receiver - RF tuner - UHF, VHF tuner - Digital tuning techniques-			
	AFT-IF subsystems - AGC - Noise cancellation- Video and sound inter carrier			
	detection- vision IF subsystem- video amplifiers requirements and configurations -			
	DC re- insertion - Video amplifier circuits- Sync separation - typical sync			
	processing circuits- Deflection current waveform – Deflection Oscillators – Frame			
	deflection circuits - requirements- Line Deflection circuits - EHT generation -			
	Receiver Antennas.			
	ESSENTIALS OF COLOUR TELEVISION: Compatibility – colour perception-			
	Three colour theory- luminance, hue and saturation-colour television cameras- values			
	of luminance and colour difference signals- colour television display tubes- delta –			

rs-

Recommended Books:

. No	Name of Book	Author
1.	Monochrome Television Practice, Principles, Technology and	By R.R.Gulati
	servicing	
2	Monochrome and colour Television	By R.R.Gulati
3.	Colour Television, Theory and Practice	By S.P.Bali

Subject:	Year & Semester: B. Tech Electronics &			Total Course Credit: 3			
Telemedicine	Communication Engineering			Т	Р		
(Code:ECT460)	4^{tn} Year & 8^{tn} Sem	2	1	0			
Evaluation Policy	Mid-Term Class Assessment		End-T	erm			
	30 Marks	10 Marks	60 Mar	·ks			

Objectives: This course presents how telecommunications technology is used by health care professionals to evaluate, diagnose and treat patients at a distance.

Course Outcomes :Upon successful completion of the course, student should be able to:

CO1: Understanding the Scope, Benefits and clinical applications of Telemedicine.

CO2: Understanding of data security & standards

CO3: Understanding of a tele-radiology system

CO4: Understanding various applications of telemedicine in medical fields.

1. History of	History of Telemedicine: Telemedicine: Definition and history, Block diagram, Scope,					
Benefits, L	imitations and Clinical applications - Real	-time and store-forward, Types of				
informatior	information: Audio, Video, Still Images, Text and data, and Fax - Types of Communication					
and Networ	and Network: PSTN, POTS, ATN, and ISDN - Basic concepts of Communication and					
Network: In	nternet, and Wireless communications (GS	SM, Satellite and Micro- wave), Types				
of antennas	s depending on requirements.					
2. Medical Da	ata Security and Legal Issues: Data Excl	hanges: Network configuration, Video				
conferencir	ng- Data security and Standards: Encryptic	on, Cryptography, Mechanisms and				
phases of e	ncryption- Protocols and Standards -encry	ption, Ethical and legal aspects of				
Telemedici	ne, patient rights and consent form, aces to	o medical records, Intelectual property				
rights.						
3. Tele-Radio	Tele-Radiology and Tele-Pathology: Tele-radiology and its basic system components,					
Image acqu	Image acquisition system, Display system, Communication networks, Interpretation, Tele-					
pathology,	pathology,					
Multimedia	Multimedia databases, color images of sufficient resolution, image compression methods,					
Interactive	Interactive control of color and controlled sampling.					
4. Other Med	Other Medical Applications: Tele-dermatology, Tele-psychiatry, Tele-cardiology, Tele-					
trauma, role	trauma, role of tele-education, evaluation in telemedicine, Tele-oncology, Tele-surgery,					
security and	security and confidentiality tools.					
Recommended Books:						
S. No Nan	ne of Book	Author				
1. Hand	lbook of Telemedicine	Olga Ferrer-Roca,				
		M.Sosa Ludicissa				
2 Esser	ntials of Telemedicine and Telecare	Norris A.C				

	Total Course Credits: 3

Subject: RF Design	Year & Semester: B. Tech Electronics and Communication Engineering 4 th Year & 8 th Semester		L	Т	Р
(Code: ECT461)			2	1	0
Evolution Doliou	Mid-Term	Class Assessment	End-Term		n
Evaluation Policy	30 Marks	10 Marks	60 Marks		s

Objectives: This course will develop electronic circuits for radio frequency applications, specific to CMOS integrated circuits. As the course title suggests, the course will be specific to CMOS integrated circuits, and specific to radio frequencies. In particular, the course will focus on circuits for radio front-ends for mobile phone handsets. The course will cover low noise amplifiers, mixers, power amplifiers, frequency synthesizers (and phase locked loops). The course will also cover several modern radio architectures.

Course Outcomes

- CO1 To design and analyze basic RF systems, architectures and passive RLC networks. To analyze the behavior of passive components at high frequencies.
- CO2 Understanding the performance parameters and characteristics of noise parameters at high frequencies
- CO3 Design and Analysis of RF amplifiers, Mixers, VCO and PLLs. Understanding the Frequency analysis of Oscillators and Mixers.
- CO4 Design and Analysis of GSM, 3G and other communication technologies.

VLSI for Wireless Communication Prentice Hall of India

Details of Syllabus:

3

S. No	Particulars				
	RFIC System Overview: Complexity comparison, Design	bottle necks, Applications,			
1	Analog and digital systems, Choice of Technology, Overvi	Analog and digital systems, Choice of Technology, Overview of RF Filter design and			
	Transmission Lines, Smith Chart				
2	Receiver Architecture: Different types of Receiver archite	ctures; Performance			
	parameters				
3	Noise: Classification of Noise; Noise performance and lim	itations of devices, integrated			
5	parasitic elements at high frequencies				
Low Noise Amplifiers: Low noise Amplifier de		lifferent technologies and			
-	their performance				
5	Mixers: Design of Mixers at GHz frequency range, Varia	us mixers- working and			
5	implementation, Spur Chart				
	Voltage-Controlled Oscillators and Phase-Locked-Loop: H	Voltage-Controlled Oscillators and Phase-Locked-Loop: Basic topologies VCO and			
6	definition of phase noise, Noise power and trade off, Radio frequency Synthesizers-				
	PLLS, Various RF synthesizer architectures and frequence	cy dividers			
	Power Amplifiers: General considerations, linear and nonl	inear PAs, classification,			
7	High Frequency power amplifier, large signal impedance matching, linearization				
techniques					
Reco	Recommended Book :				
1.	RF Microelectronics Prentice Hall of India	Behzad Razavi			
2.	2. The Design of CMOS Radio Integrated Circuits, Thereas				
Cambridge University Press		Thomas II. Lee			

Leung Bosco

Subject: Smart Grid	Year & Semester: B. Tech Electronics and Communication Engineering 4 th Year & 8 th Semester		Total Course Credits: 3		
Communications (Code:			L	Т	Р
EC 1433)			2	1	0
	Mid-Term	Class Assessment	End-Term		n
Evaluation Policy	30 Marks 10 Marks		60 Marks		8

Objectives: The objective of this course is provide electronics & communications engineering students with a basic understanding of communication systems concepts and principles as applied to electric utility applications. One of the key enabling technologies for the emerging "smart power grid" is the advanced communication technology. Hence, it is becoming imperative for ECE students to have an understanding of the communication technologies and their use for the smart grid. This course serves as an interdisciplinary course to prepare students to be knowledgeable in these critical and relevant areas of communications, cyber security and their use for the smart grid. In this course, students are also prepared to get exposure of recent trends in smart grid technology including IoT, Artificial Intelligence/Machine Learning based solutions for smart grid communication.

Course Outcomes:

- CO1 To understand the overall objective of smart grid and its relevance to power distribution system.
- CO2 To understand the smart grid communication network, data acquisition and control system
- CO3 To understand the smart grid network architecture and its design and security issues.
- CO4 To get exposure of recent trends in smart grid communication including IoT, Machine Learning and AI Based solutions.

S.No.	Particulars
1.	Introduction to Smart Grid:
	Definition, Objectives and Domain of Smart Grid; Revision of Voltage,
	Current, Alternating Current Phasor representation, Power Generation,
	Transmission System, Distribution System and Faults in Power System
2.	Communication Networking for Smart Grid:
	Elements of Data Communication Networks; Protocols and Protocol Layers; Data
	Networking Technologies; Supervisory Control and Data Acquisition systems (SCADA);
	Networking with SCADA; Teleprotection

3.	Smart Grid Network Architect and Design: Architecture Framework, Wide Area Network, Field Area Network (FAN), Network Design Process, Network Traffic, Routing architecture, QoS in Smart grid network, Security in Smart Grid Network
4.	Recent Trends in Smart Grid: IoT based Smart Grid Communication, Machine Learning and Artificial Intelligence Based Solutions for Smart Grid, Other recent trends based on recent Journal papers.

Recommended Books:

1.	Communication networks for smart grids. Springer London Limited, 2016.	Budka, Kenneth C., Jayant G. Deshpande, and Marina
2.	Smart grid: Communication-enabled intelligence for the electric power grid. John wiley & sons, 2014.	Bush, Stephen F.
3.	Smart grid communications and networking. Cambridge University Press, 2012.	Hossain, Ekram, Zhu Han, and H. Vincent Poor, eds.

_

Subject: Computer	Year & Semester:	Total Course Credit: 4			
Networks (Code: CST 54)	Communication		L	Т	Р
	4 th Year & 8 th Sen	3	1	-	
Evaluation Policy	Mid-Term Class Assessment		End-Term		n
	30 Marks	10 Marks	60 Marks		5

Objectives: (Maximum 25 Words) Concepts and implementation of computer networks; architecture, protocol layers, inter-networking and addressing; network application development.

Course Outcomes:Upon successful completion of the course, student should be able to: **CO1:** Describe and analyze the hardware, software, components of a network and the interrelations.

CO2: Explain networking protocols and their hierarchical relationship

CO3: Compare protocol models and select appropriate protocols for a particular design. **CO4:** Explain concepts and theories of networking and apply them to various situations, classifying networks

Details of the syllabus:

S.No.	Particulars
1.	Basic concept of network: Advantages and applications, Types of networks (LAN, MAN
	and WAN), Different network topologies like star, ring, hybrid, tree.
2.	Network Protocol Architecture: OSI Reference model, Layers of the OSI model.
	Physical, Data-link, Network, Transport, Session, Presentation and Application layer.
3.	Network Switching Techniques: Circuit switched, message switching and packet
	switched networks, Datagram and virtual circuit services, Frame relay, ATM
4.	Flow and Error Control: Stop and wait flow control, Sliding window flow control, error
	control protocols, ARQ techniques, Stop-&-wait ARQ, Go back by N ARQ, Selective
	repeat ARQ.
5.	Routing algorithms: Routing tables, features of a routing algorithm, classification,
	optimality principle, sink tree, shortest path algorithm, Dijkstra algorithm, flooding, fixed
	routing, random routing, adaptive routing, distance vector and link state algorithm.
	Congestion Control: Congestion in networks and quality of service.
6.	Medium Access Control Protocols: TDMA, FDMA, CDMA, ALOHA, Slotted ALOHA,
	CSMA, CSMA/CD, Ethernet, Token Ring network
7.	Network security: Need for network data security, plaintext, cifertext, encryption
	techniques, substitution, transposition, DES encryption standard, Private key, public key,
	Authentication.

Recommended Books:

S. No	Name of Book	Author
1	Data & Computer Communications, 7th Ed, PHI	William Stallings
2	Computer Networks, PHI	Andrew Tanenbaum,
3	Computer Networks, A Systems Approach", 5th ed., Elsevier, 2011	Peterson and Davie
4	"Computer Networks: An Open Source Approach", McGraw- Hill, 2011.	Ying-Dar Liu, Ren-Hung Hwang, Fred Baker,

_

Subject: Discrete	Year & Semester: B. Tech		Total Course Credit: 3		
Mathematics	Electronics & Communication		L	Т	Р
(Code: MAT 801)	Engineering 4 th Year & 8 th Semester		2	1	-
Evaluation Policy	Mid-Term Class Assessment		Enc	l-Term	
	30 Marks	10 Marks	60	Marks	

Prerequisites: Elementary knowledge of set theory is needed.

Course Outcomes: This course covers discrete mathematics for Electronics and

Communication Engineering. So, at the end the student should be able:

CO 1	to use different counting techniques
CO 2	to understand and identify structures on many levels
CO 3	to apply the concepts needed to test the logic of a programme
ŀ	to familiarize the applications of some elementary algorithms and classical theorems on
	graphs, apply graphs in concrete situations
5	to apply the concepts and properties of algebraic structures like groups, rings and fields
	to familiarize the properties of modular arithmetic

S.No	Particulars
1.	Combinatorics (08 hrs)
	Introduction, basic counting principles, pigeon hole principle with applications, inclusion-
	exclusion principle, recurrence relations and generating functions, introduction to special
	numbers.
2.	Ordered sets and Lattices (08 hrs)
	Ordered sets, Partially ordered sets, Supremum and Infimum, well ordered sets, Lattices,
	basic properties of algebraic systems defined by lattices, complemented lattices and
	distributive lattices. Coding Theory: coding of binary information and error detection,
	decoding and error correction
3.	Graph Theory-I (08 hrs)
	Introduction to graphs, graph terminology, Euler and Hamiltonian paths, graph
	connectivity, graph homomorphism, graph isomorphism, planar graphs, graph coloring,
	matrix representation of graphs, introduction to directed graphs, strong directed graphs
4.	Graph Theory-II (06 hrs)
	Introduction to trees, properties of trees, spanning trees, minimal spanning trees, Prim's
	Algorithm and Kruskal's Algorithm, matrix tree theorem, Degree sequences in trees,
	Necessary and sufficient conditions for a sequence to be a degree sequence of a tree.
5.	Algebraic Structures (08 hrs)
	Groups, subgroups, generators and relations, cyclic groups, groups of rotations and
	reflections, cosets and Langrange's Theorem, homomorphisms and normal subgroups,
	isomorphisms, automorphisms, semi-groups, rings, ring homomorphism and isomorphism,

	ideals, finite fields.
6.	Number Theory & Cryptography (08 hrs)
	Modular arithmetic, the distribution of primes, prime number theorem, Fermat's theorem
	and its consequences, symmetric ciphers, public key cryptography.

Text Books:

- 1. G. Chartand and P. Zhang, *A first course in graph theory*, 2nd Edition, Dover publications, New York, (2012).
- 2. M. R. Spiegel: Discrete Mathematics (Schaum's Outline series), Tata Mc-Graw Hill, (2009).
- 3. K. H. Rosen, *Discrete Mathematics and its* applications, 5th Edition, Tata Mc-Graw Hill, (2003).
- 4. I. Niven, H. Zuckerman, An Introduction to Theory of Numbers, 5th Edition, Wiley Publications, (1991).

Reference Books:

- 1. C. L. Liu, *Elements of Discrete Mathematics*, 2nd Edition, Tata Mc-Graw Hill, (2000).
- 2. B. Kolman, R. Busby and S. Ross, *Discrete Mathematical Structures*, 6th Edition, Prentice Hall, (2009).
- 3. D. B. West, Introduction to Graph Theory, 2nd Edition, Pearson publications, (2002).
- 4. T. Koshy, *Discrete Mathematics with Applications*, 1st Edition, Elesvier Academic press, (2004).

DEPARTMENT OF INFORMATION TECHNOLOGY

NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR

SCHEME OF COURSES

FOR

B. TECH. INFORMATION TECHNOLOGY

2019 BATCH 3rd and 4th year

Semester - V

S.No.	Course	Code	LTP	Credits
1	Design & Analysis of Algorithms	ITT301	3 1 0	4
2	Microprocessor	ITT302	3 1 0	4
3	Computer Organization & Architecture	ITT303	3 1 0	4
4	Theory of Computation	ITT304	3 1 0	4
5	Data Communication	ITT305	3 1 0	4
6	Introduction to Probability and Statistics	MAT301	3 0 0	3
7	Design & Analysis of Algorithms Lab	ITL306	0 0 2	1
8	Microprocessor Lab	ITL307	0 0 2	1
	Total credits			25

Semester - VI

S.No.	Course	Code	LTP	Credits
1	Computer Networks	ITT350	3 1 0	4
2	Artificial Intelligence	ITT351	3 0 0	3
3	Computer Graphics	ITT352	3 0 0	3
4	Big Data	ITT353	3 0 2	4
5	Object-Oriented Programming II with Java	ITT354	3 0 0	3
6	Computer Networks Lab	ITL355	0 0 2	1
7	Artificial Intelligence Lab	ITL356	0 0 2	1
8	Computer Graphics Lab	ITL357	0 0 2	1
9	Object-Oriented Programming II with Java Lab	ITL358	0 0 2	1
10	Elective I	ITx0xx	Refer to Elective List	3
11	Tour & Training	ITI359	0 0 2	1
	Total credits			25

_

Semester - VII

S.No.	Course	Code	L	Т	Р	Credits
1	Wireless & Mobile Communication	ITT401	3	1	0	4
2	Information Security	ITT402	3	1	0	4
3	Image Processing	ITT403	3	1	0	4
4	Cloud Computing	ITT404	3	1	0	4
5	Information Security Lab	ITL405	0	0	2	1
6	Image Processing Lab	ITL406	0	0	2	1
7	Cloud Computing Lab	ITL407	0	0	2	1
8	Elective II	ITx0xx	Refer to Elective List			3
9	Pre project	ITP408	0	0	4	2
10	Seminar	ITS409	0	0	2	1
	Total credits					25

Semester - VIII

S. No.	Course	Code	L	Т	Р	Credits
1	Machine Learning	ITT450	3	1	0	4
2	Elective III or SWAYAM Course I	ITx0xx	Refer to		r to	4
3	Elective IV or SWAYAM Course II	ITx0xx	Elective List			4
4	Project	ITP451	0	0	20	10
5	Economics & Business Management	HST450	3	0	0	3
	Total credits					25

_

List of Electives

List of Electives

S. No.	Subject	Code	L	ТР	Credits
1.	Green Computing	ITT001	3	0 0	3
2.	Management Information Systems	ITT002	3	0 0	3
3.	Geographic Information System	ITT003	3	0 0	3
4.	E-Health	ITT004	3	0 0	3
5.	Bioinformatics	ITT005	3	0 0	3
6.	Biometrics and Network Security	ITT006	3	0 0	3
7.	Software Project Management	ITT007	3	0 0	3
8.	Cyber Security & Forensics	ITT008	3	0 0	3
9.	Pervasive Computing	ITT009	3	0 0	3
10.	System Design	ITT010	3	0 0	3
11.	Advanced Image Processing	ITT011	3	1 0	4
12.	Virtualization and Cloud	ITT012	3	1 0	4
13.	Ad hoc & Wireless Sensor Networks	ITT013	3	1 0	4
14.	Natural Algorithms	ITT014	3	1 0	4
15.	Natural Language Processing	ITT015	3	1 0	4
16.	Network Management & administration	ITT016	3	1 0	4
17.	Distributed Computing	ITT017	3	1 0	4
18.	Advanced Artificial Intelligence	ITT018	3	1 0	4
19.	Foundations of Automatic Verification	ITT019	3	1 0	4
20.	Realtime Operating System	ITT020	3	1 0	4
21.	Advanced Database Management Systems	ITT021	3	1 0	4
22.	Deep learning	ITT022	3	1 0	4
23.	High Performance Computing	ITT023	3	1 0	4
24.	Synthesis of Digital Systems	ITT024	3	1 0	4
25.	Advanced Algorithms	ITT025	3	1 0	4
26.	Advanced Computer Networks	ITT026	3	1 0	4
27.	Simulation using Matlab and Python	ITL027	1	0 4	3
28.	Blockchain	ITT028	2	0 2	3
29.	Object Oriented Programming using JAVA	ITT029	2	0 2	3
30.	Digital Signal Processing	ITT030	3	1 0	4
31.	Introduction to Logic and Functional Programming	ITT031	3	1 0	4
32.	Advanced Computer Graphics	ITT032	3	1 0	4
33.	Embedded Systems	ITT033	3	0 2	4
34.	Computer vision and Robotics	ITT034	3	0 2	4
35.	Expert Systems	ITT035	3	0 2	4
36.	Open Source and Software development	ITT036	3	0 2	4
37.	Internet of Things	ITT037	3	0 2	4

_
S. No.	Subject	Code
1.	Compiler Design	CS0
2.	VLSI Design	EC0
3.	Operations Research	MA0
4.	Optimization Techniques	MA0
5.	Mathematical Modeling & Simulations	MA0
6.	Numerical Methods	MA0

List of electives from other Departments

* Electives relevant to the coursework offered by other departments may also be included

5th Semester

Course Title	Code	L	Т	Р	Credits
Design & Analysis of Algorithms	ITT301	3	1	0	4

Course Outcomes (COs):

CO1: Understand basics of algorithm efficiency and asymptotic notations.

CO2: Study various divide & conquer and greedy algorithms.

CO3: Understand the concept of dynamic programming with applications.

CO4: Study various graph searching and traversal algorithms.

CO6: Understand various computational complexity measures.

Syllabus:

UNIT I - Introduction

Algorithm Design paradigms - motivation, concept of algorithmic efficiency, run time analysis of algorithms, Asymptotic Notations, Master theorem.

UNIT II - Divide & Conquer methods

Divide & amp; Conquer algorithms: examples, Binary search, Quick sort, Strassen's algorithm for matrix multiplication, analysis of divide and conquer runtime reference relations.

UNIT III - Dynamic Programming and Greedy paradigm

Overview of dynamic programming, difference between dynamic programming and divide and conquer. Dynamic Programming: Matrix Chain Multiplication (MCM), Longest Common Subsequence (LCS), Optimal Binary Search Tree (OBST). Overview of the greedy paradigm. General Greedy approach Vs Dynamic Programming approach Case studies: fractional Knapsack vs 0/1 Knapsack problem.

UNIT IV - Graph searching and traversal

Representation of Graphs, Breadth First Search, Depth First Search, Topological Sort, Strongly Connected Components, examples of exact optimization solution (minimum cost spanning tree), Dijkstra's and Bellman ford algorithm, All pair shortest path, Flyod Warshall Algorithm.

UNIT V - Backtracking and Computational complexity

Back Tracking: Overview, 8-queen problem. Branch & amp; Bound: LC searching, bounding, FIFO branch and bound, Travelling salesman problem. Computational complexity Complexity measures, Polynomial vs non-polynomial time complexity; NP hard and NP complete classes, examples

Text Books:

1. Introduction to Algorithms, by Cormen, Leiserson, Rivest, and Stein, MIT Press.

Reference Books:

- 1. Algorithms, by Dasgupta, Papadimitrou and Vazirani, McGraw-Hill Education, 2006.
- 2. Computer Algorithms, by Horowitz, Sahni, and Rajasekaran, Silicon Press, 2007.
- 3. Algorithm Design, by Kleinberg and Tardos, Pearson, 2005.
- 4. Algorithm Design, by Goodrich and Tamassia, Wiley, 2001.

Course	Code	L	Т	Р	Credits
Microprocessor	ITT302	3	1	0	4

Course Outcomes (COs):

CO1: Describe the general architecture & amp; organization of 8085 and 8086 Microprocessor and understand the difference between 8085 and advanced microprocessor. CO2: Understand and classify the instruction set of 8085 and 8086 microprocessors and distinguish the use of different instructions and apply it in assembly language programming. CO3: Ability to understand and write programs for stacks, delays, counters and subroutines. CO4: Illustrate how the different peripherals (8255, 8279, etc.) are interfaced with Microprocessor CO5: Analyze the data transfer information through serial and parallel ports.

Syllabus:

UNIT I - MICROPROCESSOR-BASED SYSTEMS: HARDWARE AND INTERFACING:

Microprocessors, Microcomputers, and Assembly Language, Introduction to 8085 Assembly Language Programming, Microprocessor Architecture and Microcomputer Systems, 8085 Microprocessor Architecture and Memory Interfacing I/O Devices

UNIT II - PROGRAMMING THE 8085:

Introduction to 8085 Instructions, Programming Techniques with Additional Instructions, Counters and Time Delays, Stack and Subroutines, Code Conversion, BCD Arithmetic, and 16-Bit Data Operations, Software Development, Assemblers, and IDE

UNIT III - INTERFACING PERIPHERALS (I/OS) AND APPLICATIONS:

Interrupts, Interfacing Data Converters, Programmable Interface Devices: 8155 I/O and Timers: 8279 Keyboard / Display Interface, General Purpose Programmable Peripheral Devices, Serial I/O and Data Communication, Microprocessor Applications, Trends in Microprocessor Technology

UNIT IV - MICROPROCESSOR 8086:

Pin diagram, Architecture, Addressing Modes, Timing diagram, Instruction Set, Programming Techniques, Interrupt, Assembler Directives, Memory & I/O mapping

Text Books:

1. Ramesh S.Goankar, Microprocessor Architecture, Programming and Applications with the 8085.

Reference Books:

- 1. Douglas .V Hall, Microprocessor & Interfacing, Tata McGraw Hill
- 2. Rafiquzzuman .M, Microprocessor theory & Applications, Prentice Hall of India
- 3. Yuchenhiu, Glenn A Gibson, Microprocessor Systems 8086/8088 Family, Prentice Hall of India

Course	Code	L	Т	Р	Credits
Computer Organisation & Architecture	IT T303	3	1	0	4

Course Outcomes (COs):

CO1: Understand the basics of computer architecture and how it interacts with the software. Understand how computers represent and manipulate data. Understand computer arithmetic.

CO2: Understand how decisions made in hardware affect the software/programmer as well as hardware designer.

CO3: Understand the fundamental principles and tradeoffs in designing the hardware/software interface i.e., instruction set architecture.

CO4: Understand the design of major components of a modern programmable microprocessor.

CO5: Understand the techniques to improve the performance of the modern processors.

CO6: Understand the basics of the memory hierarchy in the high performance computers and the numerous techniques to improve the efficiency of the memory system.

Syllabus:

UNIT I - INTRODUCTION TO COMPUTER ARCHITECTURE AND ORGANIZATION:

Defining computer architecture and computer organization, classes of computers, basic structure of computers, Operational concepts, performance and Amdhal's law.

UNITY II - ARITHMATIC AND LOGIC UNIT:

Microperations and their RTL specifications, Adder/Subtractor, Shifter, Multiplication and division circuits, Arithmatic logic shift unit.

Arithmetic addition & Subtraction of Signed and unsigned numbers-algorithm and hardware, Multiplication and division of Signed and unsigned numbers-algorithm and hardware, IEEE754 representation of Floating Point Numbers & Operations.

UNIT III - CONTROL AND PROCESSOR UNT:

Control Unit: Machine instructions, Execution of a complete Instruction, Multiple Bus organization, Hardwired control, Micro-programmed control.

Processor Unit: Components, organization types, addressing modes, Instruction types, Concept of sub-routine and sub-routine call. Use of stack.

UNIT IV- I/O AND MEMORY UNIT:I/O Unit:

Synchronous vs. Asynchronous I/O, I/O techniques - interrupts, polling, DMA, IOP

Memory unit: Memory organization, Types of memories and performance considerations, organization of memory modules, associative memory, cache memory and related mapping and replacement policies, virtual memory.

Introduction to Pipelining: Concepts, Basic pipelining, Hazards.

Text Books:

- 1. Computer Organization, Hamachar, Vranesic & Zaky, TMH.
- 2. Computer Organization & Architecture, M. M. Mano, PHI.

Reference Books:

- 1. Computer system architecture, Morris Mano, Pearson.
- 2. Computer organisation & Architecture, Paterson.

Course	Code	L	Т	Р	Credits
Theory of Computation	ITT304	3	1	0	4

Course Outcomes (COs):

CO1: Explore the different ways to reason about the correctness of algorithms for solving various computer science problems?

CO2: Defining the working and properties of various computational models. How do we mathematically model computers?

CO3: Designing finite automata and regular expressions, writing context-free grammars, reducing problems to one another.

CO4: Explore why some problems are harder to solve than others, and see how to reason with mathematical certainty.

CO5: Find the limits of what problems can be solved by computers. Proving which problems are impossible to solve with computers. Exploring $P \stackrel{?}{=} NP$.

Syllabus:

UNIT I - INTRODUCTION:

Mathematical Preliminaries and Notation, Sets, Relations, and Functions, Graphs, Methods of Proof, Basic Concepts: Languages, Grammars, Automata, some applications. Finite State Automata: Deterministic Finite acceptors, Deterministic acceptors and transitions Graphs, Languages and DFAs, regular languages, Non-deterministic Finite Acceptors, Definition, why Nondeterminism, Equivalence of NFA and DFA, Reduction of finite automata.mealy and Moore machines,

UNIT II - REGULAR LANGUAGES AND REGULAR GRAMMARS:

Regular expressions, definition, language associated with regular expressions, connection between Regular expression and regular languages, regular grammars, right and left linear grammars. Closure properties of regular languages under various operations, identifyingNonregular languages. Pigeonhole principle, pumping lemma.

UNIT III - CONTEXT-FREE LANGUAGES:

Definition of context free grammars, examples, leftmost and rightmost derivations, derivation Tree, Parsing and ambiguity, parsing and membership, ambiguity in grammars and languages. Context Free languages and programming languages. Methods for transforming grammars, substitution rules, removing useless productions, removing λ -productions, Removing Unit productions, Normal forms, Chomsky form, Greibach Normal form, Membership algorithms for context fee grammars. Properties of CFL, pumping lemmas, closure properties and decision algorithm properties, decidable properties of CFL.

UNIT IV - PUSHDOWN AUTOMATA:

Definition of Pushdown Automata, Nondeterministic Pushdown Automata, languages accepted by PDA, PDA for CFL,CFL for PDA, DPDA and DCFL. Grammars for CFLs.

Turing Machines: The Standard Turing Machine, Definition of a Turing Machine, Turing Machines as Language AcceptersTuring Machines as Transducers, Combining Turing Machines for Complicated Tasks, Turing's Thesis, variations on Turing machine. Nondeterministic Turing machine

UNIT V - UNDECIDABILITY: The ChomskyHierarchy, Recursive and Recursively Enumerable Languages, Context-Sensitive

(grammars and Languages, A language that is not Recursively Enumerable Languages, Context-Sensitive (grammars and Languages, A language that is not Recursively Enumerable (RE),problems that cannot be solved by using Turing machine, An undecidable problem that isRE, Undecidable problems about Turing Machine, Post's Correspondence Problem ,the complexity classes P and NP and language families.

Text Books:

- 1. Peter Linz, "An Introduction to Formal Language and Automata", Narosa Publishing house.
- 2. M.Sipser; Introduction to the Theory of Computation; Singapore: Brooks/Cole, Thomson Learning.
- 3. John.C.martin, "Introduction to the Languages and the Theory of Computation", Tata McGrawHill.
- 4. K.Krithivasan and R.Rama; Introduction to Formal Languages, Automata Theory and Computation; Pearson Education.
- 5. J.E.Hopcroft, R.Motwani and J.D.Ullman, "Introduction to Automata Theory Languages and computation", Pearson Education Asia.

Course	Code	L	Т	Р	Credits
Data Communication	ITT305	3	1	0	4

Course Outcomes (COs):

CO1: Understand the basics of data and signal.

CO2: Study OSI and TCP/IP reference models and compare the two.

CO3: Discuss the different types of network topologies and types of networks based on size with suitable applications.

CO4: Explore the existing types of transmission media and compare them with the state of the art.

CO5: Study various techniques of analog and digital conversions.

CO6: Understand various techniques used in the physical layer and data link layer.

Syllabus:

UNIT I - DATA COMMUNICATION NETWORK: Data communication concept, Basic concept of network, Types of networks (LAN, MAN and WAN), Different network topologies like star, ring, hybrid, tree. Network models (OSI and TCP/IP).

Transmission media: Guided and unguided media, twisted wire pair, co-axial cable, optical fibre, microwave links, satellite microwave link, their characteristic features and applications for data transmission.

Data and signals: Data, Signals, Types of Signals, Bandwidth, spectrum, transmission impairments, Shanon capacity.

UNITII-DIGITALTRANSMISSIONTECHNIQUES:Digital-to digital conversions: Nyquist sampling theorem, quantization, Pulse code modulation, Delta modulation.TECHNIQUES:

UNITIII-ANALOGTRANSMISSIONTECHNIQUES:Digital-to-analog conversion:ASK, FSK, PSK, QAM. Signal constellation.Analog-to-analogconversion:amplitude modulation, frequency modulation, phase modulation.Analog-to-analog

UNIT IV - BANDWIDTH UTILIZATION TECHNIQUES: Frequency Division Multiplexing, Time Division Multiplexing, Wavelength division Multiplexing, Spread Spectrum.

UNIT V - **ERROR DETECTION AND CORRECTION:** Errors in data communication: Types of errors, error detection and correction techniques, simple

narity	check	computation	of	CRC	Checksum	Hamming	code
parity	check,	computation	01	CICC,	Checksum,	manning	couc.

Recommended Books:

- 1. William Stallings: Data & Computer Communications, PHI.
- 2. Andrew Tanenbaum, "Computer Networks" PHI
- Sklar, "Digital Communications fundamentals & Applications".
 Keizer, "Local Area Networks" McGraw Hill

Course	Code	L	Т	Р	Credits
Introduction to Probability and Statistics	MAT301	3	0	0	3

Course Outcomes (COs):

CO1: Understand the basic concepts of random variables, probability distribution.

CO2: Understand concepts behind different distributions and their applications.

CO3: Understand the concept of joint probability distribution, Correlation Coefficient,

Transformation of random variables, Regression Analysis

CO4: Compute point estimation of parameters, explain sampling distributions, and understand the central limit theorem.

CO5: Construct confidence intervals on parameters for a single sample.

<u>Syllabus:</u> <u>Unit-I Random variables</u>:

Discrete and Continuous Random variables, Distribution functions, Expectation and Variance of Probability distribution, and Moment Generating function, Moments and properties. Discrete distributions: Binomial, Poisson and Geometric distributions and their applications.

Continuous distribution: Uniform, Exponential and Normal distributions, Normal approximation to Binomial distribution and their applications.

Unit II: Two-Dimensional Random Variables

Bivariate Random Variables, Joint Distribution Functions (Discrete and Continuous), Marginal and Conditional Distributions, Covariance and Correlation Coefficient, Transformation of random variables. Regression Analysis, Linear and Non linear Regression, Multiple regression, Curve fitting by method of least squares, fitting of straight lines, polynomials, exponential curves.

Unit III: Sampling Theory

Population and Sample, Statistical inference, Sampling with and without replacement, Random samples, Population parameters, Sample statics, Sampling distributions, Sample mean, Sampling distribution of means, Sample variances, Sampling distribution of variances, Case where population variances is unknown, Unbiased estimates and efficient estimates, point estimate and Interval Estimates, Confidence Interval estimates of population parameters.

Textbooks Recommnded:

1. Introductory STATISTICS, Neil A. Weiss, 9th Edition. Pearson, 2012.

- Probability and Statistics for Engineers, Johnson, Miller and Freund, Pearson Education, 8th Edition, 2015.
- 3. Fundamentals of Statistics, S. C. Gupta, 7th Edition, Himalaya Publishing House 2018.
- 4. S. Ross: A First Course in Probability, 6th Ed., Pearson Education India, 2002.
- 5. Fundamentals of Mathematical Statistics, S.C. Gupta, V.K Kapoor, Sultan Chand,
- 6. Introduction to Mathematical Statistics, Robert V. Hogg, Joseph W. McKean and Allen T. Craig, Second Edition, LPE Pearson Prentice hall, 2007.

References:

- 1. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Third Edition, Narosa Pub. House, 2008.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000
- 3. An Introduction to Probability and Mathematical Statistics, V.K. Rohatgi and A. K. Md. Ehsanes Saleh, Second Edition, John Wiley and sons, 2008.
- 4. Schaum's Outline of Theory and Problems of Probability, Random Variables, and Random Processes, Hwei P. Hsu, Tata Mc-Graw Hill Edition.

Course Title	Code	L	Т	Р	Credits
Design & Analysis of Algorithms Lab	ITL306	0	0	2	1

Course Outcomes (COs):

CO1: Implement various divide and conquer based algorithms.

CO2: Study and implement greedy algorithms for minimum cost spanning tree, Knapsack problem, single source shortest paths.

CO3: Implement dynamic programming.

CO4: Implement various graph searching and traversal algorithms.

CO6: Implement branch and bound algorithm for various problems.

Syllabus:

1.	Divide and conquer algorithms.
2.	Greedy algorithms for minimum cost spanning tree, Knapsack problem, single source
	shortest paths.
3.	Dynamic Programming with applications.
4.	Graph searching and traversal algorithms.
5.	Backtracking algorithms: 8-queen problem and Knapsack problem.
6.	Branch and bound algorithm with applications.

Course	Code	L	Т	Р	Credits
Microprocessor Lab	ITL307	0	0	2	1

Course Outcomes (COs):

CO1: To become familiar with the architecture and Instruction set of Intel 8085 microprocessor

CO2: To provide practical hands on experience with Assembly Language Programming.

CO3: Develop ALP for 8 and 16 bit Arithmetic operations using 8086 microprocessor.

CO4: To familiarize the students with interfacing of various peripheral devices with 8085 microprocessor.

CO5: Analyze the data transfer information through serial & amp; parallel ports.

CO6: To improve programming logic and concepts of 8085 microprocessor by developing programs for various applications.

Syllabus:

- i) To develop a program to add two double byte numbers.
- ii) To develop a subroutine to add two floating point quantities.
- iii) To develop program to multiply two single byte unsigned numbers, giving a 16 bit product.
- iv) To develop subroutine which will multiply two positive floating points numbers?
- v) To write program to evaluate $P^* Q^* + R^* \& S$ are 8 bit binary numbers.
- vi) To write a program to divide a 4 byte number by another 4 byte number.
- vii) To write a program to divide an 8 bit number by another 8 bit number upto a fractional quotient of 16 bit.
- viii) Write a program for adding first N natural numbers and store the results in memory location X.
 - ix) Write a program which decrements a hex number stored in register C. The Program should half when the program register reads zero.
- x) Write a program to introduce a time delay of 100 ms using this program as subroutine display numbers from 01H to OAH with the above calculated time delay between every two numbers.
- xi) N hex numbers are stored at consecutive memory locations starting from X. Find the largest number and store it at location Y.
 - xii) Interface a display circuit with the microprocessor either directly with the bus or by using I/O ports. Write a programme by which the data stored in a RAM table is displayed.
- xiii) To design and interface a circuit to read data from an A/D converter, using the 8255 A in the memory mapped I/O.

xiv) To design and interface a circuit to convert digital data into analog signal using the 8255 A in the memory mapped I/O.

xv) To interface a keyboard with the microprocessor using 8279 chip and transfer the output to the printer.

xvi) To design a circuit to interface a memory chip with microprocessor with given memory map.

_

6th Semester

Course	Code	L	Т	Р	Credits
Computer Networks	ITT350	3	1	0	4

Course Outcomes (COs):

CO1: Understand the need for networking in general and computer networks in particular.

CO2: Study the prevalent TCP/IP reference model and understand various error, flow and access control strategies.

CO3: Study the IPV4 addressing and the strategies to delay the transition to IPV6 using techniques like subnetting, VLSM, NAT.

CO4: Understand routing in networks and study various routing algorithms.

CO5: Study the mechanism for connection establishment, termination between the nodes and the ways of reducing network congestion.

CO6: Understand various application layer services.

Syllabus:

UNIT I - INTRODUCTION:

History and development of computer networks, networks topologies. Layering and protocols.

UNIT II - PHYSICAL LAYER:

Different types of transmission media, errors in transmission: attenuation, noise. Encoding (NRZ, NRZI, Manchester, AMI, etc.).

UNIT III - DATA LINK LAYER AND SWITCHING:

MAC Layer: Aloha, CSMA, CSMA/CD, CSMA/CA protocols. Data Link Layer: Error detection (Parity, CRC), Framing, Sliding Window, Stop and Wait protocols, HDLC. Switching Theory: Circuit Switching, Message switching, Packet switching.

UNIT IV - NETWORK LAYER:

Network layer: Internet Protocol, IPv6, ARP, DHCP, ICMP, Routing algorithms: Distance vector, Link state, Metrics, Inter-domain routing. Dijkstra, Bellman-Ford Algorithms. Subnetting, Classless addressing, Network Address Translation.

UNIT V - TRANSPORT AND APPLICATION LAYER:

Transport layer: UDP, TCP. Connection establishment and termination, sliding window revisited, flow and congestion control, timers, retransmission, TCP extensions.

Application layer: DNS, SMTP, IMAP, HTTP, etc.

Recommended Books:

- 1. JF Kurose, KW Ross, Computer Networking: A Top-Down Approach.
- 2. Behrouz A. Forouzan, Data communications and Networking.
- 3. Andrew S. Tanenbaum, Computer Networks.
- 4. William Stallings, Data and Computer Communications.

Course	Code	L	Т	Р	Credits
Artificial Intelligence	ITT351	3	0	0	3

Course Outcomes (COs):

CO1: Gain historical perspective of AI and its formation.

CO2: Introduce the basic principles of AI problem solving.

CO3: Apply basic principles in problem solving, inference, perception, knowledge representation and learning.

CO4: Investigate applications of AI techniques in intelligent agents, expert systems, machine learning models.

CO5: AI development tools and techniques.

Syllabus:

UNIT I - INTRODUCTION:

Introduction to AI and intelligent agents.Problem Solving : Solving Problems by Searching, heuristic search techniques, constraint satisfaction problems, stochastic search methods, adversarial search,Game playing : minimax, alpha-beta pruning.

UNIT II - KNOWLEDGE REPRESENTATION AND REASONING:

Building a Knowledge Base : Propositional logic, first order logic, Theorem Proving in First Order Logic. Production Systems, Semantic Nets, Frames and Scripts Formalisms. Resolution in Predicate Logic, Unification, Strategies for Resolution by Refutation. Knowledge Acquisition and learning: Learning from examples and analogy, Rote learning, Neural Learning, Integrated Approach. Planning, partial order planning. Uncertain Knowledge and Reasoning, Probabilities, Bayesian Networks.

UNIT III - INTRODUCTION TO MACHINE LEARNING:

Machine Learning, Supervised Learning, Unsupervised Learning, Reinforcement Learning. Introduction to Probability, Basics Linear Algebra, Statistical Decision Theory – Regression & Classification, Bias – Variance, Overfitting and complexity; training, validation, test data.

UNIT IV - EXPERT SYSTEM:

Existing Systems (DENDRAL, MYCIN), domain exploration, Meta Knowledge, Expertise Transfer, Self Explaining System.Fuzzy logic: Fuzzy Logic Propositional logic, Membership functions, Fuzzy logic, Fuzzy rule generation, De-fuzzification, Time dependent fuzzy logic, Temporal fuzzy logics, Case study-to use fuzzy logic for processes control problem Programming Language: Introduction to programming Language- LISP, PROLOG

UNIT V - NEURAL NETWORKS:

Overview of different forms of learning, Learning Decision Trees, Neural Networks- Basics of

Neural Networks: Perceptrons, Feedforward nets Backpropagation algorithm, preliminary understanding of unsupervised learning.

Pattern Recognition: Introduction to Pattern Recognition, Structured Description, Symbolic Description, Machine perception, Line Finding, Interception, Semantic & Model, Object Identification, Speech Recognition.

Text Books:

- 1. Rich & Knight, "Artificial Intelligence".
- 2. Elamie, "artificial Intelligence", Academic Press.

Reference Books:

- 1. Char nick "Introduction to Artificial Intelligence", Addision Wesley.
- 2. Winston, "LISP", Addison Wesley.

Course	Code	L	Т	Р	Credits
Computer Graphics	ITT352	3	0	0	3

Course Outcomes (COs):

CO1: Understand the basics of computer graphics, different graphics systems and applications of computer graphics.

CO2: Provide an understanding of how to scan convert the basic geometrical primitives, how to transform the shapes to fit them as per the picture definition.

CO3: Use of geometric transformations on graphics objects and their application in composite form.

CO4: Extract scene with different clipping methods and its transformation to graphics display device.

CO5: Explore projections and visible surface detection techniques for display of 3D scene on 2D screen.

CO5: Render projected objects to naturalize the scene in 2D view and use of illumination models for this.

Syllabus:

UNIT

INTRODUCTION:

computer graphics, Co-ordinate representation, Pixel, Raster Scan & Random Scan methods, color, CRT Raster, scan basics, video basics, interactive devices, graphics input and output devices, mouse, track ball, light pen, digitizer, thumb wheel, raster scan graphics, applications.

UNIT II - Line GENERATION:

Points and lines generation algorithm, DDAlines drawing algorithm, Bresenham's lines drawing algorithm, circle generating algorithm, midpoint circle algorithm, midpoint ellipse generating algorithm, other curves, conic sections, polynomial and spline curves, Pixels addressing, filled-area primitives, scan-line polygon filled algorithms, inside-outside tests, scan-line fill of curved boundary algorithms,boundary fill algorithms,flood-fill algorithms, fill-area functions, character generation.

UNIT III - SEGMENTS:

Segments table, Creating, Deleting and renaming a segment Visibility, Image transformation.

UNIT IV - TRANSFORMATION:

2D Transformation, An introduction to 3D transformation, Projections, Light, color and shading.

UNIT V - WINDOWING AND CLIPPING:

Viewing transformation, Clipping. Generalized clipping IN 2D.

Ι

Hidden line and surfaces: Back-face Removal Algorithms, Hidden line methods

Rendering and Illumination: Introduction to curve generation, Bezier, Hermite and B-spline algorithms and their Comparisons

Text Books:

- 1. Computer Graphics (Principles and Practice) by Foley, van Dam, Feinerand Hughes, Addisen Wesley.
- 2. Computer Graphics by D Hearn and P M Baker, Printice Hall of India.
- 3. Mathematical Elements for Computer Graphics by D F Rogers, McGraw Hill
- 4. Procedural Elements for Computer Graphics by D F Rogers, McGraw Hill

Course	Code	L	Т	Р	Credits
Big Data	ITT353	3	0	2	4

Course Outcomes (COs):

CO 1: Understand Big Data, its platform and its use cases .
CO 2: Provide an overview of Apache Hadoop ,HDFS Concepts and Interfacing with HDFS
CO 3: Understanding Data Sciences and Data life cycle
CO 4: Understanding and Using Supervised and Unsupervised Learning Algorithms
CO 5: Tools and Technologies for Unstructured Data Analytics
CO 6: Implementing Machine Learning algorithms using Python

Syllabus:

Unit I - INTRODUCTION:

Big Data Overview, Introduction to the Big Data problem. Current challenges, trends, and applications, Algorithms for Big Data analysis. Data sets, Mining and learning algorithms that deal with large datasets Technologies for Big Data management. Big Data technology and tools, special consideration made to the Map-Reduce paradigm and the Hadoop ecosystem.

Unit II - DATA SCIENCE:

What is data sciences, The rising and importance of data sciences, Big data analytics in industry verticals, Data Analytics Lifecycle and methodology, Data Understanding, Data Preparation.

Unit III - MODELING:

Evaluation, Communicating results, Deployment, Data exploration & preprocessing.

Unit IV - MEASURES AND EVALUATION:

Data Analytics: Theory & Methods, Supervised learning, Linear/Logistic regression, Decision trees, Naïve Bayes, Unsupervised learning, K-means clustering, Association rules

Unit V - UNSTRUCTURED DATA ANALYTICS:

Technologies & tools, Text mining, Web mining, Operationalizing an Analytics project, Data Visualization Techniques, Creating final deliverables

Term project: Using Amazon AWS, BlueMix, Cognos, Biginsights.

Text Books:

1. Big Data: A Revolution That Will Transform How We Live, Work, and Think by Viktor Mayer-Schönberger, Kenneth Cukier.

2. Hadoop: The Definitive Guide by Tom White (Goodreads Author), Doug Cutting, oreily

Publiactions.

3. Real-Time Big Data Analytics: Emerging Architecture [Kindle Edition], Mike Barlow

Course	Code	L	Т	Р	Credits
Object-Oriented Programming II with Java	ITT354	3	0	0	3

Course Outcomes (COs):

CO1: Understand various basics related to java programming, object-oriented programming and other concepts like JVM, JVM architecture, JIT compilation.

CO2: Understand the underlying principles of object-oriented programming like abstraction, polymorphism etc and getting familiar with various java classes. Learn to define and import packages, implement interfaces.

CO3: Getting familiar with exception and string handling in java. Study creation, concatenation and conversion of a string, searching and modification, string comparison. String Buffer and StringBuilder classes and Date class.

CO4: Have detailed knowledge on concurrent programming and file handling. Study various data collectors available in java like ArrayList, LinkedList, Queue etc. Understanding thread execution, multithreading, thread priorities and scheduling, synchronization. Understanding file handling, creating, writing, reading, updating, touching and deleting files, Byte Streams and Character Streams, InputStream & amp; OutputStream classes and their subclasses, Reader and Writer classes and their subclasses.

CO5: Be familiar with graphical components like buttons, labels, events, windows etc through which user can interact with the applications. Working with controls and layout managers, event handling and data validation.

Syllabus:

UNIT I - INTRODUCTION:

What is Java? Background/History of Java, Java Virtual Machine, JVM Architecture, Byte code, HotSpot JVM and JIT Compilation, Basics of OOP. Introduction to Classes and Objects. Data types. Garbage collection: Eden space, Survivor Space, Tenured generation, Permanent generation, Code cache, loops and flow control.

UNIT II - OBJECT ORIENTED PROGRAMMING CONCEPTS:

Abstraction, Encapsulation, Polymorphism and Overloading, Constructors and destructors scope of declarations, Access Control, Nested and Inner classes. Array handling. Using extends keyword, subclass, super-class, over- riding methods, dynamic method dispatch, The Object class, Abstract and final classes. Packages: defining, importing, Access Control. Interface: Defining, Implementing and applying interface. Wrapper classes.

UNIT III - EXCEPTION AND STRING HANDLING:

Basic exceptions, user defined exceptions, catching exceptions – try, catch and multi try catch, throwing and re-throwing, finally clause. String Handling: Creation, concatenation and conversion of a string, searching and modification, string comparison. StringBuffer and StringBuilder classes and Date class.

UNIT IV - CONCURRENT PROGRAMMING AND FILE HANDLING:

Generics & Collections: List interface, ArrayList, LinkedList, Queue, Stack,

Threads: Create new threads – extending java.lang.Thread, implementing java.lang.Runnable Interface, Understanding thread execution, multithreading, thread priorities and scheduling, synchronization Introduction to java.util.concurrent classes and interface and using java.util.concurrent.Callable interface. Introduction to Fork-Join Framework.

File handling, Creating, writing, reading, updating, touching and deleting files, Byte Streams and Character Streams, InputStream & OutputStream classes and their subclasses, Reader and Writer classes and their subclasses.

UNIT V - GUI COMPONENTS:

Introduction to AWT and Swing, frames, panels, buttons and events, layout managers, text fields, labels. Working with controls and layout managers, event handling and data validation, Applets. Introduction to JavaFx.

Text Books:

1. Java for Programmers, P.J. Dietel, H. M. Dietel, Pearson Education.

- 2. Java SE 6, Joel Murach, A. Steelman, SPD Pvt. Ltd.
- 3. Head first java, Kathy Sierra, Bert Bates, Oreilly.
- 4. Core Java, Cay Horstman and Gary Cornell, Prentice Hall

Course	Code	L	Т	Р	Cred its
Computer Networks Lab	ITL355	0	0	2	1

Course Outcomes (COs):

CO1: Understand colour coding of guided media and create crossover and straight through cable. CO2: Implement basic network utilities and analyse network traffic using Wireshark tool.

CO3: Hands-on Cisco Packet Tracer by building basic networks and configuring internetworking devices like router, switch.

CO4: Implement static and dynamic routing in Packet Tracer and configure access control lists. CO5: Simulate wireless networks using NS3.

Syllabus:

- 1. Study and implementation of colour coding standards of guided media (UTP).
- 2. Implementation and understanding of basic network utilities: ping, ipconfig/ifconfig, mstsc, nslookup, tracert.
- 3. Network traffic capture and analysis using Wireshark.
- 4. Introduction to Cisco Packet Tracer: Building a LAN with HUBs and Switches, understand and implement address learning in switches.
- 5. Router Configuration Using Packet Tracer, IP addressing (static and dynamic), subnetting.
- 6. Static/Dynamic Route Configuration.
- 7. Implementation of routing protocols (RIP, OSPF, BGP).
- 8. Standard access control list (ACL) configuration, Extended access control list (ACL) configuration.
- 9. Implementation of flow control protocols.

Course	Code	L	Т	Р	Credits
Artificial Intelligence Lab	ITL356	0	0	2	1

Course Outcomes (COs):

CO1: Understand simple facts and variables.

CO2: Implement and apply simple predicates, predicate inference and goal queries

CO3: Demonstrate the proficiency in applying scientific methods to models of machine learning.

Syllabus:

AI PYTHON LAB CONTENTS

- 1. Input & Output
- 2. Operators and Arithmetic
- 3. Facts & Variables
- 4. Simple facts and facts with arguments
- 5. Rules & Predicates
- 6. Simple Predicates, Predicate Inference, Goal queries
- 7. Recursion
- 8. Graph Traversal
- 9. Depth First Search, Breadth First Search

Course	Code	L	Т	Р	Credi
					ts
Computer Graphics Lab	ITL357	0	0	2	1

Course Outcomes (COs):

CO1: Understand the basic concepts of computer graphics.

CO2: Design scan conversion problems using C programming.

CO3: Apply clipping and filling techniques for modifying an object.

CO4: Understand the concepts of different type of geometric transformation of objects in 2D and 3D.

CO5: Understand the practical implementation of modeling, rendering, viewing of objects in 2D

Syllabus:

- 1. Point drawing to understand co-ordinate system of display device.
- 2. To implement Bresenham's algorithms for line generation.
- 3. To implement DDA algorithm for line generation.
- 4. To implement midpoint circle generation algorithm
- 5. To implement midpoint ellipse generation algorithm
- 6. To implement flood-fill and boundary fill algorithm.
- 7. To perform 2D Transformations such as translation,
- 8. To perform 2D Transformations such as rotation,
- 9. To perform 2D Transformations such as scaling,
- 10. To perform 2D Transformations such as reflection
- 11. To perform 2D Transformations such as shearing.
- 12. To implement Cohen-Sutherland 2D clipping and window-viewport mapping.
- 13. To perform 3D Transformations such as translation, rotation and scaling.
- 14. To visualize projections of 3D images.
- 15. To convert between color models.
- 16. To implement text compression algorithm using librarires.
- 17. To implement image compression algorithm using librarires.
- 18. To perform animation using any Animation software.
- 19. To perform basic operations on image using any image editing software.
- 20. Implementation of viewing/rendering pipeline.

Course	Code	L	Т	Р	Credits
Object-Oriented Programming II with Java	ITL358	0	0	2	1
Lab					

Course Outcomes (COs):

CO1: Implementing the underlying principles of object-oriented programming like abstraction, polymorphism etc and various java classes.

CO2: Learn to define and import packages, implement interfaces.

CO3: Implementing exception handling, creating user defined exceptions, catching exceptions. Creation, concatenation and conversion of a string, searching and modification, string comparison. Implementing String Buffer and StringBuilder classes and Date class. CO4: Using various data collectors available in java like ArrayList, LinkedList, Queue etc. Implementing multithreading, thread priorities and scheduling, synchronization. Implementing various file handling, creating, writing, reading, updating, touching and deleting files, Byte Streams and Character Streams, InputStream & amp; OutputStream classes and their subclasses, Reader and Writer classes and their subclasses.

CO5: Executing graphical components like buttons, labels, events, windows etc through which user can interact with the applications.

Syllabus:

1. Java package with simple stack and queue class

- 2. Complex number manipulation
- 3. Date class similar to java.util package
- 4. Implementing dynamic polymorphism in java
- 5. Java interface for ADT stack
- 6. Developing a simple paint like program using applet
- 7. Developing a scientific calculator
- 8. Developing a template for linked list
- 9. Develop a multi threaded producer consumer Application
- 10. Generating prime numbers and Fibonacci series
- 11. Multithreaded GUI application

7th Semester

Course	Code	L	Т	Р	Credits
Wireless & Mobile Communication	ITT401	3	1	0	4

Course Outcomes (COs):

CO1: Understand the need for wireless communication

CO2: Study cellular concepts design capacity and different methods to eliminate interference. CO3: Study various access techniques like FDMA, TDMA, etc and wireless networks and wireless protocols like WAP

CO4: Understanding wireless standards like GSM, CDMA etc.

CO5: Understanding various security issues and methods to increase security in wireless systems

Syllabus:

UNIT I - INTRODUCTION TO WIRELESS NETWORKS:

Introduction-Evolution of mobile radio communications-Differences Between Wireless And Fixed Telephone Networks-Development Of Wireless Networks- Traffic Routing In Wireless Networks-Integrated Services Digital Network (ISDN)- Protocols For Network Access

UNIT II - PRINCIPLES OF CELLULAR WIRELESS NETWORKS:

Introduction- Frequency Reuse- Channel Assignment Strategies-Handoff Strategies- Interference And System Capacity- Trunking And Grade Of Service-Improving Capacity In Cellular Systems.

UNIT III - MULTIPLE ACCESS TECHNIQUES:

Introduction-Multiple Access Techniques: FDMA,TDMA, CDMA- Space Division Multiple Access- Spread Spectrum - Packet Radio

UNIT IV - WIRELESS SYSTEMS AND STANDARDS:

Global System for Mobile communication - CDMA Digital Cellular Standard (IS-95) - CT2 Standard for Cordless Telephones- Digital European Cordless Telephones (DECT). Mobile communication: Mobile data management in 1G,2G,3G, Frequency reuse, sectoring, GSM and CDMA architecture, EDGE technology, Mobile IP, Mobile Agents.

UNIT V - MOBILE AND WIRELESS SECURITY:

Creating Secure Environment- Security Threats-WAP Security: TLS-WTLS-IPSec- Application Level Security- Smart Client: Architecture, Security-Firewalls- VPNs-Two factor Authentication. Mobile Communication & application development.

Text Books:

- 1. Theodore.S.Rappaport, *Wireless Communications-Principles and practice*, Prentice Hall Communications Engineering and Emerging Technologies Series, Upper Saddle River, New Jersey
- 2. Martyn Mallick, Mobile and Wireless Design Essentials, Wiley Dreamtech India pvt ltd.
- 3. Geoff Varall, Roger Belcher, 3G Handset & Network Design, Wiley Dreamtech India pvt ltd.

References:

- 1. Jochen Schiller, Mobile Communications, Addision Wesley
- 2. William C.Y.Lee, Mobile Communication Design Fundamentals, John Wiley

Course	Code	L	Т	Р	Credits
Information Security	ITT402	3	1	0	4

Course Outcomes (COs):

CO1: To study the history, need, and various approaches to Information security.

CO2: To understand the use of encryption and decryption

CO3: To study the various technical aspects and strategies of implementation of Symmetric Encryption

CO4: To study the various technical aspects and strategies of implementation of Asymmetric Encryption

CO5: Achieving Authentication using keys

Syllabus:

UNIT I - INTRODUCTION TO INFORMATION SECURITY:

Introduction, the History of Information Security, What Is Security, CNSS Security Model, Components of an Information System, Balancing Information Security and Access, Approaches to Information Security, the Systems Development Life the Security Systems, Development Life Cycle, Security Professionals and the Organization.

UNIT II - THE NEED FOR SECURITY:

Introduction, Business Needs First, Threats, Attacks, And Secure Software Development. Planning for Security: Introduction, Information Security Planning and Governance, Information Security Governance, Information Security Policy, Standards, and Practices, The Information Security Blueprint, Security Education, Training, and Awareness Program, Continuity Strategies, Model for a Consolidated Contingency Plan, Law Enforcement Involvement.

UNIT III - IMPLEMENTING AND MAINTENANCE:

Introduction, Information Security Project Management, Developing the Project Plan, Project Planning Considerations, Scope Considerations, the Need for Project Management, Technical Aspects of Implementation, Conversion Strategies, the Bull's-Eye Model, Considerations for Organizational Change, Information Systems Security Certification and Accreditation.

UNIT IV - CRYPTOGRAPHY:

Introduction, Foundations of Cryptology, Cipher Methods, Substitution Cipher, Transposition Cipher, Exclusive OR, Vernam Cipher, Book or Running Key Cipher, Hash Functions, Cryptographic Algorithms, Symmetric Encryption, Asymmetric Encryption, Examples, Encryption Key Size, Cryptographic Tools, Public-Key Infrastructure (PKI), Digital signature ,Digital Certificates, Hybrid Cryptography Systems, Steganography, Attacks on Cryptosystems, Man-in-the-Middle Attack, Correlation Attacks, Dictionary Attacks, Timing Attacks, Defending Against Attacks, Protocols for Secure Communications, S-HTTP and SSL, S/MIME, PEM, and PGP, SET, WEP and WPA,IEEE 802.1x based authentication, IPSec and PGP.

Text Books:

1. Michael E. Whitman, Herbert J. Mattord, "Principles of information security", Course Technology, Cengage Learning.
Reference Books:

- 1. William Stallings, "Cryptography and Network Security Principles and Practices".
- 2. Michael E. Whitman, Herbert J. Mattord, "Hands-On Information Security Lab Manual" Course Technology, Cengage Learning.

Course	Code	L	Т	Р	Credits
Image Processing	ITT403	3	1	0	4

Course Outcomes (COs):

CO1: To understand what a digital image is and the steps involved in image processing.

CO2: To understand image acquisition process and develop any image processing application.

CO3: To learn different techniques employed for the enhancement of image.

CO4: To understand different color image models and learn different causes of image degradation and overview of image restoration.

CO5: To understand the need for image compression and to learn spatial and frequency domain techniques for image compression, segmentation of image and understand morphological image processing

Syllabus:

UNIT I - INTRODUCTION:

What is digital image processing? The origins of digital image processing, Fundamental steps in digital image processing, components of an image processing system.

UNIT II - DIGITAL IMAGE FUNDAMENTALS:

Image sensing and acquisition, Image sampling and quantisation, basic relationships between pixels, linear and non-linear operations.

UNIT III - IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN:

Gray level transformations, histogram processing, enhancement using arithmetic/logic operations, spatial filtering, smoothing and sharpening.

Image enhancement in Frequency Domain: Fourier transform and frequency domain, smoothing and sharpening frequency domain filters

Image Restoration: A Model of the Image Degradation/Restoration Process. Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering. Constrained Least Squares Filtering, Geometric Mean Filter, Geometric Transformations.

UNIT IV - COLOUR IMAGE PROCESSING:

Fundamentals, models, colour transformations, smoothing and sharpening, colour segmentation and noise.

Image Segmentation: Detection of discontinuities, edge linking and boundary detection, thresholding, region based segmentation, morphological watersheds.

Representation and description: Representation, boundary descriptors, regional descriptors, relational descriptors.

UNIT V - IMAGE COMPRESSION:

Morphological Image Processing, Representation and Description.

Text Books:

- 1. Rafael C Gonzalez, Richard E Woods, Digital Image Processing Pearson Education
- 2. Rafael C Gonzalez, Richard E Woods, Digital Image Processing with MATLAB- Pearson Education.

Reference Books:

- 1. William K Pratt, Digital Image Processing, John Willey
- 2. A.K. Jain, PHI, Fundamentals of Digital Image Processing, pearson Education.
- 3. Chanda & Majumdar, "Digital Image Processing and Analysis", PHI.
- 4. Mark Nelson, Jean-Loup Gailly "The Data compression Book", bpb Publications.

Course	Code	L	Т	Р	Credits	
Cloud Computing	ITT404	3	1	0	4	

Course Outcomes (COs):

CO1: Understand various basic concepts related to cloud computing technologies. Understand the architecture and concept of different cloud models: IaaS, PaaS, SaaS Understand big data analysis tools and techniques.

CO2: Understand the underlying principle of web services, cloud virtualization, cloud storage, data management and data virtualization.

CO3: Understand different Multi-tenant software, Be familiar with cloud file systems.

CO4: Have detailed knowledge on cloud computing security challenges and other issues.

CO5: Be familiar with setting up cloud. Understanding integrating tools.

Syllabus:

UNIT I - INTRODUCTION TO CLOUD COMPUTING:

Definition, Characteristics, Components, Cloud provider, SAAS, PAAS, IAAS and Others, Virtualization concepts; Types of Virtualization & its benefits, Introduction to Various Virtualization OS(Vmware, KVM etc), HA/DR using Virtualization, Moving VMs ,SAN backend concepts,Cloud Fundamentals; Cloud Building Blocks, Understanding Public & Private cloud environments. Cloud Technologies, Study of Hypervisors.

UNIT II - WEB SERVICES, AJAX AND MASHUPS:

Web services: SOAP and REST, SOAP versus REST, AJAX: asynchronous 'rich' interfaces, Mashups: user interface services.

Virtualization Technology: Virtual machine technology, virtualization applications in enterprises, Pitfalls of virtualization.

UNIT III - MULTI TENANT SOFTWARE:

Multi-entity support, Multi-schema approach, Multi-tenance using cloud data stores, Data access control for enterprise applications.Data in the cloud Relational databases,

Cloud file systems: GFS and HDFS, BigTable, HBase and Dynamo. Map-Reduce and extensions: Parallel computing, The map-Reduce model, Parallel efficiency of Map-Reduce, Relational operations using Map-Reduce, Enterprise batch processing using Map-Reduce.

UNIT IV - CLOUD COMPUTING SECURITY CHALLENGES:

Issues in cloud computing, Implementing real time application over cloud platform Issues in Intercloud environments, QOS Issues in Cloud, Dependability, data migration, streaming in Cloud. Quality of Service (QoS) monitoring in a Cloud computing environment .Vulnerability assessment tool for cloud, Privacy and Security in cloud Virtualization security management- virtual threats, VM Security Recommendations, VM-Specific Security techniques, Secure Execution Environments and Communications in cloud.

UNIT V - SETTING UP CLOUD:

How to build private cloud using open source tools, Understanding various cloud plugins, Setting up your own cloud environment; Auto provisioning, Custom images, Integrating tools like Nagios ,Integration of Public and Private cloud.

Text Book:

- 1. Cloud Computing for Dummies by Judith Hurwitz, R.Bloor, M.Kanfman, F.Halper
- 2. Enterprise Cloud Computing by Gautam Shroff, Cambridge
- 3. Cloud Security by Ronald Krutz and Russell Dean Vines, Wiley-India

Reference Book:

- 1. Google Apps by Scott Granneman, Pearson
- 2. Cloud Security & Privacy by Tim Malhar, S.Kumaraswammy, S.Latif (SPD,O'REILLY)
- 3. Cloud Computing : A Practical Approach, Antohy T Velte, et.al McGraw Hill,
- 4. Cloud Computing Bible by Barrie Sosinsky, Wiley India

Course	Code	L	Т	Р	Credits
Information Security Lab	ITL405	0	0	2	1

Course Outcomes (COs):

CO1: To create and understand use of vulnerable machines

CO2: To use traffic analysis, enumeration and fingerprinting tools

CO3: To understand use of password cracking tools

CO4: To deploy tools to protect a system

Syllabus:

- 1. Deploying virtual machines testbed over virtualization software such as: VMPlayer or VirtualBox
- 2. Creating test machines including Kali/Backtrack and vulnerable machine.
- 3. Configure and demonstrate use of Traffic monitoringtool such as: Wireshark and tcpdump
- 4. Configure and demonstrate use of basic Enumeration tools such as: Ping,traceroute, nslookup,dig, nmap
- 5. Configure and demonstrate use of fingerprinting tools such as: Nmap(Zenmap) ,hping3,DMitry.
- 6. Configure and demonstrate use of vulnerability assessment tool such as: Nessus, openVAS.
- 7. Configure and demonstrate use exploit tool such as: metasploit framework.
- 8. Demonstrate use of a password cracking tool using brute force attack, dictionary attack rainbow tables.
- 9. Configure and demonstrate use of computer forensics tool.
- 10. Configuring and deploying Firewall.
- 11. Configure and demonstrate use of IDS tool such as snort.
- 12. Configuring and deploying IDPS.

Course	Code	L	Т	Р	Credits
Image Processing Lab	ITL406	0	0	2	1

Course Outcomes (COs):

CO1: Display image, its histogram, zoom and shrink image

CO2: Perform enhancing operations on the image using spatial filters and frequency

domain filters. Remove noise from image

CO3: Use transforms and analyze the characteristics of the image.

CO4: Perform segmentation operations in the images.

Syllabus:

- 1. Display an image and its histogram.
- 2. Perform shrinking, zooming and cropping of an image.
- 3. Perform the experiment for histogram equalization.
- 4. Perform blurring and de-blurring on an image.
- 5. Implement the spatial image enhancement functions on a bitmap image Mirroring (Inversion).
- 6. Implement the spatial image enhancement functions on a bitmap image Rotation (Clockwise).
- 7. Implement the spatial image enhancement functions on a bitmap image Enlargement (Double Size).
- 8. Implement (a) Low Pass Filter (b) High Pass Filter.
- 9. Implement (a) Arithmetic Mean Filter (b) Geometric Mean Filter.
- 10. Removal of salt and pepper noise.
- 11. Implement Smoothing and Sharpening of an eight bit color image.
- 12. Implement (a) Boundary Extraction Algorithm (b) Graham's Scan Algorithm.
- 13. Implement (a) Edge Detection (b) Line Detection.

Course	Code	L	Т	Р	Credits
Cloud Computing Lab	ITL407	0	0	2	1

Course Outcomes (COs):

CO1: Student should understand and appreciate cloud architecture.

CO2: Student can create and run virtual machines on open source OS

CO3: Student can implement Infrastructure, storage as a Service.

CO4: Student can install and configure Hadoop and Map/Reduce.

CO5: Students can install and appreciate security features and user management for cloud using web application.

Syllabus:

1. Introduction to cloud computing.

2. Implementation of SOAP Web services in C#/JAVA Applications.

3. Implementation of para-virtualization using VM Ware's Workstation/Oracle's Virtual Box and Guest O.S.

- 4. Implementation of IAAS, SAAS.
- 5. Installation and Configuration of Hadoop.
- 6. Create an application (Ex: Word Count) using Hadoop Map/Reduce.
- 7. Case Study: PAAS (Facebook, Google App Engine)
- 8. Case Study: Amazon Web Services

8th Semester

Course	Code	L	Т	Р	Credits
Machine Learning	ITT450	3	1	0	4

Course Outcomes (COs):

CO1: Develop an appreciation for what is involved in learning models from data.

CO2: Understand a wide variety of learning algorithms.

CO3: Understand how to evaluate models generated from data.

CO4: Apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models

Syllabus:

UNIT I - INTRODUCTION:

Machine Learning, Supervised Learning, Unsupervised Learning, Reinforcement Learning. Introduction to Probability, Basics Linear Algebra, Statistical Decision Theory – Regression & Classification, Bias – Variance, Overfitting and complexity; training, validation, test data.

UNIT II - SUPERVISED LEARNING

Regression:-Linear Regression-Cost Function, Gradient Descent with single and multivariable, Normal Equation, Regularization Techniques (LASSO), Polynomial Regression Classification:- Logistic Regression-Hypothesis Representation, Decision boundary, Cost Function, Multi class Classification, KNN, Ensemble methods, Decision Trees, Naïve Bayes,

UNIT III- ARTIFICIAL NEURAL NETWORKS AND SVMs

Neurons and biological motivation. Linear threshold units. Perceptrons: representational

limitation and gradient descent training. Multilayer networks and backpropagation. Hidden layers and constructing intermediate, distributed representations. Overfitting, learning network structure, recurrent networks, SVMs:-(Maximum margin linear separators), optimization objectives,. Kernels for learning non-linear functions.

UNIT IV - UNSUPERVISED LEARNING

Clustering:-K-Means, K Nearest Neighbours, Association Rule Learning Dimensionality Reduction, PCA, SVD, tSNE Markov Models

UNIT V - MACHINE LEARNING APPLICATIONS

Healthcare, Retail, Financial Services, Manufacturing, Hospitality, Cloud Based ML Offerings Developing and Evaluating an Anomaly Detection System, Recommender Systems.

Text Books:

1. Machine Learning by Tom Mitchell (ML)

2. Introduction to Machine Learning by Ethem Alpaydin (IML)

Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani and Jerome Friedman (available online for free) (ESL)

3.Pattern Recognition and Machine Learning by Christopher Bishop (PRML)

Department of Mechanical Engineering Department

S. Course No. Code		CourseCourse TitleCode		Hours Per Week			Credits
			L	Т	Р	Hours	
1.	MET301	Heat Transfer	3	1	0	4	4
2.	MET302	Design of Machine Elements	3	1	0	4	4
3.	MET303	Mechanical Vibrations	3	1	0	4	4
4.	MET304	Industrial Engineering - I	3	1	0	4	4
5.	MET305	IC Engines	3	1	0	4	4
6.		Microprocessors in Automation	3	0	0	3	3
7.	MEL310	Heat Transfer Lab	0	0	2	2	1
3.	MEL311	Mechanisms and Vibrations Lab	0	0	2	2	1
				•	To	tal Credits	25

Semester-VI

S. No.	Course Code	Course Title	H	Hours Per Week		Hours Per Total Week Contact		Credits
			L	Т	Р	Hours		
1.	MET351	Production Engineering	3	1	0	4	4	
2.	MET352	Mathematical Methods	3	0	0	3	4	
3.	MET353	Control Systems	3	1	0	4	4	
4.	MET354	Fluid Mechanics - II	3	1	0	4	4	
5.	MET3XX	Elective - I	3	1	0	4	3	
6	MET4XX	Elective-II –(Design, Ther. & Pro.)	2	1	0	3	3	
7.	MEL361	Applied Thermodynamics Lab	0	0	2	2	1	
8.	MEL362	Industrial Engineering – I Lab	0	0	2	2	1	
9.	MEI364	Tour & Training	-	-	-	-	1	
					Tot	tal Credits	25	

Semester-VII

S.	Course	Course Title	Н	ours I	Per	Total Conto et	Credits
INO.	Code		L	Т	P	Hours	
1.	MET401	Mechatronics and Measurement Systems	3	1	0	4	4
2.	MET402	Industrial Engineering - II	3	1	0	4	4
3.	MET403	Machine Design	3	1	0	4	4
5.	MET4XX	Elective-III–(Design, Ther. & Pro.)	3	1	0	4	4
6	MET4XX	Elective –IV (Swayam Course)	3	1	0	4	4
6.	MEL411	Mechatronics and Measurement Systems Lab	0	0	2	2	1
7.	MEL412	Industrial Engineering – II Lab	0	0	2	2	1
8.	MES463	Seminar	0	0	4	4	1
9.	MEP413	Major Project – Stage I	0	0	6	-	2
			•	•	То	tal Credits	25

Semester-VIII

S. No.	Course Code	Course Title	H	ours I Week	Per	Total Contact	Credits
			L	Т	Р	Hours	
1.	MET451	Operations Research	3	1	0	4	4
2.	MEL4XX	Elective-V–(Design, Ther. & Pro.)	3	1	0	4	4
3.	MEL4XX	Elective-Vi–(Swayam Course)	3	1	0	4	4
4.	MEL4XX	Elective-VIi–(Design, Ther. & Pro.)	3	1	0	4	4
5.	MEP463	Major Project – Stage II	0	0	18	-	9
					То	tal Credits	25

_

Subject: Heat Transfer (Code: MET301)	Year & Se Mechanic	Total (Course C	redit: 4	
(3 rd Year	& 5 th Semester	L	Т	Р
					0
Evaluation Policy	Mid-Term	Class Assessment		End-Tern	n
	30 Marks	10 Marks		60 Marks	8

After the completion of course, students will be able,

CO1	Identify, formulate and solve steady, transient and multidimensional heat conduction
	problems.
CO2	Understand the phenomenon of convection and be able to evaluate heat transfer coefficients
	for natural and forced convection.
CO3	Calculate radiation heat exchange between black as well as non-black surfaces
CO4	Be able to solve a wide range of real world problems involving conduction, convection and
	radiation

Unit I

Introduction, Physical origins and rate equations, conduction, convection, radiation, relationship to thermodynamics, Combined conduction-convection-radiation problems, Importance of heat transfer, conduction rate equation, thermal conductivity, general heat conduction equation, boundary and initial conditions, one dimensional steady heat conduction, plane wall, thermal resistance, composite wall, contact resistance, alternate conduction analysis, one dimensional steady heat conduction in cylinders and spheres, critical radius of insulation, one dimensional steady state heat conduction with heat generation in plane walls, cylinders and spheres, heat transfer from extended surfaces, fins with constant area, fin performance.

Unit 2

Two-dimensional steady state heat conduction, method of separation of variables, conduction shape factor and dimensionless conduction heat rate, unsteady heat conduction, Lumped capacity analysis, criteria for lumped capacity analysis, transient heat conduction in a semi-infinite solid, Biotand Fourier numbers, transient heat conduction in large plane walls, long cylinders and spheres with spatial effects, transient heat conduction in multi-dimensional systems.

Unit 3

Convection boundary layers, Velocity and thermal boundary layer, local and average heat transfer convection coefficients, derivation of differential convection equations, solutions of convection equations for a flat plate, Nusselt and Prandtl numbers, relation between fluid friction and heat transfer, Turbulent-boundary-layer heat transfer, flow across cylinders and spheres, flow across tube banks, Internal forced convection, mean velocity, mean temperature, empirical relations for pipe and tube flows, Free convection heat transfer on a vertical flat plate, Grashof and Raleigh numbers, Empirical relations for free convection, Combined free and forced convection.

Unit 4

Thermal radiation, black and gray surfaces, Radiation laws, Radiation shape factor, relation between shape factors, Radiation heat exchange between black bodies, Radiation heat exchange between non-black bodies, Radiation shields, Condensation heat transfer phenomenon, condensation number, film condensation inside horizontal tube, boiling heat transfer, simplified relations for boiling heat transfer with water, heat exchangers, overall heat transfer coefficient, fouling, types of heat exchangers, log mean temperature difference, Effectiveness-NTU method, Compact heat exchangers.

Textbooks:

- Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S., "Principles of Heat and Mass Transfer", Wiley, 2017.
- 2. Holman, J.P., "Heat Transfer, McGraw Hill, 2011.

Reference Books:

- 1. Bejan, A., "Heat Transfer", John Wiley, 1993.
- 2. Cengal, Y.A., Ghajar, A.J., "Heat Transfer", McGraw Hill, 2020.

DESIGN OF MACHINE ELEMENTS

Course No.: MET 302

CLT (431)

Core Course Pre-requisites: Engineering mechanics, Mechanics of solids and Engineering materials science.

Course objective: To teach Mechanical Engineering Students how to apply the concepts of stress analysis, theories of failure and material science to analyze, design and/or select commonly used machine components.

Course Content:

UNIT I

Design requirements, Selection of materials and manufacturing considerations in design. Riveted joints: Introduction, Types of riveted joints, Failures of riveted joints, Strength of riveted joint, Efficiency of riveted joint. Design of longitudinal butt joint and circumferential lap joint for a Boiler. Bolts, Nuts & Screws: Introduction, Advantages & disadvantages, Definitions, Forms of screw threads, Common types of screw fastenings, locking devices. Designation of screw threads, Stresses in screwed fastening due to static loading.

Welded connections: Introduction, Advantages & disadvantages of welded joints, welding processes, fusion welding, thermit welding, gas welding, Electric arc welding, forge welding. Types of welding joints, Lap joint, Butt joint, Strength of transverse fillet welded joints, strength of parallel fillet welded joints, special cases of fillet welded joints, axially loaded unsymmetrical welded sections.

UNIT II

Stress concentration: Theoretical or form stress concentration factor, Stress concentration factor due to holes and notches, Methods of reducing stress concentration. Cyclic loading and endurance limit: Completely Reversed or cyclic stresses, Fatigue and endurance limit, effect of loading on endurance limit, Effect of surface finish, size and miscellaneous factors on endurance limit. Combined steady and variable stress: Gerber method for combination of stresses, Goodman method for combination of stresses, Soderberg method for combination of stresses.

UNIT III

Cotter and Couplings: Types of cotter joints, Socket and spigot cotter joint, Design of socket and spigot cotter joint, Design of sleeve and cotter joint. Types of shaft couplings, Design of sleeve and muff coupling, Design of flange coupling.

Power Screws: Types of screw threads used for power screws, Torque required to raise load on square threaded screws, torque required to lower load by square threaded screws, Efficiency of square threaded screws, Maximum efficiency of a square threaded screw. Over Hauling and Self locking screws. Design of screw jack.

Shafts: types of shafts, design of shafts, shafts subjected to twisting Moment only, Shafts subjected to bending moment only, shafts subjected to combined twisting moment and bending moment.

Course Outcomes:

On successful completion of the course, Students should be able to:

1. Demonstrate knowledge on basic machine elements used in machine design.

- 2. Understand the stress and strain on machine components and identify and quantify failure modes for machine parts.
- 3. Design machine elements to withstand the loads and deformations for a given application, while considering additional specifications.
- 4. Approach a design problem successfully, taking decisions when there is not a unique answer.

Course Assessment:

Students will be assessed on:

- 1. Continuous assessment in the form of homework, assignments, attendance, and presentations (10% weightage).
- 2. One and half hour written exams designated as Mid-term (30% weightage).
- 3. Two hour written exams designated as End-term (60% weightage).

Text Books:

- 1. Ullman D.G., "The Mechanical Design process", 3rd edition, McGraw Hill, 2009.
- Mott, R.L, "Machine Elements in Mechanical Design", 4th edition, Prentice Hall, Singapore, 2005.
- 3. Shigley, J.E., Mischke, C. Brown T., "Standard Hand book of Machine Design", McGraw Hill.

Reference Books:

Shigley, J.E., "Hand Book of Machine Design", McGraw Hill, 2004

Subject: Mechanical Vibrations (Code: MET303)	Year & Se Mechanic	mester: B. Tech al Engineering	Total C	ourse Cro	edit: 4
	3 rd Year & 5 th Semester		L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		
	30 Marks	10 Marks	60 Marks		

Course Outcomes: At the end of the course, a student should be able to:

CO1: Develop the mathematical models of vibrating systems, determine their DOF, and determine the free and forced vibration response of such systems.

CO2: Determine the response of linear time-invariant systems to arbitrary forcing conditions using the convolution integral and the Laplace Transform method.

CO3: Formulate the equations of motion of multiple degree of freedom systems, express it as an eigen value problem and determine the free and force vibration response.

CO4: Derive the equations of motion of a continuous system, determine its natural frequencies and mode shapes, and obtain the free vibration response to given initial conditions.

Detailed Syllabus:

UNIT I

Harmonic Motion, Vibration Terminology, Complex Methods of Representing Harmonic Motion, Fourier Series and Harmonic Analysis, Free and Forced Vibrations, Degrees of Freedom, Mathematical Modeling of Vibrating Systems, Differential Equations of Motion, Solution of the Differential Equation of Motion, Torsional Vibrations, Various Types of Damping, Dry Friction or Coulomb Damping, Structural Damping, Viscous Damping. Logarithmic Decrement, Energy Dissipated By Damping, Equivalent Viscous Damping, Introduction to Energy Methods.

UNIT II

Forced Harmonic Vibrations, Rotating Unbalance, Support Motion, Vibration Isolation and Control, Vibration Measuring Instruments, Vibration Pickups, Vibrometers and Accelerometers, Vibrations under General Forcing Conditions, Impulse Excitation, Arbitrary Excitation, Convolution Integral, Use of Laplace Transforms, Pulse Excitation and Rise Time, Shock Response Spectrum, Shock Isolation.

UNIT III

Two-Degree-of-Freedom Systems, Normal Mode Analysis, Coordinate Coupling and Principal Coordinates, Forced Harmonic Vibration, Vibration Absorbers and Vibration Dampers, Generalized Coordinates, Natural Frequencies and Mode Shapes, Modal Analysis, Multi-degree-of-Freedom Systems

UNIT IV

Continuous Systems, Longitudinal Vibration of a Bar, Equation of Motion and Solution, Orthogonality of Normal Functions, Lateral Vibration of Beams, Equation of Motion, Initial Conditions, Boundary Conditions, Effect of Axial Force, Effects of Rotary Inertia and Shear Deformation, Whirling of Shafts, Critical Speeds, Balancing of Rotating Shafts, Single-Plane Balancing, Two-Plane Balancing

Text Book:

1. Grover, G. K., Mechanical Vibrations, 7th edition, Nem Chand and Bros, New Delhi, India 1996.

Reference Books:

- 1. Thomson, W. T., Theory of Vibrations with applications, Fifth Edition, Pearson Education, 2004.
- 2. Rao, S. S., Mechanical Vibrations, Sixth Edition, Pearson Education.

Course No.: MET 304 INDUSTRIAL ENGINEERING -I CLT (4 3 1)

COURSE OUTCOMES:

- 1. Understanding the concept and applications of industrial engineering with a focus on productivity, work design and work study.
- 2. Analysing & applying the method study techniques in relation to a particular job environment.
- **3.** Analysing & evaluating various engineering work measurement techniques designed to establish the time for a qualified worker to carry out a specific job at a defined level of performance.
- 4. Attain a grasp of the fundamental principles of experimental design, collection of data related to work study, their analysis and interpretation.

UNIT I

Concept of industrial productivity: Introduction and significance of Industrial engineering with brief explanation of its techniques, Functions of Industrial Engineering, Definitions and explanation of Productivity with significance in Industries, Productivity measurements, Factors affecting productivity, Basic work content and excess work content, Industrial applications to calculate total and partial productivities, Introduction to Work study and its basic procedures, definitions and concept of work study with examples, Human factor in the application of work study, Factors for selecting the work study, Ergonomics: scope and objectives of ergonomics, application of human factors in engineering work place design, etc.

UNIT II

Introduction to Method study and the selection of jobs, Record, Examine and Develop, Objectives and basic procedure of Method study, Recording techniques (Process Charts (PC), and Diagrams),Outline PC, Flow process charts, Two hand process charts, MAC (??), Simo chart, Flow diagram, String diagram, Cycle graph, Chronocycle graph, Travel chart, Define, Install and Maintain, the principles of motion economy,

UNIT III

Work measurement and its applications, Time study, Work Sampling, Rating and their methods,

Breaking the jobs into Elements, types of Elements, Allowances and their calculations, Calculation of Standard time, Examples of Time study, PMT (??) systems, synthetic data, Various applications and examples.

Text Book:

 Barnes, R.L., "Motion and Time Study, Design & Measurement of Work" 7th edition, John Wiley & Sons, New York, 1980.

Reference Books:

- International Labor Office, Geneva, "Introduction to Work Study" 4th Edition, Geneva, 1985.
- 2. Currie R.M, "Work study", ELBS & Pitman, London, 1977.
- 3. Mundel, M.E., "Motion and Time Study", 5th Edition, *Prentice Hall, Englewood Cliff, NewYork, 1978.*

CLT(431)

MET305	INTERNAL COMBUSTION ENGINES	3-1-0	Credits: 4
---------------	-----------------------------	-------	------------

Prerequisites: Thermodynamics, Heat Transfer

Course Outcomes: At the end of the course, the student should be able to:

CO1:	To understand the internal combustion engine design as the largest prime mover for all
	applications in the world.
CO2:	To understand combustion related characteristics of engine and its fuels.
CO3:	To understand the essential systems of IC engines.
CO4:	To understand numerical on engine design, engine emissions, emissions measurement
	and its control.

Unit 1

Introduction : Engine classification.

Design and operating parameters: Geometry and geometrical properties, working principle of Two stroke and Four stroke engines, Analysis of air-standard cycles, fuel-air cycles and actual engine cycles, Thermodynamics of actual working fluids, Air capacity of four stroke engines: Ideal air capacity, Volumetric efficiency, ideal induction process, actual induction process, Effect of operating conditions on volumetric efficiency, Effect of design on volumetric efficiency, estimating air capacity. Valve and port timing diagram.

Supercharging and Scavenging in IC engine : Methods of supercharging and turbo-charging in SI and CI engine, limits of supercharging in SI and CI engine. Scavenging in two stroke cycle engines, scavenging parameters and efficiency

Unit 2

Combustion in SI and CI Engine: Classification of fuel, solid, liquid and gaseous fuels, fuel properties and fuel rating, Alternative fuels, mixture requirements, characteristics of SI and CI engine fuels. Combustion and detonation: chemistry of combustion, normal combustion in S.I engines, preignition and auto-ignition comparison, detonation in S.I engines, combustion in C.I engines, detonation in C.I engines, Methods of reducing detonation, preliminary detonation, preliminary facts about fuel and dopes, octane and cetane numbers, effect of design on detonation. Mixture requirements: Steady running, mixture requirements, transient mixture requirements, mixtures requirements for fuel injection engines, mixture requirements for S.I engines. Use of combustion charts for burned mixture Appropriate treatment of fuel air mixtures.

Unit 3

Fuel Injection system: Types of carburetor, mixture requirements, single point and multipoint injection system in SI engine, rate of fuel injection in CI engine, fuel injection pumps and nozzle. Current injection systems in I C engines.

Ignition System: Battery ignition, Magneto ignition and Electronic ignition, factors affecting spark advance, spark advance mechanism. Current ignition systems.

Engine friction and lubrication: Components of engine friction, friction mean effective pressure, Blow by losses, effect of engine variables on friction, side thrust on piston. lubrication principle, types of lubrication ,properties of lubricant.

Heat transfer and Cooling system: Engine temperature distribution, heat transfer consideration, gas temperature variation, effects of operating variables on heat transfer, air cooling and liquid cooling systems, concept of adiabatic engine, Numerical on heat transfer in IC engines.

Unit 4

Engine Testing and performance: Measurement of indicated power, brake power, fuel consumption, air flow rate, engine speed, spark timing, performance characteristics, Numerical on engine design, determination of main dimensions, Numerical on two stroke engines and four stroke engines. Numerical on heat transfer in IC engines, Engine design and principles of similitude. Numerical on alternative fuels, Numerical on diesel fuel injection system, Numerical on verification of engine commercial specifications.

Exhaust Emissions: Pollutants from IC engines. mechanism of pollution formation, methods of emission control, Effect of alternative fuels, Emission norms.

Measurement Of Exhaust Emissions. NDIR, FID, CLA, measurement of exhaust smoke, gas chromatography, effect of operating variables on SI and CI engine pollutant.

Text Book:

1. Heywood, John B. Internal Combustion Engine Fundamentals. McGraw-Hill Book Company.

Reference Books:

- 1. V. Ganeshan: I. C. Engines: Tata McGraw Hill, New Delhi, 4/e
- 2. W. W. Pulkrabek: Engineering Fundamentals of I. C. Engines, Prentice Hall India
- 3. M K Gajendra Babu and K A Subramanian; Alternative Transportation Fuels; CRC Press.

COURSE OUTCOMES: (To be given by ECE dept., not obtained by the mechanical Dept. till date)

(To be obtained from ECE Department)

Subject: HEAT TRANSFER LAB	Year & Semester: B. Tech Mechanical Engineering	mester: B. Tech al Engineering	Total Course Credit: 1		redit: 1
(Code: MEL310)	3 rd Year & 5 th Semester		L	Т	Р
			0	0	2
Evaluation Policy					

After the completion of course, students will be able,

CO1	Acquire a thorough outlook regarding the steps to design and conduct experiments for
	measuring specific physical variables
CO2	To apply the concepts learnt in Heat Transfer theory subject to do hands on experiments
CO3	To calculate the thermal conductivity, heat transfer coefficient, and other parameters
	relevant in heat transfer
CO4	Communicate effectively in completing written reports of laboratory work

List of Experiments

- 1. To determine the thermal conductivity of a metal bar
- 2. To determine the thermal conductivity of a liquid
- 3. To study the heat transfer through the insulating medium
- 4. To study heat conduction in a composite wall
- 5. To study heat transfer from a pin fin
- 6. To study heat transfer in natural convection
- 7. To study heat transfer in forced convection
- 8. To study the heat transfer phenomena in a heat exchanger with parallel / counter flow arrangements
- 9. To determine Stefan Boltzmann constant

MEL 311 MECHANISMS AND VIBRATIONS LAB C P (1 2)

COURSE OUTCOMES:

- 1. The student should be able to prepare technical reports and documents detailing the experimental methodology.
- 2. Determine the time period of a simple and compound pendulum and visualize the basic characteristics of a simple harmonic motion.
- **3.** Determine the mass moment of inertia (ROG) of irregularly shaped objects using bifilar and trifilar suspensions.
- 4. Analyze the free and forced vibration characteristics of an equivalent spring mass system and determine its frequency response function.
- 1. Determine the time period of a simple pendulum. Verify that the time period is independent of the mass of the bob.
- 2. Determine the radius of gyration of a compound pendulum.
- 3. Determine the radius of gyration of a given bar by using a Bifilar suspension.
- 4. Study the undamped free vibration of an equivalent spring mass system.
- 5. Study the forced vibration of an equivalent spring mass system.
- 6. Study the torsional vibration of a single rotor shaft system.
- 7. Determine the frequency response function of an equivalent spring- mass- dashpot system.
- 8. Pressure profile measurement on Journal bearing.

_

Subject: Production Engineering	oduction ering Mechanical Engineering	mester: B. Tech al Engineering	Total (al Course Credit: 4		
(Code: MET351)	3 rd Year & 6 th Semester		L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
	30 Marks	10 Marks	60 Marks			

Course Outcomes: At the end of the course, a student should be able to:

CO1: Determine the shear angle and cutting force in machining and understand the basics of metal cutting.

CO2:Estimate tool life and explain the tool wear mechanisms and abrasive machining process. **CO3:**Analyze the forming process behavior for conventional and advanced metal forming processes.

CO4:Understand the basics of limits, fits and tolerances in manufacturing.

Detailed Syllabus:

UNIT I

Introduction to machining; Orthogonal cutting; Oblique cutting; Types of chips; Mechanics of chip formation; chip breakers; Mechanics of Metal Cutting: Merchant's circle diagram; Determination of cutting and thrust forces; Coefficient of friction; strain rate; Measurement of shear angle, Thermal aspects of machining, Numerical problems.

UNIT II

Mechanisms of tool wear; Types of tool wear, Tool life: Variables affecting tool life-Cutting conditions; Tool angles specification systems; Tool materials; Desirable Properties of Cutting Tool; Determination of tool life; Machinability, Economics of machining.

Abrasive Machining Process: Introduction; Grinding: Characteristics of a grinding wheel; Specification of grinding heels; Mechanics of grinding process; Grinding operations; Wheel wear; Surface Finish; Selection of grinding wheels.

UNIT III

Metal Forming: Hot and cold working, Rolling; Forging; Extrusion; Sheet metal working. Introduction to high energy rate forming processes, their advantages and application. Electromagnetic forming, Explosive forming, Electrohydraulic forming.

UNIT IV

Metrology: Introduction to Metrology, Accuracy and Precision. Limits, fits and tolerances, need of providing tolerance, unilateral and bilateral system, Taylor's principles of gauge design, Sine bars and gauge blocks manufacturing method and their applications, Numerical problems. **Text Book:**

1. Manufacturing Science-A. Ghosh and A.K. Malik, Affiliated East Press, New-Delhi.

Reference Book:

- 1. Campbell, J.S., Principles of Manufacturing Materials and Processes, McGraw-Hill, New-York,
- 2. Engineering Metrology and Measurements by N.V. Raghavendra and L. Krishnamurthy, 1st Edition, Oxford University Press
- 3. Rao, P.N., Manufacturing Technology, Volume 2, McGraw-Hill Education, New Delhi.
- 4. Lindberg, R.A., Processes and Materials of Manufacturing, Allyn and Bacon, Boston

Course No.: MET 352 <u>MATHEMATICAL METHODS</u>

C L P (3 3 0)

COURSE OUTCOMES:

- 1. Able to solve non-linear equations using, R.F, Newton Rapson methods.
- 2. Able to solve linear system of equations using Gauss elimination, Gauss-Jourdan, Gauss siedel & LU decomposition
- 3. Able to use interpolation formulas; and linear & non linear curve fitting.
- 4. Able to use numerical differentiation & integration methods. Solve ODEs & PDEs using numerical methods.
- 5. Able to develop computer programmes for the above methods and interpret them graphically.

UNIT I

Flow charts. Computer languages. Constants and variables. Arithmetic expressions. Input/ output, control statements. Introduction to programming.Types of errors. Computational algorithms and computer arithmetic. Iterative methods. Solution of equations: Bisection method, Regula-falsi method, Newton Raphson method. Solution of linear system of equations: Gauss elimination, Gauss-Jordan, Gauss- Siedel method, LU decomposition.

UNIT II

Interpolation and approximation of functions, Newtons forward formula (equal and unequal intervals) Curve fitting (straight line, nonlinear, exponential) differentiation, integration (Trapezoidal/Simpson's rule, Weddle's) and program.

UNIT III

Numerical solution of ordinary different equations. Runge- Kutta methods, Types of PDEs, boundary value problems, solution of parabolic PDEs using finite differences and program.

• Examples to be taken from Mechanical engineering applications.

Text Book:

1. Sastry, S. "Numerical Methods", Printice Hall of India, New Delhi.

2. Chapra & Chapra Numerical methods for Engineers. Mc. Graw Hill.

Reference Books:

1. Veerarajan, "Numerical Methods", Tata Mc-GrawHill, New Delhi, 2000.

Course No.: MET 353CONTROL SYSTEMSC L T(4 3 1)

COURSE OUTCOME:

- 1. Develop the mathematical models of LTI dynamic systems, determine their transfer functions, describe quantitatively the transient response of LTI systems, interpret and apply block diagram representations of control systems and understand the consequences of feedback.
- 2. Use poles and zeroes of the transfer functions to determine the time response and performance characteristics and design PID controllers using empirical tuning rules.
- **3.** Determine the stability of linear control systems using the Routh-Hurwitzcriterion and classify systems as asymptotically and BIBO stable or unstable.
- 4. Determine the effect of loop gain variations on the location of closed-loop scales, sketch the root locus and use it to evaluate parameter values to meet the transient reponse specification od closed loop systems.
- 5. Define the frequency response and plot asymptotic approximations to the frequency response function of a system. Sketch a Nyquist diagram and use the Nyquist criterion to determine the stability of a system.

UNIT I

Introduction: Concept of automatic control, open loop and closed loop systems, servo mechanism, block diagram, transfer function.

Representation of control components and systems: Translation and rotational mechanical components, electrical components -series and parallel combinations, comparators for rotational and linear motions, integrating devices, hydraulic servomotor temperature control systems ,speed control systems.

UNIT II

System response: First and second order systems, response to step, pulse, ramp and sinusoidal inputs, systems with distance velocity lag.

Modes of controls: Proportional control, Proportional pulse reset control, proportional pulse rate control, proportional reset rate control, two position control.

Controller Mechanism: Pneumatic, hydraulic and electric controllers, general principles and circuits for generating various control actions.

UNIT III

Control system analysis: Transient response of simple control systems, stability of control systems, Mouths criterion. Frequency response analysis, polar rectangular and logarithmic plots, experimental determination of frequency response, Bode and Inquest stability criteria, gain and phase margins. Root locus plots of simple transfer function, transient response from root locus.

Electronic Analogue computers: Elements of analogue computers, solution of simple differential equations.

Text Book:

1. Ogata,K., "Modern Control engineering", Prentice Hall of India, 3rd edition, New Delhi, 1997.

Reference Book:

1. Raven, F., "Automatic Control" McGraw Hill Int., 1999.

Course No.: MET 354 FLUID MECHANICS- II CLT (4 3 1)

Course Outcomes: At the end of the course, student will be able to:

CO1	Understand the working of gas turbine plant components and analyse their performance.
CO2	Differentiate ideal and practical gas turbine cycles.
CO3	Analyze the operations of centrifugal air compressor and axial air compressor.
CO4	Design the working proportions of hydraulic machines.

Unit-I

Review of Basics: Introduction to Prime Movers, Gas Turbines, Review of Basic principles - Thermodynamics, Review of Basic principles - Fluid Dynamics and Heat Transfer, Fundamentals of Rotating Machines - Energy Equation, Dimensional Analysis, Aerofoil Theory.

Ideal Gas Turbine Cycles: Analysis of Ideal Gas Turbine Cycles, Simple Cycle, Regeneration Cycle, Reheat Cycle, inter cooling Cycle.

Practical Gas Turbine Cycles: Analysis of Practical Gas Turbine Cycles, Methods of accounting for component losses, Efficiencies, change in the composition of the working fluid. Combustion Chambers:Gas turbine combustion systems - Introduction, Geometry, Factors affecting Design & Performance, Requirements of the Combustion Chamber, Gas Turbine Combustion Emissions.

Unit-II

Centrifugal Compressors: Centrifugal Compressors- Principle of Operation, T-s diagram, Energy equation, velocity triangles, types of blades. Analysis of Flow, Performance Characteristics.

Axial Flow Compressors: Axial Flow Compressors - Construction, Principle of Operation, T-s diagram, Energy equation, velocity triangles. Analysis of Flow. Work done factor, Stage efficiency, Degree of reaction, Performance characteristics.

Unit-III

Hydraulic Turbines:Principle of impingements of jets, Euler equation, classification of Hydraulic Turbines, Constructional Details, Analysis, Efficiencies & Design Parameters of Impulse (Pelton Turbine) and Reaction Turbines (Francis, Kaplan& Propeller Turbine), Draft Tube, Cavitation, Governing of Hydraulic Turbines, Characteristics of the Hydraulic Turbine

Unit-IV

Centrifugal pumps: Advantages of Centrifugal Pumps over Reciprocating Pumps, Construction and Working of a Centrifugal Pump, Classification of Centrifugal Pumps, Different Heads of Centrifugal Pumps, Different Efficiencies of a Centrifugal Pump, Analysis of a Centrifugal Pump, Minimum Starting Speed of a Centrifugal Pump, Maximum Suction Lift and Net Positive Suction Head, Cavitation, Priming, Pumps in Series and in Parallel

Fluid System: Hydraulic press, Hydraulic accumulator, hydraulic intensifier, Fluid coupling, torque convertor, hydraulic ram, hydraulic actuator, airlift pump.

Reading:

1. Ganesan, V., Gas Turbines 3/e, Tata McGraw Hill Book Company, New Delhi, 2010.

- 2. Vasandani, V.P. and Kumar, D.S., Treatise on Heat Engineering, Chand and Co Publishers, New Delhi, 2011.
- 3. Saravanmuttoo, H.I.H., Rogers, G.F.C. and Cohen H., Gas Turbine Theory, 6/e. Pearson Prentice Education, 2008.
- 4. Applied Thermodynamics for Engineering Technologists 5th Edition (English, Paperback, Eastop T.D.).

MET3XX ELECTIVE-1 CLT (4 3 1) Course No.: MET 355 FINITE ELEMENT METHOD C L T (4 3 1) Course Outcomes: Upon successful completion of this course students should be able to: Current (4 3 1) Course Outcomes: Upon successful completion of this course students should be able to: Current (4 3 1) Course Outcomes: Upon successful completion of this course students should be able to: Current (4 3 1) I. Understand the concepts behind formulation methods in FEM. Current (4 3 1) 2. Identify the application and characteristics of FEA elements such as bars, beams, plane and iso-parametric elements. Solution and generation of global equation. 3. Develop element characteristic equation and generation of global equation. for bars, trusses, beams, circular shafts, heat transfer, fluid flow problems and solve them & find displacements, stress and strains induced.

UNIT I

Basic Concept, Historical background, Engineering applications, general description, Comparison with other methods. Need for weighted-integral forms, relevant mathematical concepts and formulae, weak formulation of boundary value problems, variational methods, Rayleigh-Ritz method, and weighted residual approach.

UNIT II

Model boundary value problem, finite element discretization, element shapes, sizes and node locations, interpolation functions, derivation of element equations, connectivity, boundary conditions, FEM solution, post-processing, compatibility and completeness requirements, convergence criteria, higher order and isoparametric elements, natural coordinates, Langrange and Hermite polynomials.

UNIT III

External and internal equilibrium equations, one-dimensional stress-strain relations, plane stress and strain problems, axis-symmetric and three dimensional stress-strain problems, strain displacement relations, boundary conditions, compatibility equations, computer programs.

Variational approach, Galerkin approach, one-dimensional and two-dimensional steady-state problems for conduction, convection and radiation, transient problems.

Inviscid incompressible flow, potential function and stream function formulation, incompressible viscous flow, stream function, velocity-pressure and stream function-vorticity formulation, Solution of incompressible and compressible fluid film lubrication problems.

Text Books:

Logan, D. L., A first course in the finite element method,6th Edition, Cengage Learning, 2016.
 Rao, S. S., Finite element method in engineering, 5 th Edition, Pergaman Int. Library of Science,

2010.

3. Chandrupatla T. R., Finite Elements in engineering, 2nd Edition, PHI, 2013.

Reference Books:

1. J.N.Reddy, "Finite Element Method"- McGraw -Hill International Edition.

2. Bathe K. J. Finite Elements Procedures, PHI. 2. Cook R. D., et al. "Concepts and Application of

Finite Elements Analysis"- 4th Edition, Wiley & Sons, 2003.
MET3XX

ELECTIVE-1

CLT (4 3 1)

Course No.: MET 356 ADDITIVE MANUFACTURING PROCESSES C L T (4 3 1)

COURSE OUTCOMES: At the end of this course, the students shall be able to:

- 1. Understand the basics of additive manufacturing (AM) and working principles of different AM processes.
- 2. Explore the applications of different AM processes in various fields.
- 3. Analyze various AM processes to understand their relative merits and demerits.
- 4. Design and develop functional models using different AM techniques.

Unit-I

Introduction to Additive Manufacturing: Introduction to AM, AM evolution, AM vs traditional manufacturing, advantages and limitations of AM over conventional manufacturing, nomenclature of AM machines, prototyping, tooling and manufacturing. Classification of AM processes, common AM processes, generalized AM process chain and steps in AM, types of materials for AM.

Unit-II

Vat Photo polymerization AM Processes: Introduction, materials for AM processes utilizing Vat Photo polymerization, Stereo-lithography (SL), photo polymerization process, process modeling, variants and classification of VAT photo polymerization process, Advantages and drawbacks of vat photo polymerization processes.

Powder Bed Fusion (PBF) AM Technique: Introduction to PBF, materials, powder fusion mechanism, process parameters and modeling, powder handling, powder fusion techniques, PBF process variants, Advantages and drawbacks of PBF.

Extrusion Based AM Processes: Introduction, basic principles of extrusion-based processes, Fused Deposition Modeling (FDM), materials, Bio extrusion, Contour Crafting, Non-Planar systems, RepRap FDM systems, process benefits and drawbacks.

Unit-III

Material Jetting (MJ) and Binder Jetting (BJ) AM Processes: Introduction to MJ and BJ,

materials, process description to MJ and BJ, variants of MJ and BJ, comparison between MJ and BJ, benefits and drawbacks.

Sheet Lamination AM Processes: Introduction, Variants of sheet lamination, Laminated Objected Manufacturing (LOM), Ultrasonic additive manufacturing (UAM), benefits and drawbacks of UAM.

Directed Energy Deposition (DED) AM Processes: Introduction to DED, process description, classification of DED techniques, benefits and drawbacks of DED.

Recommended Texts:

1. Manu Srivastava, Sandeep Rathee, Sachin Maheshwari, TK Kundra, "Additive Manufacturing: Fundamentals and Advancements", Ist ed.2019, Boca Raton: CRC Press, Taylor & Francis group.

2. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", 2nd Edition, Springer, 2015.

Recommended References:

1. Sandeep Rathee, Manu Srivastava, Sachin Maheshwari, TK Kundra, Arshad Noor Siddiquee, "Friction Based Additive Manufacturing Technologies: Principles for Building in Solid State, Benefits, Limitations, and Applications", Ist ed.2018, Boca Raton: CRC Press, Taylor & Francis group.

2. Chua Chee Kai, Leong Kah Fai, "3D Printing and Additive Manufacturing: Principles & Applications", 4th Edition, World Scientific, 2015.

3. D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling, Springer 2001.

4. Andreas Gebhardt, Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing, Hanser Publishers, 2011.

MET3XX	T3XX ELECTIVE-1		CLT (4 3 1)		
Course No.: MET 357	Advanced Thermodynamics		C L T (4 3 1)		
Subject: Advanced Thermodynamics	Year & Semester: B. Tech Mechanical Engineering 3 rd Year &6 th Semester		Total Course Credit: 4		
(Coue: MIEISAA)			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		
	30 Marks	10 Marks	60 Marks		

After the completion of course, students will be able,

CO1	To extend the in-depth knowledge in the application of the laws of thermodynamics
CO2	To apply concepts of entropy generation and exergy to practical applications/systems
CO3	To have a coherent knowledge about the evaluation of the thermodynamic properties
CO4	To identify, formulate and solve a wide range of real world problems involving energy
	transfer

Unit 1

Scope and methods of thermodynamics, Review of Thermodynamics, Mathematical background, Macroscopic and Microscopic approaches in thermodynamics, Energy and first law of thermodynamics, First law for closed and open systems, Broadening understanding of energy transfer by work and heat, Structured presentation of First law of Thermodynamics.

Unit 2

Second law of thermodynamics, Traditional formulation of Second law of thermodynamics, logical relation between alternative statements of the second law, Mathematical formulation of second law of thermodynamics, Entropy maximum and Energy Minimum principle, Born-Caratheodory formulation of second law.

Unit 3

Entropy Generation, Concept of Exergy of system, Exergy balance of closed and open systems, Second Law efficiency (of heat engines, heat pumps, refrigerators, work producing and consuming devices, heat exchangers), Thermoeconomics, Exergy account of a vapour power plant (Case study), Thermodynamics of a Biological System.

Unit 4

Thermodynamic properties of pure fluid, ideal gas properties, State relationships for real gases and liquids, Two-constant and Multiconstant Equation of state, Virial Equations, Vander Waals Equation of State, Redlich-Kwong Equation of state, Compressibility charts, Generalized Equation of state, Maxwell's relations, Generalized relations, Evaluation of Thermodynamic properties, p-v-t relations for gas mixtures, Multicomponent systems, Chemical potential (Fugacity).

Textbooks:

- 1. Bejan, A., "Advanced Thermodynamics" John Wiley & Sons, 2006.
- Moran, M.J., Shapiro, H.N., Boettner, D.D., Bailey, M.B., "Principles of Engineering Thermodynamics", Wiley India, 2017.
 Reference Books:
- 1. Kestin, J., "A Course in Thermodynamics", McGraw Hill, 1979.
- 2. Wark, K., "Advanced Thermodynamics", McGraw Hill, 1995.

MEL361APPLIED THERMODYNAMICS LAB0-0-2Credits: 1

Prerequisites: Thermodynamics, Fluid Mechanics, Applied Thermodynamics, Hierodulic machines

Course Outcomes: At the end of the course, the student should be able to:

- **CO1:** To investigate the performance and emission testing of SI Engine.
- CO2: To investigate the performance and emission testing of CI Engine.
- **CO3:** To acquire knowledge of working principle of compressors.
- CO4: To gain knowledge of Turbines,

List of Experiments:

- 1. Study of different internal combustion engine models.
- 2. Experimental study of characteristic performance curves & emission of spark ignition engineusing gasoline as fuel.
- 3. Experimental study of characteristic performance curves & emission of compression ignition engine using diesel as fuel.
- 4. Study of working of compressors using different compressor models.
- 5. Experimental study of characteristic performance curves of single cylinder reciprocating compressors.
- 6. To study the constructional details of hermetically sealed reciprocating compressor.
- 7. Study of the Pelton wheel Turbine.
- 8. Study of the Francis Turbine.

MEL 362 INDUSTRIAL ENGINEERING-I LAB C P (1 2) COURSE OUTCOMES:

- **1.** Demonstrate human factors/ergonomic principles (HF/E) that influence the design, performance and safety of work systems.
- 2. Apply HF/E guidelines and use standard HF/E in the design of work systems.
- **3.** Model work systems using standard techniques, such as flow diagrams, process charts, operation charts, activity charts, block diagrams, and process maps, for purposes of work system documentation, analysis, and design.
- 4. Determine the time required to do a job using standard data, occurrence sampling, time study, and predetermined time systems.

1. Ergonomic design study (Present/proposed/new) of a product, equipment or work environment (human-machine interface) – (This involves about four to five laboratory classes / sessions)

2. To assembly a product (electrical holder, etc.), record the cycle time and draw learning curve of the operator performing the assembly.

3. Draw Out line process chart and two hand flow process charts for the assembly performed in experiment no. 2, and analyse the present method and also suggest improved method/s.

4. Study and draw of flow process charts (some suitable assembly operation)

5. Study and draw multi activity chart of a suitable method and propose better method/s.(Man and machine)

6. Study suitable movements/travel of man, material or equipment, and draw string diagram, travel chart and flow diagrams.

7. To calculate the standard time of a suitable job, using predetermined time standard techniques.

		_
MES 363	SEMINAR CP (2 4)	
CO1	Review literature on a given advanced topic related to the specific stream.	
CO2	Summarise the concept of the chosen topic systematically after considerable study of the content from primary as well as secondary sources	э
CO3	Learn and present the structure and format of technical reports as per specified norms	ł
CO4	Interpret graphs of various kinds and discuss the concept & conclusion in an open seminar.	n

MEI 364	INDUSTRIAL TRAINNING C (2)
CO1	To study the concept of Facility, Location & Layout & implement in their Industrial training Project work.
CO2	An understanding of the impact of engineering solutions and industrial safety in a global and social context.
CO3	Develop the ability to work as an individual and in group with the capacity to be a leader or manager as well as an effective team member.
CO4	Demonstrate competence in mechanical engineering fields through problem identification, formulation and solution.

_

Course Code: MET 401Mechatronics and Measurement SystemsC L T (4 3 1)

Mechatronics and Measurement Systems

COURSE OUTCOMES:

CO1 Identify and develop operational research models from the verbal description of the real system.

CO2 Understand the mathematical tools that are needed to solve optimisation problems.

CO3 Use mathematical software to solve the proposed models.

CO4 Develop a report that describes the model and the solving technique, analyse the results and propose recommendations in language understandable to the decision-making processes in Management Engineering.

UNIT I

Measurement and Instrumentation; definitions, significance, Fundamental methods, generalized measurement system, Functional elements, Types of input quantities, standards, calibration, uncertainty, Errors, Classification of instruments, Input-output configuration, Interfering and modifying inputs, methods of correction, Generalized performance characteristics, static characteristics, static calibration, Dynamic characteristics, zero and first order instruments, time constant, Second-order instruments, transient response characteristics. Relative and absolute motion devices, relative displacement, Resistive potentiometers, bridge circuit, LVDT, Variable inductance and variable capacitance pick-ups, Piezoelectric transducers, fibre optic displacement transducer, Resistance strain gage, Relative velocity-translational and rotational, Mechanical revolution counters and timers, stroboscopic method, Moving coil and moving magnet pickups, DC and AC tachometers, Eddy current drag-cup tachometer, acceleration measurement.

UNIT II

Hydraulic and pneumatic load cells, flapper nozzle principle, Force transducers with elastic members, Proving ring transducer, cantilever beam transducer, electromagnetic balance, Dynamometers – Absorption, driving and transmission type, reaction forces in shaft bearings, prony brake, eddy current brake dynamometer, Instruments for high, mid and low pressure measurement, dead weight and null type, Elastic element gages, Differential pressure cell, high pressure measurement, Low pressure measurement –, Pirani gages & McLeod pressure gauge.

UNIT III

Orifice meters, Venturimeter, Pitot tube, Flow nozzle, Variable area meters, rotameter, design and accuracy, Positive displacement flow meter, turbine flow meter, Electromagnetic flow meter, ultrasonic flow meters, Temperature sensing techniques, liquid-in-glass and bimetallic thermometers, Pressure thermometers, electrical resistance thermometers, Thermistors, Thermocouples, thermopiles, Radiation pyrometers, Optical pyrometer.

Text Book:

1. Beckwith, B., "Mechanical Measurements", 6th edition, Pearson Education Int., 2008.

Reference Book:

- 1. Nakra B.C. "Instrumentation, Measurements & Analysis", 2nd edition, *Tata McGrawHill, N.Delhi, 2008.*
- 2. Doeblin, E.O., "Measurement systems",5th edition, McGraw Hill, New Delhi, 2004.

Course No.: MET402INDUSTRIAL ENGINEERING – IIC L T (4 3 1)

<u>INDUSTRIAL ENGINEERING – II</u>

COURSE OUTCOMES:

- 1. Grasp the concept of organizational design with emphasis on organization principles & work design.
- 2. Analyse & design facility location and layout using various techniques and softwares.
- 3. Demonstrate the ability to use the methods of statistical quality control and process control for effective designing of Industrial Quality Monitoring Systems.
- 4. Demonstrate the ability to apply the techniques of material management and inventory control for effective designing and systematic implementation of various MM methods and inventory systems in manufacturing set-up.

UNIT I

Factory organization: Introduction to Plant organization, Principles of Organizational structure, Organization charts, Types of Organizations, Developing an organization structure, Results of good organization, Informal organization, advantages and disadvantages.

Location and Layout analysis: Introduction to Facility location problems, Factors affecting the plant location. Break even analyses and their application, Subjective, qualitative and semi-Quantitative techniques of facility location, Single facility Location problem, Minimax Location problem, Gravity problem and their applications. Line balancing, Introduction to facility layout and their objectives, Classification of Layouts, with advantages and disadvantages of each, Layout design procedures(CRAFT,CORELAP,ALDEP), Material handling systems, Make or Buy decisions, Planning and control of Batch Production, Characteristics of Batch Production, Determination of Batch size, Minimum Cost batch Size, Maximum Profit Batch size, Sequencing and scheduling for Batch Production, Line of Balancetechnique.

UNIT II

Inspection and quality control: Concept and Definition of Quality, Concepts of Inspection and quality control, Objectives of inspection, Function of Inspection and their types, Concept of statictical quality control (SQC), Process variation, Sampling inspection. Concepts and types of Control charts, Acceptance sampling, application of control charts and sampling plans.

UNIT III

Materials management and inventory control: Integrated materials management and their components, Functions and objectives of material management, Introduction and concepts of Inventory management, Purchase model with instantaneous replenishment and without shortage, Manufacturing model without shortages, Purchase model with shortages, Manufacturing model with shortages, Probabilistic inventory concepts with lead time.,

Selective inventory management- ABC , FSN, VED analyses. **Text Book**:

1. Everett, E.A., Ronald J.E, "Production and Operations Management" *Prentice Hall of India*, 5th edition, New Delhi, 2001.

Reference Books:

- 1. Claude, S.G., "Management for Business & Industry" Prentice Hall of India, New Delhi, 2000.
- 2. Everett, E.A., Ronald J.E, "Production and Operations Management", *Prentice Hall of India*, 5th Edition, New Delhi, 2001.
- 3. Grant, E.L; Leavenworth R.S, "Statistical Quality Control", *Tata Mcgraw Hill, 7th Edition*, New Delhi, 1996.
- 4. Apple, J.M, "Plant Layout & Material Handling", John Wiley & Sons, New York.
- 5. Maynard, Industrial Engineering Hand Book, McGraw Hill, New York.

Course No.: MET403

MACHINE DESIGN

C L T (4 3 1)

MACHINE DESIGN

COURSE OUTCOME:

- 1. Analyse the stress and strain of mechanical components.
- 2. Demonstrate knowledge of basic machine elements used in machine design.
- 3. Design machine elements to perform functions in order to obtain desired objectives under various operating conditions.
- **4.** Conduct a failure analysis for the design of mechanical components to select the suitable materials and manufacturing considerations.

UNIT I

Design of friction elements, various types of brakes, design equations for various types of brakes, design analysis of all types of brakes, e.g., band brake, long shoe brake, etc. design analysis of all types of clutches, design of couplings and keys for shafts, etc, design and analysis of flat and V-belt, equations for power, slip, etc, design of chain drive.

UNIT II

Introduction to gear design, design of spur gear, equation for σ_b and σ_c for spur gear, design analysis for bending, force analysis for Helical gear, design analysis for helical gear, design of bevel gear, determination of bearing forces, horizontal and vertical shafts, design analysis for bevel gear, design analysis for worm gear.

UNIT III

Introduction to Plain bearings, Bearing surface at Micro level, Derivation of Energy equation and PV factor, PV graph, Values of PV, Derivation of Wear coefficient equation, Step-by-step procedure for Plain bearing design, Self lubricating bearings and use of clearance for life of bearing, Design of Hydrodynamic bearings, Derivation of Reynolds equation for three dimensional case, Journal bearing geometry, Variation of viscosity with pressure and temperature, Viscosity index, Sommerfeld number, Analysis of ho, h_{min}, Q_{in}, Q_{loss}, T_{in}, T_{out}, Introduction to Rolling element bearings, Design of AFB (??), Equations for L₁₀ life, Static loading and dynamic loading ,Use of AFB catalogue, Determination of Load based on radial and thrust load for ball bearings, Derivation of Load equation for Tapered AF bearings, Design analysis on the basis of loads and selection of AFB from a

catalogue.

Text Books:

- 1. Mot, R.L., "Machine Elements in Mechanical Design", *Maxwell Macmillan Intl.* edition N.York, USA, 1992.
- 2. Shigley, J.E., "Machine Engineering Design", McGraw Hill, higher education, 2004.

Reference Books:

Shigley, J.E., Mischke, C. Brown T., "Standard Hand book of Machine Design" McGraw Hill.

		Elective II: Desigr
Course No.: MET404	ADVANCED MECHANICS OF SOLIDS	C L T (4 3 1)

Course Title: ADVANCED MECHANICS OF SOLIDS

Pre-requisite(s): Strength of Materials

Course Outcomes:

At the end of the course, a student should be able to:

CO1 Understand the concept of tensor.

CO2 Analyse advanced concept of stress and strain in structural problems.

CO3 Apply the concept of different elastic functions to solve complex problems.

CO4 Evaluate the influence of various geometric and loading parameters in plane stress and plane strain problems.

UNIT 1

Mathematical Preliminaries: Introduction to tensor algebra: symmetric and skew-symmetric tensor, summation convention, eigenvalue and eigenvector of tensor, spectral theorem, polar decomposition theorem, product of tensor, principal invariants of tensor, coordinate transformation of tensor, Tensor calculus: gradient, divergence, curl, differentiation of scalar function of a tensor. (8 L)

UNIT 2

Analysis of Stress and Strain: Definition and notation of stress, Cauchy stress tensor, equations of equilibrium, principal stresses and stress invariants, stress deviator tensor, octahedral stress components, General deformations, small deformation theory, strain transformation, principal strains, spherical and deviatoric strains, Strain-displacement relations, strain compatibility, stress and strain in curvilinear, cylindrical, and spherical coordinates, fundamental equations of plasticity. (8 L)

UNIT 3

Problem formulation and solution strategies: Field equations, boundary conditions, stress and displacement formulation, Beltrami-Michell compatibility equations, Lame-Navier's equations, principle of superposition, uniqueness theorem, Saint-Venant's principle, Brief descriptions about general solution strategies - direct, inverse, semi-inverse, analytical, approximate, and numerical methods. (8 L)

UNIT 4

Two-dimensional problems: Plane stress and plane strain problems, generalized plane stress, Antiplane strain, Airy stress function, polar coordinate formulation and solutions, Cartesian coordinate solutions using polynomials and Fourier series method. (8 L)

Text Books:

- 1. Elasticity, Theory, Applications, and Numerics by Martin H. Sadd
- 2. Theory of Elasticity by Stephen Timoshenko and , J. N. Goodier
- 3. Advanced Mechanics of Solids, Otto T. Bruhns, Springer publications.

Reference Books:

1. Continuum Mechanics, A.J.M Spencer, Dover Publications, INC

2. Advanced Mechanics of Materials by H. Ford and J. M. Alexander 3. The Linearized Theory of Elasticity, W. S. Slaughter, Springer Science + Business Media, LLC

Elective II: Thermal

Course No.: MET 405

Refrigeration and Air Conditioning

C L T (4 3 1)

Course Outcomes:

- 1. To Identify the need and importance of various refrigeration and air conditioning cycles, the typical and some advanced and innovative schematic designs, and the goals of R&AC systems.
- 2. To design the VCRS and VARS with improving performance parameters.
- 3. To describe the working of different types of air conditioning systems.
- 4. To evaluate the actual applications of R&AC.

UNIT-I

Introduction

Basics of refrigerator and heat pump, Carnot refrigeration and heat pump, units of refrigeration, COP of refrigerator and heat pump, Carnot COP, Ice refrigeration, evaporative refrigeration, refrigeration by expansion of air, refrigeration by throttling of gas, vapor refrigeration system, steam jet refrigeration, thermo- electric cooling, adiabatic demagnetization

Basic Principle of operation of air refrigeration system, Bell Coleman air refrigerator, advantages of using air refrigeration in air craft, disadvantage of air refrigeration in comparison to other cold producing methods, simple air refrigeration in air craft, simple evaporative type, air refrigeration in air craft, necessity of cooling the air craft.

UNIT-II

Vapor Compression refrigeration system

Simple vapour compression cycle, Methods of improving COP, flash chamber, flash inter cooler, optimum inter stage pressure for two stage refrigeration system, single expansion and multi expansion cases, basic introduction of single load and multi load systems, cascade systems, Nomenclature of refrigerants.

Vapor absorption refrigeration system and special topics

Basic absorption system, COP and maximum COP of the absorption system. Actual NH_3 absorption system, function of various components, Li-Br absorption system, Selection of refrigerant and absorbent pair in vapor absorption system, Electro-Lux refrigerator, comparison of compression and absorption refrigeration system, , desirable properties of refrigerants, cold storage and Ice Plants.

UNIT-III

AIR CONDITIONING

Psychrometric properties of moist air, By- pass factor of coil, sensible heat factor, ADP of cooling coil, Air washer. Air conditioning systems: Classification, factors affecting air conditioning systems, comfort air conditioning system, winter air conditioning system, summer Air Conditioning system, year-round air-

conditioning system, unitary air conditioning system, central air conditioning system, Room sensible heat factor, Grand sensible heat factor, effective room sensible heat factor, Industrial application of Air conditioning.

Text Books:

- 1. Refrigeration and Air Conditioning C.P. Arora, Tata McGraw-Hill
- 2. Refrigeration and Air- Condition by W. Stoecker Mc Graw Hill

Reference Books:

- 1. Basic Refrigeration and Air Conditioning- Ananthana and Rayanan, McGraw-Hill
- 2. Refrigeration and Air Conditioning- Arora and Domkundwar, Dhanpat Rai.

Elective II: Production

Course No.: MET406Material Testing, Inspection and CharacterizationC L T (4 3 1)

COURSE OUTCOMES:

By successful completion of this course, the student will be able to

1. Understand various destructive and non destructive methods of testing materials.

2. Explain the principles of metallurgical microscope, X-ray Diffractrometer (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermal analysis and dilatometer.

3. Describe the various sample/specimen preparation techniques for XRD, SEM, TEM and thermal analysis and quantitative metallography.

4. Apply knowledge to select appropriate tool to characterize the material by knowing its merits and demerits.

UNIT I

Purpose and importance of destructive tests – Concepts, and method of Tensile, hardness, bend, torsion, fatigue and creep testing.

UNIT II

Purpose and limitations of NDT, Concepts, operating principles, liquid penetrant test, magnetic particle testing, eddy current testing, ultrasonic testing radiography, acoustic emission, thermal imaging method. Comparison of NDT methods and selection of NDT methods.

UNIT III

Tools of characterisation - Light microscopy, basic principles and special techniques. X-ray diffraction and its applications in materials characterization.

Electron microscopy, Construction, operation and applications of scanning electron microscope (SEM), transmission electron microscope (TEM)

UNIT IV

Thermal analysis: Thermo gravimetric analysis, differential thermal analysis, differential scanning calorimetry & dilatrometry.

TEXT BOOKS:

1. Non-destructive testing, B.Hull And V.John, Macmillan, 1988.

2. Modern Physical Metallurgy and Materials Engineering, R. E. Smallman, R. J. Bishop, sixth edition, Butterworth-Heinemann, 1999.

3. Materials Characterisation, P.C.Angelo, Elsevier (India) Pvt. Ltd, Haryana, 2013,

Elective III: Design :-

E

Course No.: MET407

BASIC FRACTURE MECHANICS

C L T (4 3 1)

COURSE OUTCOMES:

1. Identify and describe different failure mechanisms in materials and engineering structures.

2.

xplain how a crack affect an engineering structure and describe the state of stress and strain that may arise in the vicinity of the crack front in different materials

3. Evaluate fracture toughness for structures with cracks using LEFM and EPFM techniques.

4. Analyze the crack growth in materials subjected to fatigue loads.

UNIT I

Mechanisms of fracture and crack growth, cleavage fracture, ductile fracture, fatigue cracking, Summary of basic problems and concepts in fracture, a crack in a structure, theoretical strength of a material, Inglis's solution, crack tip stresses, the Griffith criterion, Modified Griffith's theory

UNIT II

The elastic crack-tip stress field, Stress Intensity factor, the effect of finite size, Some special cases, elliptic cracks the energy principles, the concept of energy release rate, the criterion for crack growth, the crack resistance, the concept of J-integral, crack opening displacement criterion, K_{IC} and G_{IC} test methods

UNIT III

Crack-tip plastic zone, Irwin's plastic zone correction, The Dugdale approach, Plane stress versus plane strain, plastic constraint factor, the thickness effect, application of von Mises and Tresca yield criteria to obtain plasticity effected regions, Fatigue failure, S-N curve, Crack initiation and propagation, effect of overload, crack closure, Environmental assisted cracking, service failure analysis

Text Book:

1. Anderson T.L., "Fracture Mechanics Fundamentals and applications", CRC, Taylor & Francis, 2005.

Reference Book:

Janssen, M. J., Zuidema, J., Wanhill R.J.H., "Fracture Mechanics", Spon Press, 2004.

1. Prashant Kumar, "Elements of Fracture Mechanics", McGraw Hill Education, 2017

Elective Thermal

Course No.: MET408

Design of Fluid Thermal Systems

CLT(431)

COURSE OUTCOMES:

After the completion of course, students will be able,

CO1	To understand thermal system engineering design process
CO2	To learn the characteristics of the components of the thermal system and their effects on overall
	system performance
CO3	To simulate a thermal system and solve for a workable solution
CO4	To identify, formulate and solve a wide range of real world thermal related problems

UNIT 1

Introduction, Design versus Analysis, Synthesis versus Design, Optimal and Nearly Optimal designs, Life Cycle Design, Thermal design aspects, Concept, creation and assessment, Thermal system (Basic Characteristics, Analysis), some typical examples, formulation of the design problem, Steps in design process, Material selection.

UNIT 2

Modelling of thermal systems, types of models, Mathematical modeling, General procedure (Transient/steady state, spatial dimensions, lumped mass approximation, simplification of boundary conditions, negligible effects, idealizations, material properties, conservation laws, simplification of governing equations), final model and validation, physical modeling and dimensional analysis, curve-fitting, Numerical modeling and simulation, Solution procedures, methods for numerical simulation,

UNIT 3

Formulation of problem for optimization, optimized design, objective function, constraints, operating conditions versus hardware, optimization methods (Calculus methods, Search methods, etc.), Optimization of thermal systems, Considerations of Second law of Thermodynamics, Economic analysis, Estimation of total capital cost, principles of economic evaluation, Thermoeconomic analysis and evaluation.

UNIT 4

Applications with Thermodynamics, Heat and Fluid flow, Cogeneration system Exergy analysis, Thermal insulation, Fins, Electronic packages, Refrigeration, Power Generation, Energy Storage by Sensible heating.

Textbooks:

- 1. Bejan, A., Tsatsaronius, G., Moran, M., "Thermal Design and Optimization", John Wiley, 2013.
- 2. Stoecker, W.F., "Design of Thermal Systems", McGraw Hill, 2017.

Elective Production

Course No.: MET409 ADVANCED MANUFACTURING TECHNOLOGY CLT(431)

ADVANCED MANUFACTURING TECHNOLOGY

Course Outcomes:

- CO1 Identify the use of advanced manufacturing processes in industries and explain the process of micro machining.
- CO2 Identify the need of super finishing processes and understand the process of super finishing.
- CO3 Understand the process of non-conventional forming.
- CO4 Apply knowledge to select appropriate surface processing technique to get the desired surface properties.

UNIT I

Introduction to Advanced manufacturing processes, Advantages of advanced manufacturing processes. Advances in Machining: High speed machining, hard turning. Micro machining: Introduction and need of micro machining, Diamond Micro- grinding/turning, Abrasive Micro machining, Ultrasonic Micromachining, Electric-discharge Micro-machining, Laser Micro-machining, Electrochemical Micro-machining.

UNIT II

Super finishing processes: Introduction to finishing processes, Need and application of superfinishing processes, Abrasive flow finishing, Magnetic Abrasive flow finishing, Magneto rheological abrasive flow finishing.

UNIT-III

Advances in forming: Introduction and application of non-conventional forming, need of non-conventional forming, Electro Magnetic forming, Hydro forming, explosive forming. Advantages of non-conventional forming.

UNIT IV

Surface processing: Introduction and need of surface processing, surface properties, cladding, chemical vapour deposition, physical vapour deposition, shot peening, surface modification by severe plastic deformation. Strategies for improving surface properties.

٠	Rao, P.N., Manufacturing Technology, Volume 2, McGraw-Hill
	Education, New Delhi.
٠	Serop K. Steven, "Manufacturing Processes for Engineering
	Materials", Prentice Hallof India,2004

Elective Production

Course No.: MET410

Conduction Heat Transfer

C L T (4 3 1)

CONDUCTION HEAT TRANSFER

COURSE OUTCOME

- CO1 To formulate and solve one dimensional steady state heat conduction problems
- CO2 To formulate and solve two-dimensional steady state and transient heat conduction problems
- CO3 To solve heat conduction problems involving phase change
- CO4 To identify, formulate and solve real world problems related to heat conduction

UNIT I

Introduction, Fourier's law of heat conduction, thermal conductivity, Differential formulation of heat conduction in rectangular, cylindrical and spherical coordinates, General boundary conditions and initial condition, non-dimensional analysis of the heat conduction equation, heat conduction for anisotropic medium, one-dimensional steady state heat conduction, Extended surfaces, Constant area fins, Variable area fins, moving fins, Bessel differential equations and Bessel functions.

UNIT II

Two-dimensional steady state heat conduction, Separation of variable method, Homogeneous differential equations and boundary conditions, Sturm-Liouville boundary valve problems, Non-homogeneous differential equations, Non-homogeneous boundary conditions, Method of superposition, Solution to problems in Cartesian and cylindrical coordinates, Unsteady heat conduction, lumped heat capacity system, Non homogeneous equations and boundary conditions, Transient conduction in plates, Transient conduction in cylinders, Transient conduction in spheres, Duhamel's Superposition Integral, Conduction in Semi-infinite regions.

UNIT III

Heat conduction involving phase change, Moving interface boundary condition, non-linearity of the interface energy equation, Simplified model (Quasi-Steady approximation), Exact solutions, Stefan's solution, Solidification of semi-infinite region, Melting of semi-infinite region.

UNIT IV

Heat Transfer in living tissue, Mathematical modeling of vessel-Tissue heat transfer, Microscale heat conduction, physics of energy carriers, Limitations of Fourier's law, Hyperbolic heat conduction, Solutions and approximations for the microscale heat transfer, Inverse heat transfer, parameter estimation, applications to heat transfer, method of sensitivity coefficients, Least squares approach, linear and non-linear inverse problems.

Textbooks:

1. Jiji, L.M., "Heat Conduction", Springer, 2009.

2. Kakac, S., Yener, Y., Naveira-Cotta, C.P., "Heat Conduction", CRC Press, 2018.

Reference Books:

- 1. Ozisik, M.N., Hahn, D.W., "Heat Conduction", John Wiley, 2012.
- 2. Muralidhar, K., Banerjee, J., "Conduction and Radiation", Naraosa Publishing House, 2010.
- 3. Poulikakos, D., "Conduction Heat Transfer", Prentice Hall, 1993.

MECHATRONICS LAB.

COURSE OUTCOME:

- 1. Identify and use basic modern tools for measurement of electrical and electronic signals.
- 2. Identify and use different types of sensors and actuators for designing a mechatronic product.
- 3. Design basic circuits utilizing modern electrical and electronic components including operational amplifiers and integrated circuits.
- 4. Write basic microcontroller programs for controlling a mechatronic product.

LIST OF EXPERIMENTS

- 1. Sensor/Actuator Interfacing, calibration, frequency domain characterization, MATLAB serial interface, and serial LCD display
- 2. Design of electropneumatic circuits for L (??) and square cyles using PLC's.
- 3. Sorting of components on an intelligent a conveyor system.
- 4. Modelling of DC Motor System.
- 5. DC Motor position tracking.
- 6. DC Motor position set-point control via PID controller, using relay automatic tuning technique7.
- 7. Disection of an existing system.
- 8. Demonstration of recent projects on Mechatronics.
- 9. Mini Project on Independent modeling, analysis, and design of a mechatronic control system (Select one "mechatronic plant" from the Quanser, rotary family).

Course No.: MEL412 INDUSTRIAL ENGINEERING-II LAB CLT(12)

INDUSTRIAL ENGINEERING-II LAB.

COURSE OUTCOMES:

- 1. Present a numerical and graphical characterization of quantitative data assuming the quantitative data are observations from a normal distribution to compute the Probability of specific numerical outcomes. Construct and interpret normal Probability plots of quantitative data.
- 2. Construct, implement and interpret X-bar and R control charts for variables from Standards and from data; and demonstrate how to use the corresponding OC curves.
- 3. Construct, implement and interpret p, c, and u control charts for attributes from Standards or data; and demonstrate how to use the corresponding OC curves.
- **4.** Demonstrate and simulate layouts to determine optimum material flow rate and cycle time of a job using witness software.

List if experiments:

- 1. To study the layout of a shop in an organization and draw existing and proposed layouts.
- 2. To measure the variable characteristics (diameter of pins, with micrometer) and prepare a frequency histogram. Calculate values of X bar and sigma.
- 3. Verify that when random samples are taken from a lot with a certain percentage of defective, same % age lands to appear in random sampling by using Shewart's kit.
- 4. Simulate an inspection situation with the help of a Schewhart's bowl and plot X bar, and R charts using computed data.
- 5. To conduct Process capability study of a machine tool and to specify the tolerances for a job.
- 6. To verify the theorem "the standard deviation of the sum of any number of independent variables is the square root of the sum of the squares of the S.Ds of the independent variable. Determine statistically, the permissible tolerance of mating components, when the tolerance of the assembly is given.
- 7. To draw control chart for percent defectives after inspecting a sample and sorting out the defective units.

_

Course No.: MEP413 MAJOR PROJECT - Stage 1 C L T (3 0 0)

- **CO1** Identify a topic in advanced areas of Mechanical Engineering.
- **CO2** Review literature to identify gaps and define objectives & scope of the work.
- **CO3** Generate and implement innovative ideas for social benefit.
- **CO4** Develop prototypes/models, experimental set-up and software systems necessary to meet the objectives.

-

Course No.: MET 451

Operation Research

C L T (4 3 1)

OPERATION RESEARCH

COURSE OUTCOMES:

- 1. Illustrate knowledge of fundamental concepts about operation research.
- 2. Compare and categorize the knowledge of different approaches to operational performance improvement.
- 3. Appraise the ability to work effectively in a team and in group and use of business tools.
- 4. Outline the various Japanese techniques for justify the knowledge and performance improvement in industrial cost control.

UNIT I

Introduction to Operations Research: Basics definition, scope, objectives, phases, models and limitations of Operations Research. Linear Programming Problem – Formulation of LPP, Simplex Method, Graphical solution of LPP., Artificial variables, big-M method, two-phase method, degeneracy and unbound solutions.

UNIT II

Transportation Problem. Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method.

UNIT III

Assignment model. Formulation. Hungarian method for optimal solution. Solving unbalanced problem. Traveling salesman problem and assignment problem. Sequencing models. Solution of Sequencing Problem – Processing and Jobs through 2 Machines – Processing n Jobs through 3 Machines – Processing 2 Jobs through m machines – Processing n Jobs through m Machines.

UNIT IV

Inventory models. Inventory costs. Models with deterministic demand – model (a) demand rate uniform and production rate infinite, model (b) demand rate non-uniform and production rate infinite, model (c) demand rate uniform and production rate finite.

Replacement Models. Replacement of Items that Deteriorate whose maintenance costs increase with time without change in the money value. Replacement of items that fail suddenly: individual replacement policy, group replacement policy.

TEXT BOOKS:

- 1. P. Sankara Iyer, "Operations Research", Tata McGraw-Hill, 2008.
- 2. A.M. Natarajan, P. Balasubramani, A. Tamilarasi, "Operations Research", Pearson Education, 2005.

REFERENCE BOOKS:

- 1. J K Sharma., "Operations Research Theory & Applications, 3e", Macmillan India Ltd, 2007.
- 2. P. K. Gupta and D. S. Hira, "Operations Research", S. Chand & co., 2007.
- 3. J K Sharma., "Operations Research, Problems and Solutions, 3e", Macmillan India Ltd.
- 4. N.V.S. Raju, "Operations Research", HI-TECH, 2002.

Elective IV: Design

Course No.: MET 452

Theory of Thin Plates and Shells

CLT(431)

THEORY OF THIN PLATES AND SHELLS

Course Outcomes:

At the end of the course, students will be able to

1. Use analytical methods for the solution of thin plates and shells.

- 2. Use analytical methods for the solution of shells.
- 3. Apply the numerical techniques and tools for the complex problems in thin plates.
- 4. Apply the numerical techniques and tools for the complex problems in shells.

UNIT I

Introduction: Space Curves, Surfaces, Shell Co-ordinates, Strain Displacement Relations, Assumptions in Shell Theory, Displacement Field Approximations, Stress Resultants, Equation of Equilibrium using Principle of Virtual Work, Boundary Conditions.

UNIT II

Static Analysis of Plates: Governing Equation for a Rectangular Plate, Navier Solution for Simply-Supported Rectangular Plate under Various Loadings, Levy solution for Rectangular Plate with other Boundary Conditions.

UNIT III

Circular Plates: Analysis under Axi- Symmetric Loading, Governing Differential Equation in Polar Co-ordinates. Approximate Methods of Analysis- Rayleigh-Ritz approach for Simple Cases in Rectangular Plates.

UNIT IV

Static Analysis of Shells: Membrane Theory of Shells- Cylindrical, Conical and Spherical Shells, Shells of Revolution with Bending Resistance - Cylindrical and Conical Shells, Application to Pipes and Pressure Vessels. Thermal Stresses in Plate/ Shell

- Theory of Plates and Shells, Timoshenko S. and KriegerW., McGraw Hill.
- Stresses in Plates and Shells, UguralAnsel C., McGraw Hill.

References:

- Thin Elastic Shells, KrausH., John Wiley and Sons.
- Theory of Plates, ChandrashekharaK., Universities Press.
- Design and Construction of Concrete Shells, Ramaswamy G.S.
Elective IV: Thermal-

Course No.: MET 453

Power Plant Engineering

C L T (431)

POWER PLANT ENGINEERING

Course Outcomes:

- 1. Identify the different types of power plants and understand the layout of steam power plant.
- 2. Understanding of Hydroelectic Power plant and Coordination of different types of power plants.
- 3. Able to describe the working operations of Nuclear, Diesel, Gas and Steam power plants.
- 4. To apply & analyses the economics of power plant and able to decides the tariffs for different power plants.

UNIT I

Introduction:- Energy source for generation of electric power. Principle types of power plants, their special features and applications, major power plants in India.

Steam Power Plants :- Selection of site, general layout of the power plant, special features of the modern steam boilers, circulation principle, steam separation and purification, economizers and air pre-heater types and estimation of performance, super-heater and superheat control, feed water heaters, cooling tower, temperature and pressure control. Introduction to hydro electric power plant, types of hydro-electric plant in combination with steam plant, Runoff river plant in combination with steam plant, storage plant in combination with steam or nuclear plant, Coordination of hydro-electric and gas turbine stations, coordination of different types of power plants.

UNIT II

Nuclear Power Plants :- Nuclear fuel, nuclear energy by fission, main components of nuclear reactors, pressurized water, boiling water, liquid metal and gas nuclear reactors.

Diesel Power Plants :- Plant layout, two and four stroke cycle diesel engines, fuel injection, lubrication and cooling systems, supercharging and starting systems. Gas and Steam Turbine combined Cycles:- Simple gas and steam combined cycle power generation.

UNIT III

Economic Analysis of Power Plants and Tariffs :- The cost of electrical energy, selection of types of generating equipment, performance and operating characteristics of power plant, load division among generators, Tariff methods of electrical energy. Combined operation of different power plants :- Advantages of combined working, Load division among power stations, Storage

Text Book:

1. Rajput R.K., "A text book of power plant engineering", *Laxmi Publication, Pvt. Ltd., New Delhi, 2007.*

- 1. Thermal Engineering by Ballaney, Khanna Publisher
- 2. Thermal Engineering by Domkundar& Arora, Dhanpat Rai
- 3. Steam Turbine Theory & Practice by Kearton, W.J. Pitman.
- 4. Power Plant Engineering by Morse
- 5. Power Plant Engineering by Domkundwar
- 6. Power Plant Technology by El-Wakil

Elective IV: Production-

Course No.: MET 454 ENTREPREUNERSHIP DEVELOPMENT AND C L T (4 3 1) RISK MANAGEMENT

ENTREPREUNERSHIP DEVELOPMENT AND RISK MANAGEMENT

COURSE OUTCOME:

On completion of the course, the students will be able to:

- 1. Understanding the dynamic role of entrepreneurship and small businesses
- 2. Organize and Manage a Small Business
- 3. Understand Financial Planning, Control and Strategic Marketing Planning
- 4. Explain New Product or Service Development and Business Plan Creation

UNIT-1

Introduction to Entrepreneurship: Meaning, Role of Entrepreneur, Entrepreneur Process: different approaches, Motivation for becoming an Entrepreneur. SME Concept, its role, status, prospects and policies for promotion of SMEs. Importance of Entrepreneurship: innovations, Qualities of successful Entrepreneur, Functions of an Entrepreneur, Types of Entrepreneur, Issues & Problems Entrepreneurial Practices, 11 Contribution of Entrepreneurs: Towards R&D, creates Wealth of Nation & Self prospect with Challenge, Entrepreneur Carrier: Different Stages, Entrepreneur Development Programmers (EDPs).

UNIT-II

Characteristics of Entrepreneurship: Risk taker, Perceptive, Curious, Imaginative, Persistent, Goal setting, Hardworking, Research & Management Skill, Soft skills and Feasibility, Women Entrepreneurship: Opportunities, promotion Hurdles and Prospects of women Entrepreneurs.Factors & Models of Entrepreneurial Development, Social Entrepreneurial Initiative: Solving social Problems, Business plan, Strategic Plan vs Business Plan, Technical and Financial Feasibility study and analysis of projects under self employment scheme including small entrepreneur. The World of Opportunities, identification and selection of opportunities, the Business Plan, Components of a business plan, How to develop a good business plan?, Role of Entrepreneurial Institutions in Entrepreneurship Development, Various Schemes and Incentives.

UNIT-III

Farm based enterprises for production and post production of Agri-produce: Crops: Cereals, Legumes, Oilseeds; Horticulture crops : Fruits and vegetables; Livestock production : Poultry, Fishery, Medicinal and Aromatic plants. Handlooms & Sericulture; Handicraft, coir, jute & leather Agro-Eco Tourism, Micro entrepreneurial skills development and good production practices, Role of

Ministry of MSME, Registration Process of MSME, Emerging Technologies & Business Opportunities in India.

UNIT-IV

Risk Management: Risk Factor, Sensitivity Analysis, Vulnerability Analysis, External Risk, Internal Risk, Environmental Risk. Financial planning . Forecasting inputs and outputs, Components of the financial plan, Bootstrapping ,Venture and Growth Capital, Managing a Micro Enterprise, Human resource development for enterprise growth; delegation, motivation and leadership in microenterprises.

REFERENCE BOOKS

- 1. Byrd Megginson, Small Business Management An Entrepreneur's Guidebook 7th ed, McGraw-Hill, Irwin
- N. V. R. Naidu, Naidu I. K, Management and Entrepreneurship. International Pvt Ltd, 01- Jan-2008
- 3. Frank Martin and Marcus Thompson Palgrave, Social Enterprise Developing Sustainable Businesses Macmillan
- 4. David R. Stokes, Nicholas Wilson Cengage, Small Business Management and Entrepreneurship Learning EMEA, 2006 Business & Economics
- Donald F. Kuratko Cengage, Learning Entrepreneurship: Theory, Process, Practice Business & Economics 14-Nov-2008
- 6. Timmons, Jerry A., and Spinelli, Stephen, 2009. New Venture Creation: Entrepreneurship for the 21st Century, 8th Edition, Boston, MA: Irwin McGraw-Hill
- 7. Carree, M.A., and A.R. Thurik "Impact of Economic Growth, 'Hand Book of Entrepreneurship Research, New York:Springer

Elective V: Design –

Course No.: MET 455

Theory of Elasticity

C L T (4 3 1)

THEORY OF ELASTICITY

Course Outcomes:

- 1. Explain the fundamental concept of stress & strain followed by an analytical expression relating the stress & strain in 3-D systems.
- 2. Apply the compatibility equations & boundary conditions to solve the problems of T.O.E in practices.
- 3. Analyze the structural members subjected to pure bending using the fundamental concept of stress, strain & elastic behaviours of materials.
- 4. Apply analytical techniques to predict the ffects of stress concentration in simple solids & structural components.

UNIT I

Introduction: Elasticity, stress components of stress and strain, Hooks law. Equations in polar coordinates, Plane stress and plane strain: Strain at a point, Mohr circle for strain rosette, differential equation of equilibrium, boundary conditions, compatibility equations, overview of Airys stress functions.

UNIT II

Two dimensional problems in rectangular coordinates: solution by polynomials, St Venants principles, determination of displacement, bending of beams, solution by Fourier series. Two dimensional problems in polar coordinates: Equations in polar coordinates, equation about 1- axis, and pure bending in curved bars.

UNIT III

Determination of strains and displacement, effect of circular hole on stress distribution in plate concentrated and vertical loading of a straight boundary, circular disc, general solution and its applications, Analysis of stress and strain in thee dimensions: stress at a point, principal stress, stress ellipsoid and stress director surface, homogenous deformation, strain at a point, principle strain rotation.

Text Books:

1. Timoshanko, S.P. and Goodier, J.N., "Theory of Elasticity," *Mc-Graw Hill Book Company, N.Y.*, USA, 1970.

1. Love, A.E.H., "The Mathematical Theory of Elasticity," *Dover Publications, NewYork, USA, 1944.*

Elective V: Thermal –

Course No.: MET 456

Renewable Energy Systems

C L T (4 3 1)

RENEWABLE ENERGY SYSTEMS

COURSE OUTCOMES:

- 1. To compare aware about different renewable energy resources.
- 2. To know the conversion of energy from one form to other.
- 3. To know the importance the solar radiation and its utilization.
- 4. To analyze of different energy conversion energy systems.

COURSE CONTENT:-

UNIT-I

Introduction

Introduction to energy, Relevance of energy in the development of country, conventional, nonconventional and renewable sources of energy. Status of conventional sources of energy and their conservation, Exploring renewable sources of energy.

UNIT-II

Solar Radiation and Applications of Solar Heat

Extraterrestrial solar radiation, components of radiation, geometry of earth and sun, geometry of collector and the solar beam, effects of earth's atmosphere, measurements of solar radiation, type of water heaters, selective surfaces, space heating, space cooling, water desalination, solar ponds, solar concentrators, thermos- electric power system, problems.

Photovoltaic Generation

Introduction, the silicon p-n junction, photon absorption solar radiation input, photovoltaic circuit properties and loads, limits to cell efficiency, solar cell construction, other types of photoelectric and thermo-electric generation.

UNIT-III

Hydro and Wind Powers

Principle of hydro power conversion, impulse turbine, reaction turbines, wind turbine types, linear momentum and basic theory, dynamic matching, characteristics of the wind, power extraction by a turbine, electricity generation, mechanical power, problems.

Bio-Fuels

Introduction, Bio fuels, classification, bio-mass production for energy farming, direct combustion for heat, pyrolysis (destructive distillation), alcoholic fermentation, anaerobic digestion for bio-gas, agrochemical fuel extractions.

UNIT-IV

Wave Energy and Tidal Power

Introduction, wave motion, wave energy and power, wave patterns, devices, the causes of tides, enhancement of tides flow power, tidal range, power, world tidal power sites.

OTEC and Geothermal Energy

Principles of Ocean Thermal Energy Conversion (OTEC), Claude cycle, Andersan cycle, Introduction to geothermal energy, dry rock and hot aquifer analysis, harnessing geothermal resources

Text Books:

1. Solar Energy by S P Sukhatme, Publisher Tata Mc Graw-Hill New Delhi

Reference Books:

1. Renewable Energy Rsources by john W. Twidell and Anthony D. Weir, published by E.& F. N.

SponLtd,Lndon.

- 2. Renewable energy by Bent Sorensen by Academic press
- 4. Non-conventional Energy Sources by G D Rai by Khanna Publishers Delhi

Elective V: Production

Course No.: MET 457	Advanced Welding and Allied Processes	C L T (4 3 1)
	e	· · · · · ·

ADVANCED WELDING AND ALLIED PROCESSES

Course Outcomes:

- CO1 Identify the use of welding processes in manufacturing industries.
- CO2 Apply knowledge to select appropriate welding process based on the application.
- CO3 Explain welding of plastics and underwater welding.
- CO4 Understand the process of thermal spraying and thermal cutting.

UNIT I

Introduction to welding

Welding Principle, Application of welding in industries, Weld ability of Material, Arc welding consumables, Shielding gases and association mixtures. Weld bead geometry and shape factors. Weld dilution, weld joint configurations, liquation cracking, hot cracking. Automation in welding.

UNIT II

Fusion and Solid state welding

Fusion Welding Processes:Classification of fusion welding processes, Submerged Arc Welding, Electroslag welding, Plasma arc welding.

Solid state welding: Introduction, Advantages of solid state welding over fusion welding processes, Explosive welding, Ultrasonic welding, Friction welding, Friction stir welding, Welding zones in FSW.

UNIT III

Welding of Plastics and Underwater welding

Plastics, Types of plastics, Welding of Plastic: Introduction, Classification of plastic welding, Hot plate welding, Hot gas welding, Ultrasonic welding, Friction welding, Applications of plastic welding.

Underwater Welding: Need and application of underwater welding, Dry underwater welding, wet underwater welding. Advantages and Limitations of dry and wet underwater welding.

Thermal Spraying and Thermal Cutting

Thermal spraying: Introduction, Thermal spray processes, Application of thermal spraying, Thermal Cutting of Metals: Introduction, Methods and applications.Oxy-Fuel Gas Cutting, cutting torch, Oxygen-Lance Cutting, Plasma Arc cutting.

- Rao, P.N., Manufacturing Technology, Volume 2, McGraw-Hill Education, New Delhi.
- Lindberg, R.A., Processes and Materials of Manufacturing, Allyn and Bacon, Boston
- Khan N. Z, Siddiquee A. N. and Khan Z. A., Friction stir welding of dissimilar Aluminium alloys, CRC Press, Boca Raton, 2017.

Elective VI: Design

Course No.: MET 458MECHANICS OF COMPOSITE MATERIALSC L T (4 3 1)

MECHANICS OF COMPOSITE MATERIALS

COURSE OUTCOMES

On completion of this subject students will be able to:

1. To identify the properties of fiber and matrix materials used in commercial composites, as well as some common manufacturing techniques.

2. To predict the failure strength of a laminated composite plate

3. Understand the linear elasticity with emphasis on the difference between isotropic and anisotropic material behaviour.

4. Acquire the knowledge for the analysis, design, optimization and test simulation of advanced composite structures and Components.

UNIT -1

Definition and classification of composite materials: Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, CarbonComposites. Reinforcements and Matrix Materials. Manufacturing Techniques of Composites: Fiber Reinforced Plastic (FRP) Processing: Layup and curing, fabricating process, open and closed mould process, Hand layup techniques; structural laminate bag molding, production procedures for bag molding; filament winding, pultrusion, pulforming, thermo-forming, injection molding, blow molding. Fabrication Process for Metal Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique and secondary processing, special fabrication techniques.

UNIT -2

Density, Mechanical Properties; Prediction of Elastic Constants, Micromechanical Approach, Halpin-Tsai Equations, Transverse Stresses.Thermal Properties; Expression for Thermal Expansion Coefficients of Composites, Expression for Thermal Conductivity of Composites, Hygral and Thermal Stresses.Mechanics of Load Transfer 15 from Matrix to Fiber; Fiber elastic-Matrix Elastic, Fiber Elastic-Matrix Plastic. Load transfer in Particulate Composites. Numerical Problems. Elastic Constants of an Isotropic Material, Elastic Constants of a Lamina, Relationship between Engineering Constants and Reduced Stiffnesses and Compliances, Variation of Lamina Properties with Orientation, Analysis of Laminated Composites, Stresses and Strains in Laminate Composites, Interlaminar Stresses and Edge Effects. Numerical Problems.

UNIT -4

Tensile and Compressive strength of Unidirectional Fiber Composites. Fracture Modes in Composites; Single and Multiple Fracture, Debonding, FiberPullout and Delamination Fracture. Strength of an Orthotropic Lamina; Maximum Stress Theory, Maximum Strain Criterion, Tsai-Hill Criterion, Quadratic Interaction Criterion, Comparison of Failure Theories.Fatigue; S-N Curves, Fatigue Crack Propagation Tests, Damage Mechanics of Fatigue, Thermal Fatigue. Creep behavior of Composites.

UNIT -5

Symmetric Laminates, Cross-ply laminates, Angle ply Laminates, Antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate.Design of a Laminated Composite.Numerical Problems.

TEXT BOOKS:

1. Autar K. Kaw, Mechanics of Composite materials, CRC Taylor & Francis, 2nd Ed, 2005

2. Composite Material Science and Engineering, Krishan K. Chawla, Springer, 3e, 2012 3. Robert M. Jones, Mechanics of Composite Materials, Taylor & Francis, 1999.

REFERENCE BOOKS:

1.MadhijitMukhopadhay, Mechanics of Composite Materials & Structures, Universities Press, 2004

2. Michael W, Hyer, Stress analysis of fiber Reinforced Composite Materials, Mc-Graw Hill International, 2009

3. Fibre Reinforced Composites, P.C. Mallik, Marcel Decker, 1993 4. Hand Book of Composites, P.C. Mallik, Marcel Decker, 1993

Elective VI: Thermal

Co	ourse No	.: MET 459	Advanced Fluid Mechanics	C L T (4 3 1)
Aft	er the co	mpletion of course,	students will be able,	
	CO1	To have a good k	nowledge of the methods and techniques in visco	ous flows theory and be in
		a position to interp	pret viscous flow phenomena	

CO2	To writeNavier-Stokes equations (conservation laws for mass, momentum, and energy) for simple fluids
CO3	To solve for velocity and pressure fields in a viscous flow subjected to steady and transient
	conditions and formulate boundary layer approximations
CO4	To identify, formulate and solve flow problems by applying knowledge of fluid mechanics
	and mathematics

UNIT I

Introduction, Concept of a fluid, Concept of Viscosity, Concept of Continuum, Properties of a fluid, Historical outline, Flow analysis Techniques, Eulerian and Langrangian flow description, Classification of fluid flows, Velocity and acceleration field, Material derivative, Control Volume and differential element approach, Reynolds Transport Theorem, Conservation of mass, Linear Momentum Equation, Energy Equation, Fluid Element kinematics, Linear motion and deformation, Angular motion and deformation.

UNIT II

Vectors and Tensors, Representation of second order tensor, Addition, subtraction and multiplication of tensors, Transpose of a tensor, Symmetric and Unsymmetric tensor, Unit tensor, Dyadic product, Divergence, Curl, Gradient of a vector and tensor, Significance of Gradient of velocity vector, Deformation, rotation, Divergence Theorem, Constitutive Equations for fluids, Stress Tensor for a simple flow, Stoke's Principle, Navier-Stokes Equation.

UNIT III

Exact Solutions of the Navier-Stokes Equations, Flow between through a straight stationary channel, Couette Flow, Hagen-Poiseulle flow, Flow between two concentric rotating cylinders, Axially moving concentric cylinders, Unsteady parallel flow (Stoke's first problem), Flow near an oscillating flat plate (Stoke's second problem), start-up of Couette flow, Transient axisymmetric Poiseulle flow, Flow of two immiscible fluids in a channel, Fully developed flow of a power law fluid, Superposition of Poiseuille and Couette flows.

UNIT IV

Laminar Boundary layers, Boundary-layer equations, Flow over a Flat plate, Blasius flow, Momentum-Integral Equation for the Boundary layer, Approximate methods for Boundary layer equations, Karman-Pohlhausen Method for Flow over a Flat Plate, Turbulent boundary layers, Characteristics of Turbulent flow, Laminar-Turbulent Transition, Engineering implications of turbulence, Correlation functions, Reynolds decomposition, Governing Equations for Turbulent flow, Measurement of Turbulence quantities, Shear-stress models, Prandtl's Mixing Length Hypothesis.

Textbooks:

- 1. White, F.M., "Viscous Fluid Flow", McGraw Hill, 2013.
- 2. Schlicting, H., "Boundary Layer Theory", McGraw Hill, 1979.

- 1. Muralidhar, K., Biswas, B., "Advanced Engineering Fluid Mechanics", Narosa Publishing House, 2015.
- 2. Graebel, W.P., "Advanced Fluid Mechanics", Academic Press, 2009.
- 3. Aris, R., "Vectors, Tensors and Basic Equations of Fluid Mechanics", Dover Publications, 1962.
- 4. Munson, B.R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, Wiley, 2017.

Elective VI: Production

Course No.: MET 460

Value Engineering VALUE ENGINEERING

C L T (4 3 1)

UNIT I:

Introduction to value engineering (VE) & value analysis (VA), Life Cycle of a product, Methodology of VE, Reasons for the existence of unnecessary costs. Quantitative definition of Value, use Value and Prestige value, Estimation of product Quality/Performance, Types of functions, Relationship between use functions and Esteem Functions in product design, Functional cost and functional worth, Effect of value improvement on profitability, Tests for poor value, Aims of VE systematic approach.

UNIT II

Elementary introduction to VE, Job plan functional approach to value improvement, Various phases and techniques of the job plan, Factors governing project selection, Types of projects, Life cycle costing for managing the total value, concepts in LCC, Present value concept, Annuity concept, net present value, Pay Back period, internal rate of return on investment (1RR), Examples and Illustrations. Creative thinking and creative judgement, positive or constructive discontent, Tangible and intangible costs of implementation, False material, Labour and overhead saving, VE/VA yardsticks, Relationship between savings and probability of success, Reliability Estimation, system Reliability, Reliability elements in series and parallel.

UNIT III

PHASES AND TECHNIQUES OF VE JOB PLAN:

General Phase, Information phase, Function phase, Creativity/Speculation Phase, Evaluation Phase, Investigation Phase and Recommendation Phase: Value improvement recommendation theory, determination of cut-off point (cop), road blocks in implementation. Decision Matrix/Evaluation Matrix, Quantitative comparison of Alternatives, Estimation of weights factors and efficiencies, Utility transformation functions, Bench marking, Perturbation of weight factors (sensitivity analysis), and Examples.

FAST Diagramming: Critical path of functions, HOW, WHY & WHEN Logic, Supporting and all time functions.

Reference Books:

2. Arthur E. Mudge, "Value Engineering- A Systematic Approach", McGraw Hill Book Co. 1971.

- 3. Miles L.D., "Techniques of value Analysis and Engineering", *McGraw Hill Book Co., New York, 1970.*
- 4. ASTME-American society for Tool and Manufacturing Engineers," Value

engineering in Manufacturing", Prentice Hall Inc. USA, 1967.

Course No.: MEP463 MAJOR PROJECT – Stage II C L T (9 0 0)

- **CO1** Identify methods and materials to carry out experiments/develop code.
- **CO2** Reorganize the procedures with a concern for society, environment and ethics.
- CO3 Analyze and discuss the results to draw valid conclusions.
- **CO4** Prepare a report as per recommended format and defend the work.
- **CO5** Explore the possibility of publishing papers in peer-reviewed journals/conference proceedings.

Department of Mechanical Engineering

Semester-V

S.	Course	Course Title	Hours Per			Total	Credits
No.	Code			Week		Contact	
			L	Т	Р	Hours	
1.	MET301	Heat Transfer	3	1	0	4	4
2.	MET302	Design of Machine Elements	3	1	0	4	4
3.	MET303	Mechanical Vibrations	3	1	0	4	4
4.	MET304	Industrial Engineering - I	3	1	0	4	4
5.	MET305	IC Engines	3	1	0	4	4
6.		Microprocessors in Automation	3	0	0	3	3
7.	MEL310	Heat Transfer Lab	0	0	2	2	1
8.	MEL311	Mechanisms and Vibrations Lab	0	0	2	2	1
					To	tal Credits	25

Semester-VI

S. No.	Course Code	Course Title	H	Hours Per Week		ours Per Total Week Contact		Credits
			L	Т	Р	Hours		
1.	MET351	Production Engineering	3	1	0	4	4	
2.	MET352	Mathematical Methods	3	0	0	3	4	
3.	MET353	Control Systems	3	1	0	4	4	
4.	MET354	Fluid Mechanics - II	3	1	0	4	4	
5.	MET3XX	Elective - I	3	1	0	4	3	
6	MET4XX	Elective-II –(Design, Ther. & Pro.)	2	1	0	3	3	
7.	MEL361	Applied Thermodynamics Lab	0	0	2	2	1	
8.	MEL362	Industrial Engineering – I Lab	0	0	2	2	1	
9.	MEI364	Tour & Training	-	-	-	-	1	
					Tot	tal Credits	25	

Semester-VII

S. No.	Course Code	Course Title	H	Hours Per Week		TotalCreditContact	
			L	Т	P	Hours	
1.	MET401	Mechatronics and Measurement Systems	3	1	0	4	4
2.	MET402	Industrial Engineering - II	3	1	0	4	4
3.	MET403	Machine Design	3	1	0	4	4
5.	MET4XX	Elective-III–(Design, Ther. & Pro.)	3	1	0	4	4
6	MET4XX	Elective –IV (Swayam Course)	3	1	0	4	4
6.	MEL411	Mechatronics and Measurement Systems Lab	0	0	2	2	1
7.	MEL412	Industrial Engineering – II Lab	0	0	2	2	1

8.	MES463	Seminar	0	0	4	4	1
9.	MEP413	Major Project – Stage I	0	0	6	-	2
		· ·		•	Tot	tal Credits	25

Semester-VIII

S. No.	Course Code	Course Title	H	ours I Week	Per	Total Contact	Credits
			L	Т	P	Hours	
1.	MET451	Operations Research	3	1	0	4	4
2.	MEL4XX	Elective-V–(Design, Ther. & Pro.)	3	1	0	4	4
3.	MEL4XX	Elective-Vi–(Swayam Course)	3	1	0	4	4
4.	MEL4XX	Elective-VIi–(Design, Ther. & Pro.)	3	1	0	4	4
5.	MEP463	Major Project – Stage II	0	0	18	-	9
			•	•	То	tal Credits	25

Subject: Heat Transfer (Code: MET301)	Year & Se Mechanic	mester: B. Tech al Engineering	Total Course Credit: 4			
()	3 rd Year	& 5 th Semester	L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment		End-Tern	1	
	30 Marks 10 Marks 60 Marks					

After the completion of course, students will be able,

CO1	Identify, formulate and solve steady, transient and multidimensional heat conduction
	problems.
CO2	Understand the phenomenon of convection and be able to evaluate heat transfer coefficients
	for natural and forced convection.
CO3	Calculate radiation heat exchange between black as well as non-black surfaces
CO4	Be able to solve a wide range of real world problems involving conduction, convection and
	radiation

Unit I

Introduction, Physical origins and rate equations, conduction, convection, radiation, relationship to thermodynamics, Combined conduction-convection-radiation problems, Importance of heat transfer, conduction rate equation, thermal conductivity, general heat conduction equation, boundary and initial conditions, one dimensional steady heat conduction, plane wall, thermal resistance, composite wall, contact resistance, alternate conduction analysis, one dimensional steady heat conduction in cylinders and spheres, critical radius of insulation, one dimensional steady state heat conduction with heat generation in plane walls, cylinders and spheres, heat transfer from extended surfaces, fins with constant area, fin performance.

Unit 2

Two-dimensional steady state heat conduction, method of separation of variables, conduction shape factor and dimensionless conduction heat rate, unsteady heat conduction, Lumped capacity analysis, criteria for lumped capacity analysis, transient heat conduction in a semi-infinite solid, Biotand Fourier numbers, transient heat conduction in large plane walls, long cylinders and spheres with spatial effects, transient heat conduction in multi-dimensional systems.

Unit 3

Convection boundary layers, Velocity and thermal boundary layer, local and average heat transfer convection coefficients, derivation of differential convection equations, solutions of convection equations for a flat plate, Nusselt and Prandtl numbers, relation between fluid friction and Page | 190

heat transfer, Turbulent-boundary-layer heat transfer, flow across cylinders and spheres, flow across tube banks, Internal forced convection, mean velocity, mean temperature, empirical relations for pipe and tube flows, Free convection heat transfer on a vertical flat plate, Grashof and Raleigh numbers, Empirical relations for free convection, Combined free and forced convection.

Unit 4

Thermal radiation, black and gray surfaces, Radiation laws, Radiation shape factor, relation between shape factors, Radiation heat exchange between black bodies, Radiation heat exchange between non-black bodies, Radiation shields, Condensation heat transfer phenomenon, condensation number, film condensation inside horizontal tube, boiling heat transfer, simplified relations for boiling heat transfer with water, heat exchangers, overall heat transfer coefficient, fouling, types of heat exchangers, log mean temperature difference, Effectiveness-NTU method, Compact heat exchangers.

Textbooks:

- Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S., "Principles of Heat and Mass Transfer", Wiley, 2017.
- 4. Holman, J.P., "Heat Transfer, McGraw Hill, 2011.

- 3. Bejan, A., "Heat Transfer", John Wiley, 1993.
- 4. Cengal, Y.A., Ghajar, A.J., "Heat Transfer", McGraw Hill, 2020.

DESIGN OF MACHINE ELEMENTS

Course No.: MET 302

CLT (431)

Core Course Pre-requisites: Engineering mechanics, Mechanics of solids and Engineering materials science.

Course objective: To teach Mechanical Engineering Students how to apply the concepts of stress analysis, theories of failure and material science to analyze, design and/or select commonly used machine components.

Course Content:

UNIT I

Design requirements, Selection of materials and manufacturing considerations in design. Riveted joints: Introduction, Types of riveted joints, Failures of riveted joints, Strength of riveted joint, Efficiency of riveted joint. Design of longitudinal butt joint and circumferential lap joint for a Boiler. Bolts, Nuts & Screws: Introduction, Advantages & disadvantages, Definitions, Forms of screw threads, Common types of screw fastenings, locking devices. Designation of screw threads, Stresses in screwed fastening due to static loading.

Welded connections: Introduction, Advantages & disadvantages of welded joints, welding processes, fusion welding, thermit welding, gas welding, Electric arc welding, forge welding. Types of welding joints, Lap joint, Butt joint, Strength of transverse fillet welded joints, strength of parallel fillet welded joints, special cases of fillet welded joints, axially loaded unsymmetrical welded sections.

UNIT II

Stress concentration: Theoretical or form stress concentration factor, Stress concentration factor due to holes and notches, Methods of reducing stress concentration. Cyclic loading and endurance limit: Completely Reversed or cyclic stresses, Fatigue and endurance limit, effect of loading on endurance limit, Effect of surface finish, size and miscellaneous factors on endurance limit. Combined steady and variable stress: Gerber method for combination of stresses, Goodman method for combination of stresses, Soderberg method for combination of stresses.

UNIT III

Cotter and Couplings: Types of cotter joints, Socket and spigot cotter joint, Design of socket and spigot cotter joint, Design of sleeve and cotter joint. Types of shaft couplings, Design of sleeve and muff coupling, Design of flange coupling.

Power Screws: Types of screw threads used for power screws, Torque required to raise load on square threaded screws, torque required to lower load by square threaded screws, Efficiency of square threaded screws, Maximum efficiency of a square threaded screw. Over Hauling and Self locking screws. Design of screw jack.

Shafts: types of shafts, design of shafts, shafts subjected to twisting Moment only, Shafts subjected to bending moment only, shafts subjected to combined twisting moment and bending moment.

Course Outcomes:

On successful completion of the course, Students should be able to:

5. Demonstrate knowledge on basic machine elements used in machine design.

- 6. Understand the stress and strain on machine components and identify and quantify failure modes for machine parts.
- 7. Design machine elements to withstand the loads and deformations for a given application, while considering additional specifications.
- 8. Approach a design problem successfully, taking decisions when there is not a unique answer.

Course Assessment:

Students will be assessed on:

- 4. Continuous assessment in the form of homework, assignments, attendance, and presentations (10% weightage).
- 5. One and half hour written exams designated as Mid-term (30% weightage).
- 6. Two hour written exams designated as End-term (60% weightage).

Text Books:

- 4. Ullman D.G., "The Mechanical Design process", 3rd edition, McGraw Hill, 2009.
- Mott, R.L, "Machine Elements in Mechanical Design", 4th edition, Prentice Hall, Singapore, 2005.
- 6. Shigley, J.E., Mischke, C. Brown T., "Standard Hand book of Machine Design", McGraw Hill.

Reference Books:

Shigley, J.E., "Hand Book of Machine Design", McGraw Hill, 2004

Subject: Mechanical Vibrations (Code: MET303)	Year & Se Mechanic	mester: B. Tech al Engineering	Total Course Credit		
	3 rd Year	& 5 th Semester	L	Т	Р
					0
Evaluation Policy	Mid-Term	Class Assessment	E		
	30 Marks	10 Marks	e		

Course Outcomes: At the end of the course, a student should be able to:

CO1: Develop the mathematical models of vibrating systems, determine their DOF, and determine the free and forced vibration response of such systems.

CO2: Determine the response of linear time-invariant systems to arbitrary forcing conditions using the convolution integral and the Laplace Transform method.

CO3: Formulate the equations of motion of multiple degree of freedom systems, express it as an eigen value problem and determine the free and force vibration response.

CO4: Derive the equations of motion of a continuous system, determine its natural frequencies and mode shapes, and obtain the free vibration response to given initial conditions.

Detailed Syllabus:

UNIT I

Harmonic Motion, Vibration Terminology, Complex Methods of Representing Harmonic Motion, Fourier Series and Harmonic Analysis, Free and Forced Vibrations, Degrees of Freedom, Mathematical Modeling of Vibrating Systems, Differential Equations of Motion, Solution of the Differential Equation of Motion, Torsional Vibrations, Various Types of Damping, Dry Friction or Coulomb Damping, Structural Damping, Viscous Damping. Logarithmic Decrement, Energy Dissipated By Damping, Equivalent Viscous Damping, Introduction to Energy Methods.

UNIT II

Forced Harmonic Vibrations, Rotating Unbalance, Support Motion, Vibration Isolation and Control, Vibration Measuring Instruments, Vibration Pickups, Vibrometers and Accelerometers, Vibrations under General Forcing Conditions, Impulse Excitation, Arbitrary Excitation, Convolution Integral, Use of Laplace Transforms, Pulse Excitation and Rise Time, Shock Response Spectrum, Shock Isolation.

UNIT III

Two-Degree-of-Freedom Systems, Normal Mode Analysis, Coordinate Coupling and Principal Coordinates, Forced Harmonic Vibration, Vibration Absorbers and Vibration Dampers, Generalized Coordinates, Natural Frequencies and Mode Shapes, Modal Analysis, Multi-degree-of-Freedom Systems

UNIT IV

Continuous Systems, Longitudinal Vibration of a Bar, Equation of Motion and Solution, Orthogonality of Normal Functions, Lateral Vibration of Beams, Equation of Motion, Initial Conditions, Boundary Conditions, Effect of Axial Force, Effects of Rotary Inertia and Shear Deformation, Whirling of Shafts, Critical Speeds, Balancing of Rotating Shafts, Single-Plane Balancing, Two-Plane Balancing

Text Book:

2. Grover, G. K., Mechanical Vibrations, 7th edition, Nem Chand and Bros, New Delhi, India 1996.

- 3. Thomson, W. T., Theory of Vibrations with applications, Fifth Edition, Pearson Education, 2004.
- 4. Rao, S. S., Mechanical Vibrations, Sixth Edition, Pearson Education.

Course No.: MET 304 INDUSTRIAL ENGINEERING -I CLT (4 3 1)

COURSE OUTCOMES:

- 5. Understanding the concept and applications of industrial engineering with a focus on productivity, work design and work study.
- 6. Analysing & applying the method study techniques in relation to a particular job environment.
- 7. Analysing & evaluating various engineering work measurement techniques designed to establish the time for a qualified worker to carry out a specific job at a defined level of performance.
- 8. Attain a grasp of the fundamental principles of experimental design, collection of data related to work study, their analysis and interpretation.

UNIT I

Concept of industrial productivity: Introduction and significance of Industrial engineering with brief explanation of its techniques, Functions of Industrial Engineering, Definitions and explanation of Productivity with significance in Industries, Productivity measurements, Factors affecting productivity, Basic work content and excess work content, Industrial applications to calculate total and partial productivities, Introduction to Work study and its basic procedures, definitions and concept of work study with examples, Human factor in the application of work study, Factors for selecting the work study, Ergonomics: scope and objectives of ergonomics, application of human factors in engineering work place design, etc.

UNIT II

Introduction to Method study and the selection of jobs, Record, Examine and Develop, Objectives and basic procedure of Method study, Recording techniques (Process Charts (PC), and Diagrams),Outline PC, Flow process charts, Two hand process charts, MAC (??), Simo chart, Flow diagram, String diagram, Cycle graph, Chronocycle graph, Travel chart, Define, Install and Maintain, the principles of motion economy,

UNIT III

Work measurement and its applications, Time study, Work Sampling, Rating and their methods,

Breaking the jobs into Elements, types of Elements, Allowances and their calculations, Calculation of Standard time, Examples of Time study, PMT (??) systems, synthetic data, Various applications and examples.

Text Book:

1. Barnes, R.L., "Motion and Time Study, Design & Measurement of Work" 7th edition, John Wiley & Sons, New York, 1980.

- 4. International Labor Office, Geneva, "Introduction to Work Study" 4th Edition, Geneva, *1985*.
- 5. Currie R.M, "Work study", ELBS & Pitman, London, 1977.
- 6. Mundel, M.E., "Motion and Time Study", 5th Edition, *Prentice Hall, Englewood Cliff, NewYork, 1978.*

C L T (4 3 1)

MET305 INTERNAL COMBUSTION ENGINES 3-1-0 Credits:	MET305
---	---------------

Prerequisites: Thermodynamics, Heat Transfer

Course Outcomes: At the end of the course, the student should be able to:

CO1:	To understand the internal combustion engine design as the largest prime mover for all
	applications in the world.
CO2:	To understand combustion related characteristics of engine and its fuels.
CO3:	To understand the essential systems of IC engines.
CO4:	To understand numerical on engine design, engine emissions, emissions measurement
	and its control.

Unit 1

Introduction : Engine classification.

Design and operating parameters: Geometry and geometrical properties, working principle of Two stroke and Four stroke engines, Analysis of air-standard cycles, fuel-air cycles and actual engine cycles, Thermodynamics of actual working fluids, Air capacity of four stroke engines: Ideal air capacity, Volumetric efficiency, ideal induction process, actual induction process, Effect of operating conditions on volumetric efficiency, Effect of design on volumetric efficiency, estimating air capacity. Valve and port timing diagram.

Supercharging and Scavenging in IC engine : Methods of supercharging and turbo-charging in SI and CI engine, limits of supercharging in SI and CI engine. Scavenging in two stroke cycle engines, scavenging parameters and efficiency

Unit 2

Combustion in SI and CI Engine: Classification of fuel, solid, liquid and gaseous fuels, fuel properties and fuel rating, Alternative fuels, mixture requirements, characteristics of SI and CI engine fuels. Combustion and detonation: chemistry of combustion, normal combustion in S.I engines, pre- ignition and auto-ignition comparison, detonation in S.I engines, combustion in C.I engines, detonation in C.I engines, Methods of reducing detonation , preliminary detonation, preliminary facts about fuel and dopes, octane and cetane numbers, effect of design on detonation. Mixture requirements: Steady running, mixture requirements, transient mixture requirements, mixtures requirements for fuel injection engines, mixture requirements for S.I engines. Use of combustion charts for burned mixture Appropriate treatment of fuel air mixtures.

Fuel Injection system: Types of carburetor, mixture requirements, single point and multipoint injection system in SI engine, rate of fuel injection in CI engine, fuel injection pumps and nozzle. Current injection systems in I C engines.

Ignition System: Battery ignition, Magneto ignition and Electronic ignition, factors affecting spark advance, spark advance mechanism. Current ignition systems.

Engine friction and lubrication: Components of engine friction, friction mean effective pressure, Blow by losses, effect of engine variables on friction, side thrust on piston. lubrication principle, types of lubrication ,properties of lubricant.

Heat transfer and Cooling system: Engine temperature distribution, heat transfer consideration, gas temperature variation, effects of operating variables on heat transfer , air cooling and liquid cooling systems, concept of adiabatic engine, Numerical on heat transfer in IC engines.

Unit 4

Engine Testing and performance: Measurement of indicated power, brake power, fuel consumption, air flow rate, engine speed, spark timing, performance characteristics, Numerical on engine design, determination of main dimensions, Numerical on two stroke engines and four stroke engines. Numerical on heat transfer in IC engines, Engine design and principles of similitude. Numerical on alternative fuels, Numerical on diesel fuel injection system, Numerical on verification of engine commercial specifications.

Exhaust Emissions: Pollutants from IC engines. mechanism of pollution formation, methods of emission control, Effect of alternative fuels, Emission norms.

Measurement Of Exhaust Emissions. NDIR, FID, CLA, measurement of exhaust smoke, gas chromatography, effect of operating variables on SI and CI engine pollutant.

Text Book:

2. Heywood, John B. Internal Combustion Engine Fundamentals. McGraw-Hill Book Company.

- 4. V. Ganeshan: I. C. Engines: Tata McGraw Hill, New Delhi, 4/e
- 5. W. W. Pulkrabek: Engineering Fundamentals of I. C. Engines, Prentice Hall India
- 6. M K Gajendra Babu and K A Subramanian; Alternative Transportation Fuels; CRC Press.

Course No.: XXXX MICROPROCESSORS IN AUTOMATION C L T (3 3 0)

COURSE OUTCOMES: (To be given by ECE dept., not obtained by the mechanical Dept. till date)

(To be obtained from ECE Department)

Subject: HEAT TRANSFER LAB	Year & Semester: B. Tech Mechanical Engineering 3 rd Year & 5 th Semester		Total Course Credit: 1			
(Code: MEL310)			L	Т	Р	
			0	0	2	
Evaluation Policy						

After the completion of course, students will be able,

CO1	Acquire a thorough outlook regarding the steps to design and conduct experiments for
	measuring specific physical variables
CO2	To apply the concepts learnt in Heat Transfer theory subject to do hands on experiments
CO3	To calculate the thermal conductivity, heat transfer coefficient, and other parameters
	relevant in heat transfer
CO4	Communicate effectively in completing written reports of laboratory work

List of Experiments

- 10. To determine the thermal conductivity of a metal bar
- 11. To determine the thermal conductivity of a liquid
- 12. To study the heat transfer through the insulating medium
- 13. To study heat conduction in a composite wall
- 14. To study heat transfer from a pin fin
- 15. To study heat transfer in natural convection
- 16. To study heat transfer in forced convection
- 17. To study the heat transfer phenomena in a heat exchanger with parallel / counter flow arrangements
- 18. To determine Stefan Boltzmann constant

MEL 311 MECHANISMS AND VIBRATIONS LAB C P (1 2)

COURSE OUTCOMES:

- 5. The student should be able to prepare technical reports and documents detailing the experimental methodology.
- 6. Determine the time period of a simple and compound pendulum and visualize the basic characteristics of a simple harmonic motion.
- 7. Determine the mass moment of inertia (ROG) of irregularly shaped objects using bifilar and trifilar suspensions.
- 8. Analyze the free and forced vibration characteristics of an equivalent spring mass system and determine its frequency response function.
- 9. Determine the time period of a simple pendulum. Verify that the time period is

independent of the mass of the bob.

- 10. Determine the radius of gyration of a compound pendulum.
- 11. Determine the radius of gyration of a given bar by using a Bifilar suspension.
- 12. Study the undamped free vibration of an equivalent spring mass system.
- 13. Study the forced vibration of an equivalent spring mass system.
- 14. Study the torsional vibration of a single rotor shaft system.
- 15. Determine the frequency response function of an equivalent spring- mass- dashpot system.
- 16. Pressure profile measurement on Journal bearing.

Subject: Production Engineering	Year & Semester: B. Tech Mechanical Engineering 3 rd Year & 6 th Semester		Total Course Credit: 4			
(Code: MET351)			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term			
	30 Marks	10 Marks	60 Marks			

Course Outcomes: At the end of the course, a student should be able to:

CO1: Determine the shear angle and cutting force in machining and understand the basics of metal cutting.

CO2:Estimate tool life and explain the tool wear mechanisms and abrasive machining process. **CO3:**Analyze the forming process behavior for conventional and advanced metal forming processes.

CO4:Understand the basics of limits, fits and tolerances in manufacturing.

Detailed Syllabus:

UNIT I

Introduction to machining; Orthogonal cutting; Oblique cutting; Types of chips; Mechanics of chip formation; chip breakers; Mechanics of Metal Cutting: Merchant's circle diagram; Determination of cutting and thrust forces; Coefficient of friction; strain rate; Measurement of shear angle, Thermal aspects of machining, Numerical problems.

UNIT II

Mechanisms of tool wear; Types of tool wear, Tool life: Variables affecting tool life-Cutting conditions; Tool angles specification systems; Tool materials; Desirable Properties of Cutting Tool; Determination of tool life; Machinability, Economics of machining.

Abrasive Machining Process: Introduction; Grinding: Characteristics of a grinding wheel; Specification of grinding heels; Mechanics of grinding process; Grinding operations; Wheel wear; Surface Finish; Selection of grinding wheels.

UNIT III

Metal Forming: Hot and cold working, Rolling; Forging; Extrusion; Sheet metal working. Introduction to high energy rate forming processes, their advantages and application. Electromagnetic forming, Explosive forming, Electrohydraulic forming.

UNIT IV

Metrology: Introduction to Metrology, Accuracy and Precision. Limits, fits and tolerances, need of providing tolerance, unilateral and bilateral system, Taylor's principles of gauge design, Sine bars and gauge blocks manufacturing method and their applications, Numerical problems. **Text Book:**

2. Manufacturing Science-A. Ghosh and A.K. Malik, Affiliated East Press, New-Delhi.

- 5. Campbell, J.S., Principles of Manufacturing Materials and Processes, McGraw-Hill, New-York,
- 6. Engineering Metrology and Measurements by N.V. Raghavendra and L. Krishnamurthy, 1st Edition, Oxford University Press
- 7. Rao, P.N., Manufacturing Technology, Volume 2, McGraw-Hill Education, New Delhi.
- 8. Lindberg, R.A., Processes and Materials of Manufacturing, Allyn and Bacon, Boston

Course No.: MET 352 MATHEMATICAL METHODS

C L P (3 3 0)

COURSE OUTCOMES:

- 6. Able to solve non-linear equations using, R.F, Newton Rapson methods.
- 7. Able to solve linear system of equations using Gauss elimination, Gauss-Jourdan, Gauss siedel & LU decomposition
- 8. Able to use interpolation formulas; and linear & non linear curve fitting.
- **9.** Able to use numerical differentiation & integration methods. Solve ODEs & PDEs using numerical methods.
- **10.** Able to develop computer programmes for the above methods and interpret them graphically.

UNIT I

Flow charts. Computer languages. Constants and variables. Arithmetic expressions. Input/ output, control statements. Introduction to programming.Types of errors. Computational algorithms and computer arithmetic. Iterative methods. Solution of equations: Bisection method, Regula-falsi method, Newton Raphson method. Solution of linear system of equations: Gauss elimination, Gauss-Jordan, Gauss- Siedel method, LU decomposition.

UNIT II

Interpolation and approximation of functions, Newtons forward formula (equal and unequal intervals) Curve fitting (straight line, nonlinear, exponential) differentiation, integration (Trapezoidal/Simpson's rule, Weddle's) and program.

UNIT III

Numerical solution of ordinary different equations. Runge- Kutta methods, Types of PDEs, boundary value problems, solution of parabolic PDEs using finite differences and program.

• Examples to be taken from Mechanical engineering applications.

Text Book:

1. Sastry, S. "Numerical Methods", Printice Hall of India, New Delhi.

2. Chapra & Chapra Numerical methods for Engineers. Mc. Graw Hill.

2. Veerarajan, "Numerical Methods", Tata Mc-GrawHill, New Delhi, 2000.
Course No.: MET 353CONTROL SYSTEMSC L T(4 3 1)

COURSE OUTCOME:

- 6. Develop the mathematical models of LTI dynamic systems, determine their transfer functions, describe quantitatively the transient response of LTI systems, interpret and apply block diagram representations of control systems and understand the consequences of feedback.
- 7. Use poles and zeroes of the transfer functions to determine the time response and performance characteristics and design PID controllers using empirical tuning rules.
- 8. Determine the stability of linear control systems using the Routh-Hurwitzcriterion and classify systems as asymptotically and BIBO stable or unstable.
- 9. Determine the effect of loop gain variations on the location of closed-loop scales, sketch the root locus and use it to evaluate parameter values to meet the transient reponse specification od closed loop systems.
- 10. Define the frequency response and plot asymptotic approximations to the frequency response function of a system. Sketch a Nyquist diagram and use the Nyquist criterion to determine the stability of a system.

UNIT I

Introduction: Concept of automatic control, open loop and closed loop systems, servo mechanism, block diagram, transfer function.

Representation of control components and systems: Translation and rotational mechanical components, electrical components -series and parallel combinations, comparators for rotational and linear motions, integrating devices, hydraulic servomotor temperature control systems ,speed control systems.

UNIT II

System response: First and second order systems, response to step, pulse, ramp and sinusoidal inputs, systems with distance velocity lag.

Modes of controls: Proportional control, Proportional pulse reset control, proportional pulse rate control, proportional reset rate control, two position control.

Controller Mechanism: Pneumatic, hydraulic and electric controllers, general principles and circuits for generating various control actions.

UNIT III

Control system analysis: Transient response of simple control systems, stability of control systems, Mouths criterion. Frequency response analysis, polar rectangular and logarithmic plots, experimental determination of frequency response, Bode and Inquest stability criteria, gain and phase margins. Root locus plots of simple transfer function, transient response from root locus. Electronic Analogue computers: Elements of analogue computers, solution of simple differential equations.

Text Book:

1. Ogata,K., "Modern Control engineering", Prentice Hall of India, 3rd edition, New Delhi, 1997.

Reference Book:

1. Raven, F., "Automatic Control" McGraw Hill Int., 1999.

Course No.: MET 354 FLUID MECHANICS- II CLT (4 3 1)

Course Outcomes: At the end of the course, student will be able to:

CO1	Understand the working of gas turbine plant components and analyse their performance.
CO2	Differentiate ideal and practical gas turbine cycles.
CO3	Analyze the operations of centrifugal air compressor and axial air compressor.
CO4	Design the working proportions of hydraulic machines.

Unit-I

Review of Basics: Introduction to Prime Movers, Gas Turbines, Review of Basic principles - Thermodynamics, Review of Basic principles - Fluid Dynamics and Heat Transfer, Fundamentals of Rotating Machines - Energy Equation, Dimensional Analysis, Aerofoil Theory.

Ideal Gas Turbine Cycles: Analysis of Ideal Gas Turbine Cycles, Simple Cycle, Regeneration Cycle, Reheat Cycle, inter cooling Cycle.

Practical Gas Turbine Cycles: Analysis of Practical Gas Turbine Cycles, Methods of accounting for component losses, Efficiencies, change in the composition of the working fluid. Combustion Chambers:Gas turbine combustion systems - Introduction, Geometry, Factors affecting Design & Performance, Requirements of the Combustion Chamber, Gas Turbine Combustion Emissions.

Unit-II

Centrifugal Compressors: Centrifugal Compressors- Principle of Operation, T-s diagram, Energy equation, velocity triangles, types of blades. Analysis of Flow, Performance Characteristics.

Axial Flow Compressors: Axial Flow Compressors - Construction, Principle of Operation, T-s diagram, Energy equation, velocity triangles. Analysis of Flow. Work done factor, Stage efficiency, Degree of reaction, Performance characteristics.

Unit-III

Hydraulic Turbines:Principle of impingements of jets, Euler equation, classification of Hydraulic Turbines, Constructional Details, Analysis, Efficiencies & Design Parameters of Impulse (Pelton Turbine) and Reaction Turbines (Francis, Kaplan& Propeller Turbine), Draft Tube, Cavitation, Governing of Hydraulic Turbines, Characteristics of the Hydraulic Turbine

Unit-IV

Centrifugal pumps: Advantages of Centrifugal Pumps over Reciprocating Pumps, Construction and Working of a Centrifugal Pump, Classification of Centrifugal Pumps, Different Heads of Centrifugal Pumps, Different Efficiencies of a Centrifugal Pump, Analysis of a Centrifugal Pump, Minimum Starting Speed of a Centrifugal Pump, Maximum Suction Lift and Net Positive Suction Head, Cavitation, Priming, Pumps in Series and in Parallel

Fluid System: Hydraulic press, Hydraulic accumulator, hydraulic intensifier, Fluid coupling, torque convertor, hydraulic ram, hydraulic actuator, airlift pump.

Reading:

5. Ganesan, V., Gas Turbines 3/e, Tata McGraw Hill Book Company, New Delhi, 2010.

- 6. Vasandani, V.P. and Kumar, D.S., Treatise on Heat Engineering, Chand and Co Publishers, New Delhi, 2011.
- 7. Saravanmuttoo, H.I.H., Rogers, G.F.C. and Cohen H., Gas Turbine Theory, 6/e. Pearson Prentice Education, 2008.
- 8. Applied Thermodynamics for Engineering Technologists 5th Edition (English, Paperback, Eastop T.D.).

MET3XX	ELECTIVE-1	CLT (4 3 1)
Course No.: MET 355	FINITE ELEMENT METHOD	C L T (4 3 1)
Course Outcomes: Upon su	ccessful completion of this course stud	ents should be able to:
1. Understand the concepts	behind formulation methods in FEM	1.
2. Identify the application and characteristics of FEA elements such as bars, beams, plane		
and iso-parametric elemen	ts.	
3. Develop element charact	eristic equation and generation of glo	obal equation.
4. Able to apply suitable be	oundary conditions to a global equat	ion for bars, trusses, beams,
circular shafts, heat transfer, fluid flow problems and solve them & find displacements, stress		
and strains induced.		

UNIT I

Basic Concept, Historical background, Engineering applications, general description, Comparison with other methods. Need for weighted-integral forms, relevant mathematical concepts and formulae, weak formulation of boundary value problems, variational methods, Rayleigh-Ritz method, and weighted residual approach.

UNIT II

Model boundary value problem, finite element discretization, element shapes, sizes and node locations, interpolation functions, derivation of element equations, connectivity, boundary conditions, FEM solution, post-processing, compatibility and completeness requirements, convergence criteria, higher order and isoparametric elements, natural coordinates, Langrange and Hermite polynomials.

UNIT III

External and internal equilibrium equations, one-dimensional stress-strain relations, plane stress and strain problems, axis-symmetric and three dimensional stress-strain problems, strain displacement relations, boundary conditions, compatibility equations, computer programs.

Variational approach, Galerkin approach, one-dimensional and two-dimensional steady-state problems for conduction, convection and radiation, transient problems.

Inviscid incompressible flow, potential function and stream function formulation, incompressible viscous flow, stream function, velocity-pressure and stream function-vorticity formulation, Solution of incompressible and compressible fluid film lubrication problems.

Text Books:

- 1. Logan, D. L., A first course in the finite element method,6th Edition, Cengage Learning, 2016.
- 2. Rao, S. S., Finite element method in engineering, 5 th Edition, Pergaman Int. Library of Science, 2010.
- 3. Chandrupatla T. R., Finite Elements in engineering, 2nd Edition, PHI, 2013.

Reference Books:

- 1. J.N.Reddy, "Finite Element Method"- McGraw -Hill International Edition.
- 2. Bathe K. J. Finite Elements Procedures, PHI. 2. Cook R. D., et al. "Concepts and Application of

Finite Elements Analysis"- 4th Edition, Wiley & Sons, 2003.

MET3XX ELECTIVE-1 CLT (4 3 1)

Course No.: MET 356 ADDITIVE MANUFACTURING PROCESSES C L T (4 3 1)

COURSE OUTCOMES: At the end of this course, the students shall be able to:

- 1. Understand the basics of additive manufacturing (AM) and working principles of different AM processes.
- 2. Explore the applications of different AM processes in various fields.
- 3. Analyze various AM processes to understand their relative merits and demerits.
- 4. Design and develop functional models using different AM techniques.

Unit-I

Introduction to Additive Manufacturing: Introduction to AM, AM evolution, AM vs traditional manufacturing, advantages and limitations of AM over conventional manufacturing, nomenclature of AM machines, prototyping, tooling and manufacturing. Classification of AM processes, common AM processes, generalized AM process chain and steps in AM, types of materials for AM.

Unit-II

Vat Photo polymerization AM Processes: Introduction, materials for AM processes utilizing Vat Photo polymerization, Stereo-lithography (SL), photo polymerization process, process modeling, variants and classification of VAT photo polymerization process, Advantages and drawbacks of vat photo polymerization processes.

Powder Bed Fusion (PBF) AM Technique: Introduction to PBF, materials, powder fusion mechanism, process parameters and modeling, powder handling, powder fusion techniques, PBF process variants, Advantages and drawbacks of PBF.

Extrusion Based AM Processes: Introduction, basic principles of extrusion-based processes, Fused Deposition Modeling (FDM), materials, Bio extrusion, Contour Crafting, Non-Planar systems, RepRap FDM systems, process benefits and drawbacks.

Unit-III

Material Jetting (MJ) and Binder Jetting (BJ) AM Processes: Introduction to MJ and BJ, materials, process description to MJ and BJ, variants of MJ and BJ, comparison between MJ and BJ, benefits and drawbacks.

Sheet Lamination AM Processes: Introduction, Variants of sheet lamination, Laminated Objected Manufacturing (LOM), Ultrasonic additive manufacturing (UAM), benefits and drawbacks of UAM.

Directed Energy Deposition (DED) AM Processes: Introduction to DED, process description, classification of DED techniques, benefits and drawbacks of DED.

Recommended Texts:

1. Manu Srivastava, Sandeep Rathee, Sachin Maheshwari, TK Kundra, "Additive Manufacturing: Fundamentals and Advancements", Ist ed.2019, Boca Raton: CRC Press, Taylor & Francis group.

2. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", 2nd Edition, Springer, 2015.

Recommended References:

1. Sandeep Rathee, Manu Srivastava, Sachin Maheshwari, TK Kundra, Arshad Noor Siddiquee, "Friction Based Additive Manufacturing Technologies: Principles for Building in Solid State, Benefits, Limitations, and Applications", Ist ed.2018, Boca Raton: CRC Press, Taylor & Francis group.

2. Chua Chee Kai, Leong Kah Fai, "3D Printing and Additive Manufacturing: Principles & Applications", 4th Edition, World Scientific, 2015.

3. D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling, Springer 2001.

4. Andreas Gebhardt, Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing, Hanser Publishers, 2011.

MET3XX	ELECTIVE-1		CLT (4 3 1)		
Course No.: MET 357	Advanced Thermodynamics			CLT	(4 3 1)
Subject: Advanced Thermodynamics (Code: MET3XX)	Year & Semester: B. Tech Mechanical Engineering 3 rd Year &6 th Semester		Total Course Credit: 4		
(Code. WEISAA)			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment		End-Term	1
	30 Marks	10 Marks		60 Marks	

After the completion of course, students will be able,

CO1	To extend the in-depth knowledge in the application of the laws of thermodynamics
CO2	To apply concepts of entropy generation and exergy to practical applications/systems
CO3	To have a coherent knowledge about the evaluation of the thermodynamic properties
CO4	To identify, formulate and solve a wide range of real world problems involving energy
	transfer

Unit 1

Scope and methods of thermodynamics, Review of Thermodynamics, Mathematical background, Macroscopic and Microscopic approaches in thermodynamics, Energy and first law of thermodynamics, First law for closed and open systems, Broadening understanding of energy transfer by work and heat, Structured presentation of First law of Thermodynamics.

Unit 2

Second law of thermodynamics, Traditional formulation of Second law of thermodynamics, logical relation between alternative statements of the second law, Mathematical formulation of second law of thermodynamics, Entropy maximum and Energy Minimum principle, Born-Caratheodory formulation of second law.

Unit 3

Entropy Generation, Concept of Exergy of system, Exergy balance of closed and open systems, Second Law efficiency (of heat engines, heat pumps, refrigerators, work producing and consuming devices, heat exchangers), Thermoeconomics, Exergy account of a vapour power plant (Case study), Thermodynamics of a Biological System.

Unit 4

Thermodynamic properties of pure fluid, ideal gas properties, State relationships for real gases and liquids, Two-constant and Multiconstant Equation of state, Virial Equations, Vander Waals Equation of State, Redlich-Kwong Equation of state, Compressibility charts, Generalized Equation of state, Maxwell's relations, Generalized relations, Evaluation of Thermodynamic properties, p-v-t relations for gas mixtures, Multicomponent systems, Chemical potential (Fugacity).

Textbooks:

- 3. Bejan, A., "Advanced Thermodynamics" John Wiley & Sons, 2006.
- Moran, M.J., Shapiro, H.N., Boettner, D.D., Bailey, M.B., "Principles of Engineering Thermodynamics", Wiley India, 2017.
 Reference Books:
- 3. Kestin, J., "A Course in Thermodynamics", McGraw Hill, 1979.
- 4. Wark, K., "Advanced Thermodynamics", McGraw Hill, 1995.

MEL361APPLIED THERMODYNAMICS LAB0-0-2Credits: 1

Prerequisites: Thermodynamics, Fluid Mechanics, Applied Thermodynamics, Hierodulic machines

Course Outcomes: At the end of the course, the student should be able to:

- **CO1:** To investigate the performance and emission testing of SI Engine.
- **CO2:** To investigate the performance and emission testing of CI Engine.
- CO3: To acquire knowledge of working principle of compressors.
- CO4: To gain knowledge of Turbines,

List of Experiments:

- 9. Study of different internal combustion engine models.
- 10. Experimental study of characteristic performance curves & emission of spark ignition engine using gasoline as fuel.
- 11. Experimental study of characteristic performance curves & emission of compression ignition engine using diesel as fuel.
- 12. Study of working of compressors using different compressor models.
- 13. Experimental study of characteristic performance curves of single cylinder reciprocating compressors.
- 14. To study the constructional details of hermetically sealed reciprocating compressor.
- 15. Study of the Pelton wheel Turbine.
- 16. Study of the Francis Turbine.

MEL 362 INDUSTRIAL ENGINEERING-I LAB C P (1 2) COURSE OUTCOMES:

- 5. Demonstrate human factors/ergonomic principles (HF/E) that influence the design, performance and safety of work systems.
- 6. Apply HF/E guidelines and use standard HF/E in the design of work systems.
- 7. Model work systems using standard techniques, such as flow diagrams, process charts, operation charts, activity charts, block diagrams, and process maps, for purposes of work system documentation, analysis, and design.

8. Determine the time required to do a job using standard data, occurrence sampling, time study, and predetermined time systems.

1. Ergonomic design study (Present/proposed/new) of a product, equipment or work environment (human-machine interface) – (This involves about four to five laboratory classes / sessions)

2. To assembly a product (electrical holder, etc.), record the cycle time and draw learning curve of the operator performing the assembly.

3. Draw Out line process chart and two hand flow process charts for the assembly performed in experiment no. 2, and analyse the present method and also suggest improved method/s.

4. Study and draw of flow process charts (some suitable assembly operation)

5. Study and draw multi activity chart of a suitable method and propose better method/s.(Man and machine)

6. Study suitable movements/travel of man, material or equipment, and draw string diagram, travel chart and flow diagrams.

7. To calculate the standard time of a suitable job, using predetermined time standard techniques.

MES 363	SEMINAR	CP (2 4)
CO1	Review literature on a given advanced topic related to the specific	stream.
CO2	Summarise the concept of the chosen topic systematically after considerable	
	study of the content from primary as well as secondary sources	
CO3	Learn and present the structure and format of technical reports as	per specified
CO4	Interpret graphs of various kinds and discuss the concept & conclusion	ion in an open
	seminar.	

MEI 364	INDUSTRIAL TRAINNING C (2)	
CO1	To study the concept of Facility, Location & Layout & implement in their Industr	ial
	training Project work.	
CO2	An understanding of the impact of engineering solutions and industrial safety in	n a
	global and social context.	
CO3	Develop the ability to work as an individual and in group with the capacity to be a	
	leader or manager as well as an effective team member.	
CO4	Demonstrate competence in mechanical engineering fields through proble	em
	identification, formulation and solution.	

_

Course Code: MET 401 Mechatronics and Measurement Systems C L T (4 3 1)

Mechatronics and Measurement Systems

COURSE OUTCOMES:

CO5 Identify and develop operational research models from the verbal description of the real system.

CO6 Understand the mathematical tools that are needed to solve optimisation problems.

CO7 Use mathematical software to solve the proposed models.

CO8 Develop a report that describes the model and the solving technique, analyse the results and propose recommendations in language understandable to the decision-making processes in Management Engineering.

UNIT I

Measurement and Instrumentation; definitions, significance, Fundamental methods, generalized measurement system, Functional elements, Types of input quantities, standards, calibration, uncertainty, Errors, Classification of instruments, Input-output configuration, Interfering and modifying inputs, methods of correction, Generalized performance characteristics, static characteristics, static calibration, Dynamic characteristics, zero and first order instruments, time constant, Second-order instruments, transient response characteristics. Relative and absolute motion devices, relative displacement, Resistive potentiometers, bridge circuit, LVDT, Variable inductance and variable capacitance pick-ups, Piezoelectric transducers, fibre optic displacement transducer, Resistance strain gage, Relative velocity-translational and rotational, Mechanical revolution counters and timers, stroboscopic method, Moving coil and moving magnet pickups, DC and AC tachometers, Eddy current drag-cup tachometer, acceleration measurement.

UNIT II

Hydraulic and pneumatic load cells, flapper nozzle principle, Force transducers with elastic members, Proving ring transducer, cantilever beam transducer, electromagnetic balance, Dynamometers – Absorption, driving and transmission type, reaction forces in shaft bearings, prony brake, eddy current brake dynamometer, Instruments for high, mid and low pressure measurement, dead weight and null type, Elastic element gages, Differential pressure cell, high pressure measurement, Low pressure measurement –, Pirani gages & McLeod pressure gauge.

UNIT III

Orifice meters, Venturimeter, Pitot tube, Flow nozzle, Variable area meters, rotameter, design and accuracy, Positive displacement flow meter, turbine flow meter, Electromagnetic flow meter, ultrasonic flow meters, Temperature sensing techniques, liquid-in-glass and bimetallic thermometers, Pressure thermometers, electrical resistance thermometers, Thermistors, Thermocouples, thermopiles, Radiation pyrometers, Optical

pyrometer.

Text Book:

1. Beckwith, B., "Mechanical Measurements", 6th edition, Pearson Education Int., 2008.

Reference Book:

3. Nakra B.C. "Instrumentation, Measurements & Analysis", 2nd edition, *Tata McGrawHill*, *N.Delhi*, 2008.

4. Doeblin, E.O., "Measurement systems", 5th edition, McGraw Hill, New Delhi, 2004.

Course No.: MET402INDUSTRIAL ENGINEERING – IIC L T (4 3 1)

INDUSTRIAL ENGINEERING – II

COURSE OUTCOMES:

- 5. Grasp the concept of organizational design with emphasis on organization principles & work design.
- 6. Analyse & design facility location and layout using various techniques and softwares.
- 7. Demonstrate the ability to use the methods of statistical quality control and process control for effective designing of Industrial Quality Monitoring Systems.
- 8. Demonstrate the ability to apply the techniques of material management and inventory control for effective designing and systematic implementation of various MM methods and inventory systems in manufacturing set-up.

UNIT I

Factory organization: Introduction to Plant organization, Principles of Organizational structure, Organization charts, Types of Organizations, Developing an organization structure, Results of good organization, Informal organization, advantages and disadvantages.

Location and Layout analysis: Introduction to Facility location problems, Factors affecting the plant location. Break even analyses and their application, Subjective, qualitative and semi- Quantitative techniques of facility location, Single facility Location problem, Minimax Location problem, Gravity problem and their applications. Line balancing, Introduction to facility layout and their objectives, Classification of Layouts, with advantages and disadvantages of each, Layout design procedures(CRAFT,CORELAP,ALDEP), Material handling systems, Make or Buy decisions, Planning and control of Batch Production,. Characteristics of Batch Production, Determination of Batch size, Minimum Cost batch Size, Maximum Profit Batch size, Sequencing and scheduling for Batch Production, Line of Balance technique.

UNIT II

Inspection and quality control: Concept and Definition of Quality, Concepts of Inspection and quality control, Objectives of inspection, Function of Inspection and their types, Concept of statictical quality control (SQC), Process variation, Sampling inspection. Concepts and types of Control charts, Acceptance sampling, application of control charts and sampling plans.

UNIT III

Materials management and inventory control: Integrated materials management and their

components, Functions and objectives of material management, Introduction and concepts of Inventory management, Purchase model with instantaneous replenishment and without shortage, Manufacturing model without shortages, Purchase model with shortages, Manufacturing model with shortages, Probabilistic inventory concepts with lead time., Selective inventory management- ABC, FSN, VED analyses.

Text Book:

1. Everett, E.A., Ronald J.E, "Production and Operations Management" *Prentice Hall of India*, 5th edition, New Delhi, 2001.

Reference Books:

- 6. Claude, S.G., "Management for Business & Industry" *Prentice Hall of India*, New Delhi, 2000.
- 7. Everett, E.A., Ronald J.E, "Production and Operations Management", *Prentice Hall of India*, 5th Edition, New Delhi, 2001.
- 8. Grant, E.L; Leavenworth R.S, "Statistical Quality Control", *Tata Mcgraw Hill, 7th Edition*, New Delhi, 1996.
- 9. Apple, J.M, "Plant Layout & Material Handling", John Wiley & Sons, New York.
- 10. Maynard, Industrial Engineering Hand Book, McGraw Hill, New York.

Course No.: MET403

MACHINE DESIGN

C L T (431)

MACHINE DESIGN

COURSE OUTCOME:

- 5. Analyse the stress and strain of mechanical components.
- 6. Demonstrate knowledge of basic machine elements used in machine design.
- 7. Design machine elements to perform functions in order to obtain desired objectives under various operating conditions.
- **8.** Conduct a failure analysis for the design of mechanical components to select the suitable materials and manufacturing considerations.

UNIT I

Design of friction elements, various types of brakes, design equations for various types of brakes, design analysis of all types of brakes, e.g., band brake, long shoe brake, etc. design analysis of all types of clutches, design of couplings and keys for shafts, etc, design and analysis of flat and V-belt, equations for power, slip, etc, design of chain drive.

UNIT II

Introduction to gear design, design of spur gear, equation for σ_b and σ_c for spur gear, design analysis for bending, force analysis for Helical gear, design analysis for helical gear, design of bevel gear, determination of bearing forces, horizontal and vertical shafts, design analysis for bevel gear, design analysis for worm gear.

UNIT III

Introduction to Plain bearings, Bearing surface at Micro level, Derivation of Energy equation and PV factor , PV graph, Values of PV , Derivation of Wear coefficient equation, Step-by-step procedure for Plain bearing design, Self lubricating bearings and use of clearance for life of bearing, Design of Hydrodynamic bearings, Derivation of Reynolds equation for three dimensional case, Journal bearing geometry, Variation of viscosity with pressure and temperature, Viscosity index, Sommerfeld number, Analysis of ho, h_{min} , Q_{in} , Q_{10ss} , T_{in} , T_{out} , Introduction to Rolling element bearings, Design of AFB (??) , Equations for L_{10} life, Static loading and dynamic loading ,Use of

AFB catalogue, Determination of Load based on radial and thrust load for ball bearings, Derivation of Load equation for Tapered AF bearings, Design analysis on the basis of loads and selection of AFB from a catalogue.

Text Books:

- 3. Mot, R.L., "Machine Elements in Mechanical Design", *Maxwell Macmillan Intl. edition N.York*, USA, 1992.
- 4. Shigley, J.E., "Machine Engineering Design", McGraw Hill, higher education, 2004.

Reference Books:

Shigley, J.E., Mischke, C. Brown T., "Standard Hand book of Machine Design" *McGraw Hill*.

Elective II: Design

Course No.: MET404ADVANCED MECHANICS OF SOLIDSC L T (4 3 1)

Course Title: ADVANCED MECHANICS OF SOLIDS

Pre-requisite(s): Strength of Materials

Course Outcomes:

At the end of the course, a student should be able to:

CO1 Understand the concept of tensor.

CO2 Analyse advanced concept of stress and strain in structural problems.

CO3 Apply the concept of different elastic functions to solve complex problems.

CO4 Evaluate the influence of various geometric and loading parameters in plane stress and plane strain problems.

UNIT 1

Mathematical Preliminaries: Introduction to tensor algebra: symmetric and skew-symmetric tensor, summation convention, eigenvalue and eigenvector of tensor, spectral theorem, polar decomposition theorem, product of tensor, principal invariants of tensor, coordinate transformation of tensor, Tensor calculus: gradient, divergence, curl, differentiation of scalar function of a tensor. (8 L)

UNIT 2

Analysis of Stress and Strain: Definition and notation of stress, Cauchy stress tensor, equations of equilibrium, principal stresses and stress invariants, stress deviator tensor, octahedral stress components, General deformations, small deformation theory, strain transformation, principal strains, spherical and deviatoric strains, Strain-displacement relations, strain compatibility, stress and strain in curvilinear, cylindrical, and spherical coordinates, fundamental equations of plasticity. (8 L)

UNIT 3

Problem formulation and solution strategies: Field equations, boundary conditions, stress and displacement formulation, Beltrami-Michell compatibility equations, Lame-Navier's equations, principle of superposition, uniqueness theorem, Saint-Venant's principle, Brief descriptions about general solution strategies - direct, inverse, semi-inverse, analytical, approximate, and numerical methods. (8 L)

UNIT 4

Two-dimensional problems: Plane stress and plane strain problems, generalized plane stress, Antiplane strain, Airy stress function, polar coordinate formulation and solutions, Cartesian coordinate solutions using polynomials and Fourier series method. (8 L)

Text Books:

- 1. Elasticity, Theory, Applications, and Numerics by Martin H. Sadd
- 2. Theory of Elasticity by Stephen Timoshenko and , J. N. Goodier
- 3. Advanced Mechanics of Solids, Otto T. Bruhns, Springer publications.

Reference Books:

1. Continuum Mechanics, A.J.M Spencer, Dover Publications, INC

2. Advanced Mechanics of Materials by H. Ford and J. M. Alexander 3. The Linearized Theory of Elasticity, W. S. Slaughter, Springer Science + Business Media, LLC

Elective II: Thermal

Course No.: MET 405	Refrigeration and Air Conditioning	C L T (4 3 1)
		- (-)

Course Outcomes:

- 5. To Identify the need and importance of various refrigeration and air conditioning cycles, the typical and some advanced and innovative schematic designs, and the goals of R&AC systems.
- 6. To design the VCRS and VARS with improving performance parameters.
- 7. To describe the working of different types of air conditioning systems.
- 8. To evaluate the actual applications of R&AC.

UNIT-I

Introduction

Basics of refrigerator and heat pump, Carnot refrigeration and heat pump, units of refrigeration, COP of refrigerator and heat pump, Carnot COP, Ice refrigeration, evaporative refrigeration, refrigeration by expansion of air, refrigeration by throttling of gas, vapor refrigeration system, steam jet refrigeration, thermo- electric cooling, adiabatic demagnetization

Basic Principle of operation of air refrigeration system, Bell Coleman air refrigerator, advantages of using air refrigeration in air craft, disadvantage of air refrigeration in comparison to other cold producing methods, simple air refrigeration in air craft, simple evaporative type, air refrigeration in air craft, necessity of cooling the air craft.

UNIT-II

Vapor Compression refrigeration system

Simple vapour compression cycle, Methods of improving COP, flash chamber, flash inter cooler, optimum inter stage pressure for two stage refrigeration system, single expansion and multi expansion cases, basic introduction of single load and multi load systems, cascade systems, Nomenclature of refrigerants.

Vapor absorption refrigeration system and special topics

Basic absorption system, COP and maximum COP of the absorption system. Actual NH_3 absorption system, function of various components, Li-Br absorption system, Selection of refrigerant and absorbent pair in vapor absorption system, Electro-Lux refrigerator, comparison of compression and absorption refrigeration system, , desirable properties of refrigerants, cold storage and Ice Plants.

UNIT-III

AIR CONDITIONING

Psychrometric properties of moist air, By- pass factor of coil, sensible heat factor, ADP of cooling coil, Air washer. Air conditioning systems: Classification, factors affecting air conditioning systems, comfort air

conditioning system, winter air conditioning system, summer Air Conditioning system, year-round airconditioning system, unitary air conditioning system, central air conditioning system, Room sensible heat factor, Grand sensible heat factor, effective room sensible heat factor, Industrial application of Air conditioning.

Text Books:

- 3. Refrigeration and Air Conditioning C.P. Arora, Tata McGraw-Hill
- 4. Refrigeration and Air- Condition by W. Stoecker Mc Graw Hill

Reference Books:

1. Basic Refrigeration and Air Conditioning- Ananthana and Rayanan, McGraw-Hill

2. Refrigeration and Air Conditioning- Arora and Domkundwar, Dhanpat Rai.

Elective II: Production

Course No.: MET406 Material Testing, Inspection and Characterization C L T (4 3 1)

COURSE OUTCOMES:

By successful completion of this course, the student will be able to

1. Understand various destructive and non destructive methods of testing materials.

2. Explain the principles of metallurgical microscope, X-ray Diffractrometer (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermal analysis and dilatometer.

3. Describe the various sample/specimen preparation techniques for XRD, SEM, TEM and thermal analysis and quantitative metallography.

4. Apply knowledge to select appropriate tool to characterize the material by knowing its merits and demerits.

UNIT I

Purpose and importance of destructive tests – Concepts, and method of Tensile, hardness, bend, torsion, fatigue and creep testing.

UNIT II

Purpose and limitations of NDT, Concepts, operating principles, liquid penetrant test, magnetic particle testing, eddy current testing, ultrasonic testing radiography, acoustic emission, thermal imaging method. Comparison of NDT methods and selection of NDT methods.

UNIT III

Tools of characterisation - Light microscopy, basic principles and special techniques. X-ray diffraction and its applications in materials characterization.

Electron microscopy, Construction, operation and applications of scanning electron microscope (SEM), transmission electron microscope (TEM)

UNIT IV

Thermal analysis: Thermo gravimetric analysis, differential thermal analysis, differential scanning calorimetry & dilatrometry.

TEXT BOOKS:

1. Non-destructive testing, B.Hull And V.John, Macmillan, 1988.

2. Modern Physical Metallurgy and Materials Engineering, R. E. Smallman, R. J. Bishop, sixth edition, Butterworth-Heinemann, 1999.

3. Materials Characterisation, P.C.Angelo, Elsevier (India) Pvt. Ltd, Haryana, 2013,

Elective III: Design :-

Course No.: MET407

BASIC FRACTURE MECHANICS

C L T (4 3 1)

E

COURSE OUTCOMES:

5. Identify and describe different failure mechanisms in materials and engineering structures.

6.

xplain how a crack affect an engineering structure and describe the state of stress and strain that may arise in the vicinity of the crack front in different materials

7. Evaluate fracture toughness for structures with cracks using LEFM and EPFM techniques.

8. Analyze the crack growth in materials subjected to fatigue loads.

UNIT I

Mechanisms of fracture and crack growth, cleavage fracture, ductile fracture, fatigue cracking, Summary of basic problems and concepts in fracture, a crack in a structure, theoretical strength of a material, Inglis's solution, crack tip stresses, the Griffith criterion, Modified Griffith's theory

UNIT II

The elastic crack-tip stress field, Stress Intensity factor, the effect of finite size, Some special cases, elliptic cracks the energy principles, the concept of energy release rate, the criterion for crack growth, the crack resistance, the concept of J-integral, crack opening displacement criterion, K_{IC} and G_{IC} test methods

UNIT III

Crack-tip plastic zone, Irwin's plastic zone correction, The Dugdale approach, Plane stress versus plane strain, plastic constraint factor, the thickness effect, application of von Mises and Tresca yield criteria to obtain plasticity effected regions, Fatigue failure, S-N curve, Crack initiation and propagation, effect of overload, crack closure, Environmental assisted cracking, service failure analysis

Text Book:

1. Anderson T.L., "Fracture Mechanics Fundamentals and applications", *CRC, Taylor & Francis, 2005.*

Reference Book:

Janssen, M. J., Zuidema, J., Wanhill R.J.H., "Fracture Mechanics", Spon Press, 2004.

2. Prashant Kumar, "Elements of Fracture Mechanics", McGraw Hill Education, 2017

_

Elective Thermal

Course No.: MET408

Design of Fluid Thermal Systems

C L T (4 3 1)

COURSE OUTCOMES:

After the completion of course, students will be able,

CO1	To understand thermal system engineering design process
CO2	To learn the characteristics of the components of the thermal system and their effects on overall system performance
CO3	To simulate a thermal system and solve for a workable solution
CO4	To identify, formulate and solve a wide range of real world thermal related problems

UNIT 1

Introduction, Design versus Analysis, Synthesis versus Design, Optimal and Nearly Optimal designs, Life Cycle Design, Thermal design aspects, Concept, creation and assessment, Thermal system (Basic Characteristics, Analysis), some typical examples, formulation of the design problem, Steps in design process, Material selection.

UNIT 2

Modelling of thermal systems, types of models, Mathematical modeling, General procedure (Transient/steady state, spatial dimensions, lumped mass approximation, simplification of boundary conditions, negligible effects, idealizations, material properties, conservation laws, simplification of governing equations), final model and validation, physical modeling and dimensional analysis, curve-fitting, Numerical modeling and simulation, Solution procedures, methods for numerical simulation,

UNIT 3

Formulation of problem for optimization, optimized design, objective function, constraints, operating conditions versus hardware, optimization methods (Calculus methods, Search methods, etc.), Optimization of thermal systems, Considerations of Second law of Thermodynamics, Economic analysis, Estimation of total capital cost, principles of economic evaluation, Thermoeconomic analysis and evaluation.

UNIT 4

Applications with Thermodynamics, Heat and Fluid flow, Cogeneration system Exergy analysis, Thermal insulation, Fins, Electronic packages, Refrigeration, Power Generation, Energy Storage by Sensible heating.

Textbooks:

- 3. Bejan, A., Tsatsaronius, G., Moran, M., "Thermal Design and Optimization", John Wiley, 2013.
- 4. Stoecker, W.F., "Design of Thermal Systems", McGraw Hill, 2017.

Elective Production

Course No.: MET409 ADVANCED MANUFACTURING TECHNOLOGY CLT (431)

ADVANCED MANUFACTURING TECHNOLOGY

Course Outcomes:

- CO1 Identify the use of advanced manufacturing processes in industries and explain the process of micro machining.
- CO2 Identify the need of super finishing processes and understand the process of super finishing.
- CO3 Understand the process of non-conventional forming.
- CO4 Apply knowledge to select appropriate surface processing technique to get the desired surface properties.

UNIT I

Introduction to Advanced manufacturing processes, Advantages of advanced manufacturing processes. Advances in Machining: High speed machining, hard turning. Micro machining: Introduction and need of micro machining, Diamond Micro- grinding/turning, Abrasive Micro machining, Ultrasonic Micromachining, Electric-discharge Micro-machining, Laser Micro-machining, Electrochemical Micromachining.

UNIT II

Super finishing processes:Introduction to finishing processes, Need and application of superfinishing processes, Abrasive flow finishing, Magnetic Abrasive flow finishing, Magneto rheological abrasive flow finishing.

UNIT-III

Advances in forming: Introduction and application of non-conventional forming, need of non-conventional forming, Electro Magnetic forming, Hydro forming, explosive forming. Advantages of non-conventional forming.

UNIT IV

Surface processing: Introduction and need of surface processing, surface properties, cladding, chemical vapour deposition, physical vapour deposition, shot peening, surface modification by severe plastic deformation. Strategies for improving surface properties.

•	Rao, P.N., Manufacturing Technology, Volume 2, McGraw-Hill
	Education, New Delhi.
•	Serop K. Steven, "Manufacturing Processes for Engineering
	Materials", Prentice Hallof India,2004

Elective Production

Course No.: MET410

Conduction Heat Transfer

C L T (4 3 1)

CONDUCTION HEAT TRANSFER

COURSE OUTCOME

CO1 To formulate and solve one dimensional steady state heat conduction problems

CO2 To formulate and solve two-dimensional steady state and transient heat conduction problems

- CO3 To solve heat conduction problems involving phase change
- CO4 To identify, formulate and solve real world problems related to heat conduction

UNIT I

Introduction, Fourier's law of heat conduction, thermal conductivity, Differential formulation of heat conduction in rectangular, cylindrical and spherical coordinates, General boundary conditions and initial condition, non-dimensional analysis of the heat conduction equation, heat conduction for anisotropic medium, one-dimensional steady state heat conduction, Extended surfaces, Constant area fins, Variable area fins, moving fins, Bessel differential equations and Bessel functions.

UNIT II

Two-dimensional steady state heat conduction, Separation of variable method, Homogeneous differential equations and boundary conditions, Sturm-Liouville boundary valve problems, Non-homogeneous differential equations, Non-homogeneous boundary conditions, Method of superposition, Solution to problems in Cartesian and cylindrical coordinates, Unsteady heat conduction, lumped heat capacity system, Non homogeneous equations and boundary conditions, Transient conduction in plates, Transient conduction in cylinders, Transient conduction in spheres, Duhamel's Superposition Integral, Conduction in Semi-infinite regions.

UNIT III

Heat conduction involving phase change, Moving interface boundary condition, non-linearity of the interface energy equation, Simplified model (Quasi-Steady approximation), Exact solutions, Stefan's solution, Solidification of semi-infinite region, Melting of semi-infinite region.

UNIT IV

Heat Transfer in living tissue, Mathematical modeling of vessel-Tissue heat transfer, Microscale heat conduction, physics of energy carriers, Limitations of Fourier's law, Hyperbolic heat conduction, Solutions and approximations for the microscale heat transfer, Inverse heat transfer, parameter estimation, applications to heat transfer, method of sensitivity coefficients, Least squares approach, linear and non-linear inverse problems.

Textbooks:

3. Jiji, L.M., "Heat Conduction", Springer, 2009.

4. Kakac, S., Yener, Y., Naveira-Cotta, C.P., "Heat Conduction", CRC Press, 2018.

Reference Books:

- 4. Ozisik, M.N., Hahn, D.W., "Heat Conduction", John Wiley, 2012.
- 5. Muralidhar, K., Banerjee, J., "Conduction and Radiation", Naraosa Publishing House, 2010.
- 6. Poulikakos, D., "Conduction Heat Transfer", Prentice Hall, 1993.

Course No.: MEL411

MECHATRONICS LAB.

C L T (1 2)

MECHATRONICS LAB.

COURSE OUTCOME:

- 5. Identify and use basic modern tools for measurement of electrical and electronic signals.
- 6. Identify and use different types of sensors and actuators for designing a mechatronic product.
- 7. Design basic circuits utilizing modern electrical and electronic components including operational amplifiers and integrated circuits.
- 8. Write basic microcontroller programs for controlling a mechatronic product.

LIST OF EXPERIMENTS

- 10. Sensor/Actuator Interfacing, calibration, frequency domain characterization, MATLAB serial interface, and serial LCD display
- 11. Design of electropneumatic circuits for L (??) and square cyles using PLC's.
- 12. Sorting of components on an intelligent a conveyor system.
- 13. Modelling of DC Motor System.
- 14. DC Motor position tracking.
- 15. DC Motor position set-point control via PID controller, using relay automatic tuning technique7.
- 16. Disection of an existing system.
- 17. Demonstration of recent projects on Mechatronics.
- 18. Mini Project on Independent modeling, analysis, and design of a mechatronic control system (Select one "mechatronic plant" from the Quanser, rotary family).

Course No.: MEL412 INDUSTRIAL ENGINEERING-II LAB CLT(12)

INDUSTRIAL ENGINEERING-II LAB.

COURSE OUTCOMES:

- 5. Present a numerical and graphical characterization of quantitative data assuming the quantitative data are observations from a normal distribution to compute the Probability of specific numerical outcomes. Construct and interpret normal Probability plots of quantitative data.
- 6. Construct, implement and interpret X-bar and R control charts for variables from Standards and from data; and demonstrate how to use the corresponding OC curves.
- 7. Construct, implement and interpret p, c, and u control charts for attributes from Standards or data; and demonstrate how to use the corresponding OC curves.
- **8.** Demonstrate and simulate layouts to determine optimum material flow rate and cycle time of a job using witness software.

List if experiments:

- 8. To study the layout of a shop in an organization and draw existing and proposed layouts.
- 9. To measure the variable characteristics (diameter of pins, with micrometer) and prepare a frequency histogram. Calculate values of X bar and sigma.
- 10. Verify that when random samples are taken from a lot with a certain percentage of defective, same % age lands to appear in random sampling by using Shewart's kit.
- 11. Simulate an inspection situation with the help of a Schewhart's bowl and plot X bar, and R charts using computed data.
- 12. To conduct Process capability study of a machine tool and to specify the tolerances for ajob.
- 13. To verify the theorem "the standard deviation of the sum of any number of independent variables is the square root of the sum of the squares of the S.Ds of the independent variable. Determine statistically, the permissible tolerance of mating components, when the tolerance of the assembly is given.
- 14. To draw control chart for percent defectives after inspecting a sample and sorting out
the defective units.

_

Course No.: MEP413	<u>MAJOR PROJECT – Stage 1</u>	C L T (3 0 0)
--------------------	--------------------------------	---------------

- CO1 Identify a topic in advanced areas of Mechanical Engineering.
- **CO2** Review literature to identify gaps and define objectives & scope of the work.
- **CO3** Generate and implement innovative ideas for social benefit.
- **CO4** Develop prototypes/models, experimental set-up and software systems necessary to meet the objectives.

_

Course No.: MET 451

Operation Research

C L T (4 3 1)

OPERATION RESEARCH

COURSE OUTCOMES:

- 5. Illustrate knowledge of fundamental concepts about operation research.
- 6. Compare and categorize the knowledge of different approaches to operational performance improvement.
- 7. Appraise the ability to work effectively in a team and in group and use of business tools.
- 8. Outline the various Japanese techniques for justify the knowledge and performance improvement in industrial cost control.

UNIT I

Introduction to Operations Research: Basics definition, scope, objectives, phases, models and limitations of Operations Research. Linear Programming Problem – Formulation of LPP, Simplex Method, Graphical solution of LPP., Artificial variables, big-M method, two-phase method, degeneracy and unbound solutions.

UNIT II

Transportation Problem. Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method.

UNIT III

Assignment model. Formulation. Hungarian method for optimal solution. Solving unbalanced problem. Traveling salesman problem and assignment problem. Sequencing models. Solution of Sequencing Problem – Processing and Jobs through 2 Machines – Processing n Jobs through 3 Machines – Processing 2 Jobs through m machines – Processing n Jobs through m Machines.

UNIT IV

Inventory models. Inventory costs. Models with deterministic demand – model (a) demand rate uniform and production rate infinite, model (b) demand rate non-uniform and production rate infinite, model (c) demand rate uniform and production rate finite.

Replacement Models. Replacement of Items that Deteriorate whose maintenance costs increase with time without change in the money value. Replacement of items that fail suddenly: individual replacement policy, group replacement policy.

TEXT BOOKS:

- 1. P. Sankara Iyer, "Operations Research", Tata McGraw-Hill, 2008.
- 2. A.M. Natarajan, P. Balasubramani, A. Tamilarasi, "Operations Research", Pearson Education, 2005.

REFERENCE BOOKS:

- 1. J K Sharma., "Operations Research Theory & Applications, 3e", Macmillan India Ltd, 2007.
- 2. P. K. Gupta and D. S. Hira, "Operations Research", S. Chand & co., 2007.
- 3. J K Sharma., "Operations Research, Problems and Solutions, 3e", Macmillan India Ltd.
- 4. N.V.S. Raju, "Operations Research", HI-TECH, 2002.

Elective IV: Design

Course No.: MET 452

Theory of Thin Plates and Shells

C L T (4 3 1)

THEORY OF THIN PLATES AND SHELLS

Course Outcomes:

At the end of the course, students will be able to

1. Use analytical methods for the solution of thin plates and shells.

- 2. Use analytical methods for the solution of shells.
- 3. Apply the numerical techniques and tools for the complex problems in thin plates.
- 4. Apply the numerical techniques and tools for the complex problems in shells.

UNIT I

Introduction: Space Curves, Surfaces, Shell Co-ordinates, Strain Displacement Relations, Assumptions in Shell Theory, Displacement Field Approximations, Stress Resultants, Equation of Equilibrium using Principle of Virtual Work, Boundary Conditions.

UNIT II

Static Analysis of Plates: Governing Equation for a Rectangular Plate, Navier Solution for Simply-Supported Rectangular Plate under Various Loadings, Levy solution for Rectangular Plate with other Boundary Conditions.

UNIT III

Circular Plates: Analysis under Axi- Symmetric Loading, Governing Differential Equation in Polar Co-ordinates. Approximate Methods of Analysis- Rayleigh-Ritz approach for Simple Cases in Rectangular Plates.

UNIT IV

Static Analysis of Shells: Membrane Theory of Shells- Cylindrical, Conical and Spherical Shells, Shells of Revolution with Bending Resistance - Cylindrical and Conical Shells, Application to Pipes and Pressure Vessels. Thermal Stresses in Plate/ Shell

Text books:

- Theory of Plates and Shells, Timoshenko S. and KriegerW., McGraw Hill.
- Stresses in Plates and Shells, UguralAnsel C., McGraw Hill.

References:

- Thin Elastic Shells, KrausH., John Wiley and Sons.
- Theory of Plates, ChandrashekharaK., Universities Press.
- Design and Construction of Concrete Shells, Ramaswamy G.S.

Elective IV: Thermal-

Course No.: MET 453

Power Plant Engineering

C L T (4 3 1)

POWER PLANT ENGINEERING

Course Outcomes:

- 5. Identify the different types of power plants and understand the layout of steam power plant.
- 6. Understanding of Hydroelectic Power plant and Coordination of different types of power plants.
- 7. Able to descibe the working operations of Nuclear, Diesel, Gas and Steam power plants.
- 8. To apply & analyses the economics of power plant and able to decides the tariffs for different power plants.

UNIT I

Introduction:- Energy source for generation of electric power. Principle types of power plants, their special features and applications, major power plants in India. Steam Power Plants :- Selection of site, general layout of the power plant, special features of the modern steam boilers, circulation principle, steam separation and purification, economizers and air pre-heater types and estimation of performance, super-heater and superheat control, feed water heaters, cooling tower, temperature and pressure control. Introduction to hydro electric power plant, types of hydro-electric plant in combination with steam plant, Runoff river plant in combination of hydro-electric and gas turbine stations, coordination of different types of power plants.

UNIT II

Nuclear Power Plants :- Nuclear fuel, nuclear energy by fission, main components of nuclear reactors, pressurized water, boiling water, liquid metal and gas nuclear reactors.

Diesel Power Plants :- Plant layout, two and four stroke cycle diesel engines, fuel injection, lubrication and cooling systems, supercharging and starting systems. Gas and Steam Turbine combined Cycles:- Simple gas and steam combined cycle power generation.

UNIT III

Economic Analysis of Power Plants and Tariffs :- The cost of electrical energy, selection of types of generating equipment, performance and operating characteristics of power plant, load division among generators, Tariff methods of electrical energy .Combined operation of different power plants :- Advantages of combined working, Load division among power stations, Storage

Text Book:

2. Rajput R.K., "A text book of power plant engineering", *Laxmi Publication, Pvt. Ltd., New Delhi, 2007.*

Reference Books:

- 7. Thermal Engineering by Ballaney, Khanna Publisher
- 8. Thermal Engineering by Domkundar& Arora, Dhanpat Rai
- 9. Steam Turbine Theory & Practice by Kearton, W.J. Pitman.
- 10. Power Plant Engineering by Morse
- 11. Power Plant Engineering by Domkundwar
- 12. Power Plant Technology by El-Wakil

Elective IV: Production-

Course No.: MET 454 ENTREPREUNERSHIP DEVELOPMENT AND C L T (4 3 1) RISK MANAGEMENT

ENTREPREUNERSHIP DEVELOPMENT AND RISK MANAGEMENT

COURSE OUTCOME:

On completion of the course, the students will be able to:

- 5. Understanding the dynamic role of entrepreneurship and small businesses
- 6. Organize and Manage a Small Business
- 7. Understand Financial Planning, Control and Strategic Marketing Planning
- 8. Explain New Product or Service Development and Business Plan Creation

UNIT-1

Introduction to Entrepreneurship: Meaning, Role of Entrepreneur, Entrepreneur Process: different approaches, Motivation for becoming an Entrepreneur. SME Concept, its role, status, prospects and policies for promotion of SMEs. Importance of Entrepreneurship: innovations, Qualities of successful Entrepreneur, Functions of an Entrepreneur, Types of Entrepreneur, Issues & Problems Entrepreneurial Practices, 11 Contribution of Entrepreneurs: Towards R&D, creates Wealth of Nation & Self prospect with Challenge, Entrepreneur Carrier: Different Stages, Entrepreneur Development Programmers (EDPs).

UNIT-II

Characteristics of Entrepreneurship: Risk taker, Perceptive, Curious, Imaginative, Persistent, Goal setting, Hardworking, Research & Management Skill, Soft skills and Feasibility, Women Entrepreneurship: Opportunities, promotion Hurdles Prospects and of women Entrepreneurs.Factors & Models of Entrepreneurial Development, Social Entrepreneurial Initiative: Solving social Problems, Business plan, Strategic Plan vs Business Plan, Technical and Financial Feasibility study and analysis of projects under self employment scheme including small entrepreneur. The World of Opportunity, Idea versus Opportunity, sources of ideas and idea generation techniques, sources of opportunities, identification and selection of opportunities, the Business Plan, Components of a business plan, How to develop a good business plan?, Role of Entrepreneurial Institutions in Entrepreneurship Development, Various Schemes and Incentives.

UNIT-III

Farm based enterprises for production and post production of Agri-produce: Crops: Cereals, Legumes, Oilseeds; Horticulture crops : Fruits and vegetables; Livestock production : Poultry, Fishery, Medicinal and Aromatic plants. Handlooms & Sericulture; Handicraft, coir, jute & leather Agro-Eco Tourism, Micro entrepreneurial skills development and good production practices, Role

of Ministry of MSME, Registration Process of MSME, Emerging Technologies & Business Opportunities in India.

UNIT-IV

Risk Management: Risk Factor, Sensitivity Analysis, Vulnerability Analysis, External Risk, Internal Risk, Environmental Risk. Financial planning . Forecasting inputs and outputs, Components of the financial plan, Bootstrapping, Venture and Growth Capital, Managing a Micro Enterprise, Human resource development for enterprise growth; delegation, motivation and leadership in microenterprises.

REFERENCE BOOKS

- 8. Byrd Megginson, Small Business Management An Entrepreneur's Guidebook 7th ed, McGraw-Hill, Irwin
- N. V. R. Naidu, Naidu I. K, Management and Entrepreneurship. International Pvt Ltd, 01-Jan-2008
- 10. Frank Martin and Marcus Thompson Palgrave, Social Enterprise Developing Sustainable Businesses Macmillan
- 11. David R. Stokes, Nicholas Wilson Cengage, Small Business Management and Entrepreneurship Learning EMEA, 2006 Business & Economics
- 12. Donald F. Kuratko Cengage, Learning Entrepreneurship: Theory, Process, Practice Business & Economics 14-Nov-2008
- 13. Timmons, Jerry A., and Spinelli, Stephen, 2009. New Venture Creation: Entrepreneurship for the 21st Century, 8th Edition, Boston, MA: Irwin McGraw-Hill
- 14. Carree, M.A., and A.R. Thurik "Impact of Economic Growth,'Hand Book of Entrepreneurship Research, New York:Springer

Elective V: Design –

Course No.: MET 455

Theory of Elasticity

C L T (4 3 1)

THEORY OF ELASTICITY

Course Outcomes:

- 5. Explain the fundamental concept of stress & strain followed by an analytical expression relating the stress & strain in 3-D systems.
- 6. Apply the compatibility equations & boundary conditions to solve the problems of T.O.E in practices.
- 7. Analyze the structural members subjected to pure bending using the fundamental concept of stress, strain & elastic behaviours of materials.
- 8. Apply analytical techniques to predict the ffects of stress concentration in simple solids & structural components.

UNIT I

Introduction: Elasticity, stress components of stress and strain, Hooks law. Equations in polar coordinates, Plane stress and plane strain: Strain at a point, Mohr circle for strain rosette, differential equation of equilibrium, boundary conditions, compatibility equations, overview of Airys stress functions.

UNIT II

Two dimensional problems in rectangular coordinates: solution by polynomials, St Venants principles, determination of displacement, bending of beams, solution by Fourier series. Two dimensional problems in polar coordinates: Equations in polar coordinates, equation about 1- axis, and pure bending in curved bars.

UNIT III

Determination of strains and displacement, effect of circular hole on stress distribution in plate concentrated and vertical loading of a straight boundary, circular disc, general solution and its applications, Analysis of stress and strain in thee dimensions: stress at a point, principal stress, stress ellipsoid and stress director surface, homogenous deformation, strain at a point, principle strain rotation.

Text Books:

1. Timoshanko, S.P. and Goodier, J.N., "Theory of Elasticity," *Mc-Graw Hill Book Company, N.Y.*, USA, 1970.

Reference Books:

1. Love, A.E.H., "The Mathematical Theory of Elasticity," *Dover Publications, NewYork, USA, 1944*.

Elective V: Thermal –

Course No.: MET 456

Renewable Energy Systems

C L T (4 3 1)

RENEWABLE ENERGY SYSTEMS

COURSE OUTCOMES:

- 5. To compare aware about different renewable energy resources.
- 6. To know the conversion of energy from one form to other.
- 7. To know the importance the solar radiation and its utilization.
- 8. To analyze of different energy conversion energy systems.

COURSE CONTENT:-

UNIT-I

Introduction

Introduction to energy, Relevance of energy in the development of country, conventional, nonconventional and renewable sources of energy. Status of conventional sources of energy and their conservation, Exploring renewable sources of energy.

UNIT-II

Solar Radiation and Applications of Solar Heat

Extraterrestrial solar radiation, components of radiation, geometry of earth and sun, geometry of collector and the solar beam, effects of earth's atmosphere, measurements of solar radiation, type of water heaters, selective surfaces, space heating, space cooling, water desalination, solar ponds, solar concentrators, thermos- electric power system, problems.

Photovoltaic Generation

Introduction, the silicon p-n junction, photon absorption solar radiation input, photovoltaic circuit properties and loads, limits to cell efficiency, solar cell construction, other types of photoelectric and thermo-electric generation.

UNIT-III

Hydro and Wind Powers

Principle of hydro power conversion, impulse turbine, reaction turbines, wind turbine types, linear momentum and basic theory, dynamic matching, characteristics of the wind, power extraction by a turbine, electricity generation, mechanical power, problems.

Bio-Fuels

Introduction, Bio fuels, classification, bio-mass production for energy farming, direct combustion for heat, pyrolysis (destructive distillation), alcoholic fermentation, anaerobic digestion for bio-gas, agrochemical fuel extractions.

UNIT-IV

Wave Energy and Tidal Power

Introduction, wave motion, wave energy and power, wave patterns, devices, the causes of tides, enhancement of tides flow power, tidal range, power, world tidal power sites.

OTEC and Geothermal Energy

Principles of Ocean Thermal Energy Conversion (OTEC), Claude cycle, Andersan cycle, Introduction to geothermal energy, dry rock and hot aquifer analysis, harnessing geothermal resources

Text Books:

1. Solar Energy by S P Sukhatme, Publisher Tata Mc Graw- Hill New Delhi

Reference Books:

1. Renewable Energy Rsources by john W. Twidell and Anthony D. Weir, published by E.&

F. N. SponLtd, Lndon.

- 2. Renewable energy by Bent Sorensen by Academic press
- 4. Non-conventional Energy Sources by G D Rai by Khanna Publishers Delhi

Elective V: Production

Course No.: MET 457 Advanced Welding a	nd Allied Processes C L T (4 3 1)
--	-----------------------------------

ADVANCED WELDING AND ALLIED PROCESSES

Course Outcomes:

- CO1 Identify the use of welding processes in manufacturing industries.
- CO2 Apply knowledge to select appropriate welding process based on the application.
- CO3 Explain welding of plastics and underwater welding.
- CO4 Understand the process of thermal spraying and thermal cutting.

UNIT I

Introduction to welding

Welding Principle, Application of welding in industries, Weld ability of Material, Arc welding consumables, Shielding gases and association mixtures. Weld bead geometry and shape factors. Weld dilution, weld joint configurations, liquation cracking, hot cracking. Automation in welding.

UNIT II

Fusion and Solid state welding

Fusion Welding Processes:Classification of fusion welding processes, Submerged Arc Welding, Electroslag welding, Plasma arc welding.

Solid state welding: Introduction, Advantages of solid state welding over fusion welding processes, Explosive welding, Ultrasonic welding, Friction welding, Friction stir welding, Welding zones in FSW.

UNIT III

Welding of Plastics and Underwater welding

Plastics, Types of plastics, Welding of Plastic: Introduction, Classification of plastic welding, Hot plate welding, Hot gas welding, Ultrasonic welding, Friction welding, Applications of plastic welding.

Underwater Welding: Need and application of underwater welding, Dry underwater welding, wet underwater welding. Advantages and Limitations of dry and wet underwater welding.

UNIT IV

Thermal Spraying and Thermal Cutting

Thermal spraying: Introduction, Thermal spray processes, Application of thermal spraying, Thermal Cutting of Metals: Introduction, Methods and applications.Oxy-Fuel Gas Cutting, cutting torch, Oxygen-Lance Cutting, Plasma Arc cutting.

- Rao, P.N., Manufacturing Technology, Volume 2, McGraw-Hill Education, New Delhi.
- Lindberg, R.A., Processes and Materials of Manufacturing, Allyn and Bacon, Boston
- Khan N. Z, Siddiquee A. N. and Khan Z. A., Friction stir welding of dissimilar Aluminium alloys, CRC Press, Boca Raton, 2017.

Elective VI: Design

Course No.: MET 458MECHANICS OF COMPOSITE MATERIALSC L T (4 3 1)

MECHANICS OF COMPOSITE MATERIALS

COURSE OUTCOMES

On completion of this subject students will be able to:

1. To identify the properties of fiber and matrix materials used in commercial composites, as well as some common manufacturing techniques.

2. To predict the failure strength of a laminated composite plate

3. Understand the linear elasticity with emphasis on the difference between isotropic and anisotropic material behaviour.

4. Acquire the knowledge for the analysis, design, optimization and test simulation of advanced composite structures and Components.

UNIT -1

Definition and classification of composite materials: Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, CarbonComposites. Reinforcements and Matrix Materials. Manufacturing Techniques of Composites: Fiber Reinforced Plastic (FRP) Processing: Layup and curing, fabricating process, open and closed mould process, Hand layup techniques; structural laminate bag molding, production procedures for bag molding; filament winding, pultrusion, pulforming, thermo-forming, injection molding, blow molding. Fabrication Process for Metal Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique and secondary processing, special fabrication techniques.

UNIT -2

Density, Mechanical Properties; Prediction of Elastic Constants, Micromechanical Approach, Halpin-Tsai Equations, Transverse Stresses.Thermal Properties; Expression for Thermal Expansion Coefficients of Composites, Expression for Thermal Conductivity of Composites, Hygral and Thermal Stresses.Mechanics of Load Transfer 15 from Matrix to Fiber; Fiber elastic-Matrix Elastic, Fiber Elastic-Matrix Plastic. Load transfer in Particulate Composites. Numerical Problems.

UNIT -3

Elastic Constants of an Isotropic Material, Elastic Constants of a Lamina, Relationship between Engineering Constants and Reduced Stiffnesses and Compliances, Variation of Lamina Properties with Orientation, Analysis of Laminated Composites, Stresses and Strains in Laminate Composites, Inter-laminar Stresses and Edge Effects. Numerical Problems.

UNIT -4

Tensile and Compressive strength of Unidirectional Fiber Composites. Fracture Modes in Composites; Single and Multiple Fracture, Debonding, FiberPullout and Delamination Fracture. Strength of an Orthotropic Lamina; Maximum Stress Theory, Maximum Strain Criterion, Tsai-Hill Criterion, Quadratic Interaction Criterion, Comparison of Failure Theories.Fatigue; S-N Curves, Fatigue Crack Propagation Tests, Damage Mechanics of Fatigue, Thermal Fatigue. Creep behavior of Composites.

UNIT -5

Symmetric Laminates, Cross-ply laminates, Angle ply Laminates, Antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate.Design of a Laminated Composite.Numerical Problems.

TEXT BOOKS:

1. Autar K. Kaw, Mechanics of Composite materials, CRC Taylor & Francis, 2nd Ed, 2005

2. Composite Material Science and Engineering, Krishan K. Chawla, Springer, 3e, 2012 3. Robert M. Jones, Mechanics of Composite Materials, Taylor & Francis, 1999.

REFERENCE BOOKS:

1.MadhijitMukhopadhay, Mechanics of Composite Materials & Structures, Universities Press, 2004

2. Michael W, Hyer, Stress analysis of fiber Reinforced Composite Materials, Mc-Graw Hill International, 2009

3. Fibre Reinforced Composites, P.C. Mallik, Marcel Decker, 1993 4. Hand Book of Composites, P.C. Mallik, Marcel Decker, 1993

Elective VI: Thermal

Course No.: MET 459	Advanced Fluid Mechanics	C L T (4 3 1)
After the completion of course, stu	idents will be able,	

CO1	To have a good knowledge of the methods and techniques in viscous flows theory and be in
	a position tointerpret viscous flow phenomena
CO2	To writeNavier-Stokes equations (conservation laws for mass, momentum, and energy) for simple fluids
CO3	To solve for velocity and pressure fields in a viscous flow subjected to steady and transient conditions and formulate boundary layer approximations
CO4	To identify, formulate and solve flow problems by applying knowledge of fluid mechanics and mathematics

UNIT I

Introduction, Concept of a fluid, Concept of Viscosity, Concept of Continuum, Properties of a fluid, Historical outline, Flow analysis Techniques, Eulerian and Langrangian flow description, Classification of fluid flows, Velocity and acceleration field, Material derivative, Control Volume and differential element approach, Reynolds Transport Theorem, Conservation of mass, Linear Momentum Equation, Energy Equation, Fluid Element kinematics, Linear motion and deformation, Angular motion and deformation.

UNIT II

Vectors and Tensors, Representation of second order tensor, Addition, subtraction and multiplication of tensors, Transpose of a tensor, Symmetric and Unsymmetric tensor, Unit tensor, Dyadic product, Divergence, Curl, Gradient of a vector and tensor, Significance of Gradient of velocity vector, Deformation, rotation, Divergence Theorem, Constitutive Equations for fluids, Stress Tensor for a simple flow, Stoke's Principle, Navier-Stokes Equation.

UNIT III

Exact Solutions of the Navier-Stokes Equations, Flow between through a straight stationary channel, Couette Flow, Hagen-Poiseulle flow, Flow between two concentric rotating cylinders, Axially moving concentric cylinders, Unsteady parallel flow (Stoke's first problem), Flow near an oscillating flat

plate (Stoke's second problem), start-up of Couette flow, Transient axisymmetric Poiseulle flow, Flow of two immiscible fluids in a channel, Fully developed flow of a power law fluid, Superposition of Poiseuille and Couette flows.

UNIT IV

Laminar Boundary layers, Boundary-layer equations, Flow over a Flat plate, Blasius flow, Momentum-Integral Equation for the Boundary layer, Approximate methods for Boundary layer equations, Karman-Pohlhausen Method for Flow over a Flat Plate, Turbulent boundary layers, Characteristics of Turbulent flow, Laminar-Turbulent Transition, Engineering implications of turbulence, Correlation functions, Reynolds decomposition, Governing Equations for Turbulent flow, Measurement of Turbulence quantities, Shear-stress models, Prandtl's Mixing Length Hypothesis.

Textbooks:

- 3. White, F.M., "Viscous Fluid Flow", McGraw Hill, 2013.
- 4. Schlicting, H., "Boundary Layer Theory", McGraw Hill, 1979.

Reference Books:

- 5. Muralidhar, K., Biswas, B., "Advanced Engineering Fluid Mechanics", Narosa Publishing House, 2015.
- 6. Graebel, W.P., "Advanced Fluid Mechanics", Academic Press, 2009.
- Aris, R., "Vectors, Tensors and Basic Equations of Fluid Mechanics", Dover Publications, 1962.
- 8. Munson, B.R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, Wiley, 2017.

Elective VI: Production

Course No.: MET 460

Value Engineering VALUE ENGINEERING

C L T (4 3 1)

UNIT I:

Introduction to value engineering (VE) & value analysis (VA), Life Cycle of a product, Methodology of VE, Reasons for the existence of unnecessary costs. Quantitative definition of Value, use Value and Prestige value, Estimation of product Quality/Performance, Types of functions, Relationship between use functions and Esteem Functions in product design, Functional cost and functional worth, Effect of value improvement on profitability, Tests for poor value, Aims of VE systematic approach.

UNIT II

Elementary introduction to VE, Job plan functional approach to value improvement, Various phases and techniques of the job plan, Factors governing project selection, Types of projects, Life cycle costing for managing the total value, concepts in LCC, Present value concept, Annuity concept, net present value, Pay Back period, internal rate of return on investment (1RR), Examples and Illustrations. Creative thinking and creative judgement, positive or constructive discontent, Tangible and intangible costs of implementation, False material, Labour and overhead saving, VE/VA yardsticks, Relationship between savings and probability of success, Reliability Estimation, system Reliability, Reliability elements in series and parallel.

UNIT III

PHASES AND TECHNIQUES OF VE JOB PLAN:

General Phase, Information phase, Function phase, Creativity/Speculation Phase, Evaluation Phase, Investigation Phase and Recommendation Phase: Value improvement recommendation theory, determination of cut-off point (cop), road blocks in implementation. Decision Matrix/Evaluation Matrix, Quantitative comparison of Alternatives, Estimation of weights factors and efficiencies, Utility transformation functions, Bench marking, Perturbation of weight factors (sensitivity analysis), and Examples.

FAST Diagramming: Critical path of functions, HOW, WHY & WHEN Logic, Supporting and all time functions.

Reference Books:

- 5. Arthur E. Mudge, "Value Engineering- A Systematic Approach", *McGraw Hill Book Co.* 1971.
- 6. Miles L.D., "Techniques of value Analysis and Engineering", *McGraw Hill Book Co., New York, 1970.*

7. ASTME-American society for Tool and Manufacturing Engineers," Value engineering in Manufacturing", *Prentice Hall Inc. USA*, 1967.

Course No.: MEP463MAJOR PROJECT - Stage IIC L T (9 0 0)

- **CO1** Identify methods and materials to carry out experiments/develop code.
- **CO2** Reorganize the procedures with a concern for society, environment and ethics.
- **CO3** Analyze and discuss the results to draw valid conclusions.
- **CO4** Prepare a report as per recommended format and defend the work.
- **CO5** Explore the possibility of publishing papers in peer-reviewed journals/conference proceedings.

2-1-0 3-1-0 2-1-0 2-1-0	3 4 3	3 4
3-1-0 2-1-0 2-1-0	4 3	4
2-1-0 2-1-0	3	
2-1-0		3
	3	3
2-1-0	3	3
2-1-0	3	3
2-0-2	3	4
0-0-2	1	2
0-0-2	1	2
0-0-2	1	2
	25	29
	0-0-2 0-0-2	0-0-2 1 0-0-2 1 25 Aaterials Engine

Proposed Scheme/ Curriculum Outline for 3nd Year B. Tech. Metallurgical and Materials engineering programme 'August 2021 Onwards'

Semester- 5th

*(i) Student should select one course each from Elective I & II.

(ii) Student can opt online courses from Elective I & II if available.

(iii) If student opt online course, then they should follow all the terms & condition of said courses including examination procedures.

Semester-	6 th
-----------	-----------------

S.No.	Course Code	Course Title	L-T-P	Credits	Contact
					Hours
1	MMT 351	Ceramic Technology	2-1-0	3	3
2	MMT 352	Materials Characterization	2-1-0	3	3
3	MMT 353	Transport Phenomena in Materials	2-1-0	3	3
		Engineering			
4	MMT 354	Steel Making	3-1-0	4	4
5	MMT 355	Joining of Materials	3-1-0	4	4
6		Elective			
	MMT 006	Failure Analysis/			
	HST 007	Entrepreneurship for Engineers/	3-1-0/	4	4
	ITT 008	Object Oriented Programming	3-0-2		
		with Java/			
	CST 009	Design & Analysis Algorithm			
7	MML 356	Laboratory Practice in Ceramic Technology	0-0-2	1	2
8	MML 357	Laboratory Practice in Materials	0-0-2	1	2
		Characterization			
9	MML 358	Laboratory Practice in Joining of Materials	0-0-2	1	2
10	MMS 359	Tour Training and Professional Interview	0-0-2	1	2
Total				25	29

Semester 7th

S.No.	Course Code	Course Title	L-T-P	Credits	Contact Hours
1	MMT 401	Non-Destructive Testing and Evaluation	2-1-0	3	3
2	MMT 402	Polymer Technology	2-1-0	3	3
3	MMT 403	Physical Metallurgy of Light Metals and Alloys	2-1-0	3	3
4	MMT 404	Pollution and Environmental Science	2-1-0	3	3
5	MMT 010 MMT 011 MMT 012	Elective- I Secondary Steel Making/ Plasma Processing of Materials/ Advance Manufacturing Processes	3-1-0	4	4
6	MMT 013 MMT 014 ITT 015	Elective-II Alternate Methods of Iron Making/ Thin Films/ Big Data	3-1-0/ 3-1-0/ 3-0-2	4	4/5
7	HSL 405	Personal Interview (Audit)	1-0-0	0	1
8	MML 406	Laboratory Practice in Non-Destructive Testing	0-0-2	1	2
9	MML 407	Laboratory Practice in Polymer Technology	0-0-2	1	2
10	MMP 408	Project Preliminary work & Seminar	0-0-3	3	3
Total				25	28/29

Semester- 8th

S.No.	Course Code	Course Title	L-T-P	Credits	Contact
					nours
1	MMT 451	Tribology of Engineering Materials	2-1-0	3	3
2	MMT 452	Composite Materials	2-1-0	3	3
3	MMT 453	High Temperature Materials	3-1-0	4	4
4	MMT 016 MMT 017 HST 018 ITT 019	ELECTIVE Bio-Materials/ Nano-materials/ Marketing Management/ Block Chain	3-1-0/ 3-0-2	4	4/5
5	MMP 454	Major Project	0-0-15	10	15
6	MML 455	Laboratory Practice in Composite 0-6 Materials		1	2
Total				25	31/32

_

SEMESTER WISE COURSE STRUCTURE AND SUBJECT WISE COURSE CONTENT

5TH semester

METALLURGICAL AND MATERIALS ENGINEERING DEPARTMENT

Subject: Corrosion Engineering	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 th Year & 5 th Semester		Total (Course C	redit: 3
(Code: MMT 301)			L	Т	Р
			2	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		
	30 Marks	10 Marks		60 Marks	5

Course Outcomes:

- **C01:** Study the forms of corrosion
- **C02:** To apply corrosion prevention methods
- **C03:** To Understanding the kinetics, mechanism the High temperature oxidation and hot corrosion of metals and alloys

Module 1

Corrosion Principles - Electrochemical aspects, Importance and cost of corrosion. Computation of corrosion rates, Thermodynamics of corrosion, Passivation, Mixed potential theory of corrosion and its application.

Module 2:

Different Forms of Corrosion and Their Controls - Uniform Corrosion, Selective Corrosion Including Pitting Corrosion, Crevice Corrosion, Intergranular Corrosion, Filiform Corrosion, Stress Corrosion Cracking, Corrosion Fatigue, Fretting Corrosion, Cavitation Corrosion, Leaching, Erosion-Corrosion.

Module 3

Principle behind Protection of Materials against Corrosion: Cathodic and anodic protection, inhibitors, coatings and design. Decorative coatings by electroplating. Corrosion Testing Methods. IS specification

Module 4

High Temperature Corrosion & Oxidation of Metals And Alloys: Rate Laws, Kinetics and Mechanics. Wagner's parabolic law of Oxidation. Hot Corrosion, Corrosion in Mixed Gaseous Environment. High temperature materials.

Text books

- 1. Corrosion Engineering, Greene, N.D., M.G. Fontana, Tata McGraw Hill, 2005
- 2. Corrosion–For science and engineering, Kenneth R Trethewey and John Chamberlain, Longman Inc,1996
- 3. Metallic corrosion and prevention, Raj Narayan, Oxford Publications, 1988
- 4. An introduction to Electro-metallurgy, Sharan & Narain, Standard Publisher, 1999

References

- 1. Corrosion and corrosion control An introduction to corrosion science and engineering, Herbert H. Uhlig and R. Winston Revie, John Wiley & Sons,1985
- 2. ASM hand book Vol 13: Corrosion, ASM International,2001
- 3. Principles and prevention of corrosion, Denny A. Jones, Prentice Hall Inc., 1996
- 4. Corrosion and corrosion protection handbook, Philip A. Schweitzer, ASM, 1983

Subject: Iron Making (Code: MMT302)	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 5 th Semester		Total Course Credit: 4		
(0000 1111002)			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		1
	30 Marks	10 Marks		60 Marks	5

Course Outcomes:

CO 1: Understand the construction and design of iron making blast furnace and its accessories

CO 2: Perform the heat and material balance of a blast furnace

CO 3: Calculate the carbon rate depending on the percentage of direct and indirect reduction in the blast furnace, raceway adiabatic flame temperature and tuyere gas composition depending on the moisture content, oxygen content, and temperature of the blast

CO 4: Understand the alternative routes of iron making.

Course Details:

Module 1

Raw materials and their preparation (Sintering and pelletizing). Blast furnace design, construction and instrumentation. Blast furnace stoves and blast preheating. Thermal and material balance sheets.

Module 2

Burden calculations. Blast Furnace slags and their behavior, slag-metal reactions. Irregularities in the Blast Furnace.

Module 3

Modifications in blast furnace: high top pressure, humidification, Oxygen-enriched blasts, solid, liquid and gaseous injection through hot blast.

Module 4

Alternative methods of iron production such as: HYL, Midrex, Rotary kiln, Shaft furnaces, and Corex process.

Text books

- 1. Production of Iron and Steel Vol. I, G.R. Bashforth, Chapman & Hall, 1965.
- 2. Iron Making, A.K Biswas, SBA Publications, 2005.
- 3. Iron making, R.H. Tupkary, Khanna Publishers, 2008.
- 4. Sponge Iron production by direct reduction of iron oxide, Amit Chaterjee, PHI, 2010.
- 5. High Metal Production by Smelting Reduction of Iron Oxide, Amit Chaterjee, PHI, 2010.
- 6. Physical chemistry of Iron & Steel making, Ward R.G, ELBS, 1999.
- Physical chemistry of Iron & Steel making, Bodsworth C., ELBS/Edward Arnold Pub., 1988.

Subject: Foundry Technology (Code: MMT303)	Year & Se Metallurgic	Total Course Credit: 3			
(00000111112000)	Engineering 3 rd Year & 5 th Semester		L	Т	Р
			2	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		
	30 Marks	10 Marks		60 Marks	5

Course Outcome:

CO1: Ability to identify the advantages and applications of foundry practices as compared to other processes.

CO2: Knowledge of the materials used for moulding process.

CO3: Understanding the design of riser and gating system for efficient casting process.

CO4: Understanding the working principle of melting furnaces and procedures for melting different metals and alloys.

CO5: Ability to inspect and identify different casting defects with remedial measures.

Course Details:

Module 1:

Introduction: Introduction to metal casting processes- advantages, disadvantages and applications; classification of foundries.

Module 2:

Moulding materials and mould making: Sources of molding sands in India, classification and characteristics of different types of sand, grain size, shape and size distributions. Ingredients of molding sand and their effect on properties; binders and additives; testing of moulding sand; machines for sand mixing and preparation of moulds; classification of moulding methods- sand moulding process and its types, CO₂ process, shell moulding, machine moulding, floor and pit moulding, ceramic moulding, etc.

Module 3:

Core and core materials: Types of cores, core sands, preparation of cores, core baking and finishing.

Module 4:

Foundry tooling and methoding:

Pattern making- functions of patterns and its types, Pattern allowances and materials.

Core making- Core allowances and core print design.

Gating and feeding: Functions of gating system and its various components, types of gates; functions of risers, overview of pouring and solidification, concept of shrinkage, Chvorinov's rule, types of riser, methods of designing proper gating and risering system for ferrous and non-ferrous casting; directional solidification and methods to achieve directional solidification.

Module 5:

Melting furnaces and melting practice: Various types of melting furnaces used in foundry; melting practice for steels, cast iron and its types, aluminium alloys, copper alloys and magnesium alloys.

Module 6:

Casting and fettling

Classification of casting methods and equipments- sand casting, die casting, permanent mould casting, centrifugal casting, plaster mould casting, investment casting, continuous casting, squeeze casting, full mould process, strip casting, Rheo and thixocasting; shot blasting, grinding and fettling.

Module 7:

Casting defects and salvaging

Common casting defects - classifications, causes and remedies; salvaging and heat treatment of castings.

Text Books

- 1. Principles of Metal Casting, Heine R W., Loper, C.R. Rosenthal, Tata-McGraw Hill Publishing Co Ltd., 1995.
- 2. Principles of Foundry Technology, Jain P.L, Tata McGraw Hill, 1995
- 3. Metal Casting : Principles and Practice, Ramana Rao T V., New Age International Publishing, 1996
- 4. Fundamentals of metal casting technology, Mukherjee P.C.,Oxford and IBH Publishing House, 1996
- 5. Manufacturing technology, Rao P N, Tata-McGraw Hill Publishing Co Ltd., 1998

References

- 1. ASM Metals hand Book, Vol 15, Casting, ASM International, 2001
- 2. Foundry Technology, Beeley P R., Butterworths, London, 1982
- 3. Foundry Engineering, Srinivasan N K., Khanna Tech Publications, 1994

Subject: Mechanical Working of Materials	g Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 5 th Semester		Total Course Credit: 3			
(Code: MMT304)			L	Т	Р	
			2	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
- - -	30 Marks	10 Marks	60 Marks			

Course Outcomes:

- **CO1:** Analysis of the thermal, metallurgical and mechanical factors involved in forming metals into useful shapes (conventional and non-conventional).
- **CO2:** Classification of various metalworking processes.
- **CO3:** Familiarization with the general methods, mechanical equipments required and defects created in various metal forming operations.
- **CO4:** To evaluate the mechanics of various metalworking operation.

Course Details:

Module-I Introduction to Mechanical Working:

Manufacturing Processes, Classification of metal working/forming processes, General mechanics of metal working operations, Flow Stress, Effect of temperature, strain rate and metallurgical structure in metal working operations, Friction and lubrication, Residual stresses.

Module-II Bulk Deformation Processes in Metal working:

a) Rolling, Classification of rolling processes, Mechanics involved in rolling operations, Rolling mills, Defects in rolled products.

b) Forging, Classification of forging processes, Forging equipments, Mechanics involved in forging, Forging defects.

c) Extrusion, Classification of extrusion processes, Extrusion equipment, Analysis of extrusion process, Defects in extruded products.

d) Drawing of rods, wires and tubes, Rod, wire and tube drawing processes, Drawing equipments, Analysis of drawing operation, Defects in rods wires and tubes.

Module III Sheet Metalworking:

Cutting Operations - shearing, blanking, punching, Analysis of sheet metal cutting, Bending operations, Analysis of bending, Stretch forming, Deep drawing, Mechanics of drawing, Operations performed with metal tooling, Equipments for metal forming, Defects in formed parts.

Module IV

Non-conventional Forming Methods: Explosive Forming, Magnetic Forming, Electric discharge forming, Laser Forming.

Text Books:

- 1. Mechanical Metallurgy, Dieter G. E., Mc Graw Hill, 1988.
- 2. Fundamentals of Modern Manufacturing: Materials, Processes and Systems, Mikell P. Groover, John Wiley & Sons, Inc., 2010.
- 3. Metals Handbook, Vol.14, Forming and Forging, Metals Park Ohio, USA, 2001.
- 4. Handbook of Metal Forming, Kurt Lange, Society of Manufacturing Engineers, Michigan, 1988.

Reference Books:

- 1. Metal Forming Fundamentals and Applications
- 2. Tylan Altan, Soo Oh, Harold Gegel, ASM, Metals Park, Ohio, USA, 1983.
- 3. Mechanical Treatment of Steel, Vol.4 Bashforth G R Chapman & Hall, 1968.

Subject: Quantitative Aptitude and Analytical reasoning (Code: MAT305)	Year & Semester: B. Tech Metallurgical and Materials Engineering		Total Course Credit: 3			
			L	Т	Р	
	3 rd Year &	& 5 th Semester	2 1 0		0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term			
	30 Marks	10 Marks	60 Marks			

Course Objectives

- **C01:** To enhance analytical and problem-solving skills
- **C02:** To improve the basic mathematical skills
- **C03:** To study information and apply logic to find patterns or make inferences.

Course Details:

Module I:

LCM and HCF, Percentages, Profit and Loss, Interest (Simple and Compound), Speed, Time and Distance, Time and Work, Averages, Ratio and Proportion, Algebra

Module II:

Linear Equations; Quadratic Equations, Complex Numbers, Logarithm; Progressions, Surds and Indices, Permutation and Combination

Module III:

Clocks, Calendars, Blood Relations (Family Tree), Logical Sequence, Direction sense and Decision Making

Module IV:

Quantitative Reasoning, Puzzles, Logical Reasoning based on Rankings, Critical Reasoning

References:

- 1. Quantitative Aptitude, R.S.Agarwal, S Chand Publishing, 2002
- 2. Magical Book on Quicker Maths, M. Tyra, BSC Publishing, 2018
- 3. Quantitative Aptitude, Arun Sharma, McGraw Hill, 8th ed., 2019
- 4. Verbal and Non-Verbal Reasoning by Dr. RS Aggarwal
- 5. Analytical Reasoning by M.K Pandey.

Subject: Fuels, Furnaces and Refractories	Year & Semester: B. Tech Metallurgical and Materials		Total Course Credit: 3			
(Code: MMT 001)	Engineering	ineering	L	Т	Р	
	^{3rd} Year & 5 th Semester		2	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term			
	30 Marks	10 Marks	60 Marks			

Course Outcomes:

- **C01:** To understand the difference between solid, liquid and gaseous fuels and their manufacturing process and uses.
- C02: Describe the fundamentals about refractories and metallurgical furnaces.
- **C03:** Outline construction and working principles of different types of furnaces and refractories.

Module-I

Fuels: Their classifications and resources in India, Composition and Constitution of Coals, Metallurgical Coke and its properties and production, Gaseous and liquid fuels: Coal Gasification, Petroleum and its Refining, Coke Oven and Petroleum by-products, Combustion of fuels, Regenerators, Recuperators and their efficiencies, Newer sources of energy, testing of solids, liquids and gaseous fuels.

Module-II

Furnaces: Their classification. Elements of furnace construction, Batch type and continuous furnaces, fuel economy, heating and heat saving methods, Furnace design, Furnace temperatures and Furnace atmospheres and their control,

Module-III

Refractories: Their classifications, compositions, structures, properties and applications, Manufacture of Acid, Basic and Neutral Refractories, Special Refractories like Graphite, Zirconia, Thoria, etc., Testing and Quality control of Refractories.

Text Books

- 1. Coal, Francis Penguin, 1967
- 2. Fuels, Brame and King, ASTM, Philadelphia, 1967
- 3. Refractories, Norton F.H, Tata Mc Graw Hill, 1984
- 4. Refractories- production, properties and applications, Chesti A.R, PHI, 1986
- 5. Industrial furnaces, Trinks W., John Wiley and Sons, 2004
- 6. Handbook of Refractories, D.N Nandi, Tata Mc Graw Hill, 1987
- 7. Elements of Fuels Furnaces and Refractories, O.P.Gupta, Khanna Publications, 1993
- 8. Refractories Production and Properties, Chester, IOM, 1973

Subject: Operation Research (Code: MAT 002)	Year & Semester: B. Tech Metallurgical and Materials		Total Course Credit: 3			
(00000000000000000000000000000000000000	Engineering	gineering	L	Т	Р	
	3 ^{ru} Year & 5 th Semester		2	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
	30 Marks	10 Marks	60 Marks			

Course Outcomes:

- **C01:** To solve complex problems under uncertainty
- **C02:** To analyze the method of problem-solving and decision-making that is useful in the management of organizations

Course Details:

Module 1

Nature and Development of Operations Research, Problem formulation, Linear Programming Problem, Graphical Method, Simplex Method, Two-phase, Simplex Method. Big M method

Module 2

Transportation and Assignment Models. Replacement Models - Simple Problems. Gam Theory: Two person Zero-Sum Game. Sequencing Models-Processing n-jobs through two Machines, Processing n-jobs through three machines. Queuing Theory: Single- Channel Poisson Arrivals with Exponential Service (M/M/I) Model.

Textbooks:

- 1. Linear Programming, G. Hadlay, 1962
- 2. Operations Research: An introduction, Hamdy a. Taha, 2011
- 3. Optimization Techniques in Operation and Researh, Sivazham and Stenfel
- 4. Quantitative Methods for Managerial Decisions, C.M.Paik, Tata Mc Graw Hill, 1973
- 5. Fundamentals of Operation Research for Management, S.K. Gupta, and J.M. Cozzolino, 1976
- 6. Fundamentals of Operations Research, Ackoff Sasieni

Subject: Principle of Management	Year & Semester: B. Tech Metallurgical and Materials		Total Course Credit: 3			
(Code: HST 003)	Engineering	gineering	L	Т	Р	
	3 rd Year & 5 th Semester		2	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
	30 Marks	10 Marks	60 Marks			

Course Outcomes: Upon successful completion of this course, the learner will be able:

C01: To Practice the process of management's four functions: planning, organizing, leading, and controlling.
- **C02:** To Identify and properly use vocabularies within the field of management to articulate one's own position on a specific management issue and communicate effectively with varied audiences.
- **C03:** To evaluate leadership styles to anticipate the consequences of each leadership style.
- **C04:** To gather and analyze both qualitative and quantitative information to isolate issues and formulate best control methods

Module	Topic(s)	Learning Outcomes
1	Introduction to management and organizations	 DefineManagement and outline the evolution of management thought. Differentiate between Manager Vs Entrepreneur Discuss different types of managers along with their managerial roles Describe the various types of Business organization Explain Organization culture and Environment – Discuss Current trends and issues in Management.
2	Planning	 Discuss the Nature and purpose of planning Discuss planning process and identify types of planning Define objectives and outline the process of setting objectives Explain decision making steps and process.
3	Organising	 Discuss Nature and purpose of organizing Differentiate between Formal and informal organization Explain organization chart – organization structure – types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design Describe Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.
4	Directing	 Discuss the Foundations of individual and group behavior Explain motivation – motivation theories – motivational techniques Explain leadership – types and theories of leadership Outline process of communication – barrier in communication – effective communication – communication and IT.
5	Controlling	 Explain System and process of controlling – budgetary and non-budgetary control techniques Discuss the use of computers and IT in Management control Identify Productivity problems and management – control and performance – direct and preventive control – reporting.

Suggested Readings:

- 1. Stephen A. Robbins & David A. Decenzo& Mary Coulter, "Fundamentals of Management", Pearson Education.
- 2. Robert Kreitner&MamataMohapatra, "Management", Biztantra.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill.

Subject: Simulation using MATLAB and Python	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 5 th Semester		Year & Semester: B. Tech Metallurgical and Materials				redit: 3
(Code: ITT 004)			L	Т	Р		
			2	0	2		
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n		
	30 Marks 10 Marks		60 Marks				

Course Objectives: To get introduced about MATLAB platform and its modalities.

- 1. Scope of MATLAB in Metallurgy and its applications.
- 2. To get introduced about Python and its libraries.
- **3.** Use cases of Python and its packages.

Unit I: Introduction to MATLAB

Introduction to the basic environment, data types, Numbers, Arithmetic Operations and Special Characters, Vectors and Matrices, colon notation, strings and arrays.

Unit II: Conditionals and functions

Decision, conditionals, loops, scripts and functions, solving non-linear problems, Data import and output.

Unit III: Advanced functionalities

Plotting, graphics, algebra, calculus, Integration, differential, polynomials and transforms.

Unit IV: Introduction to Python

Why Python? Basic syntax, variable types, basic operations, conditional statements, looping, control statements.

Unit V: Data Manipulation and functions

String manipulation, List, Tuple, Dictionary, Functions, searching and sorting, Modules.

Unit VI: Files and Exception Handling

Opening and closing files, reading and writing files, functions specific to files, Exceptions, Exception handling, User-defined exceptions.

References:

- 1. MATLAB: Easy Way of Learning by S. Swapna Kumar
- 2. Learning MATLAB: A Problem Solving Approach by Walter Gander
- 3. Learning Python by Mark Lutz, David Ascher
- 4. Beginning Python by M. L. Hetland

Subject: Data Structures		Year & Sei Metallurgic	mester: B. Tech al and Materials	Total (Course C	redit: 3
(C	oue: CS1 005)	Eng	gineering	L	Т	Р
		3 rd Year &	& 5 th Semester	2	0	2
Ev	valuation Policy	Mid-Term	Class Assessment	-	End-Terr	n
		30 Marks	10 Marks		60 Marks	S
		Course Ol	bjectives			
• T	Understand the concept of	ADTs(Abstract I	Data Types)			
٠	Identify data structures sui	itable to solve pro	blems			
•	Develop and analyze algor	rithms for stacks,	queues along with their	r applicati	ons	
٠	Develop algorithms for bin	nary trees and gra	phs along with their ap	plications		
• 1	mplement sorting and sear	rching algorithms				
• 1	Implement symbol table us	sing hashing tech	niques			
		Learning (Dutcomes			
By the e	end of the course, the stu	dents will be ab	le to :			
• 1	Design and analyze progra	mming problem s	statements.	ion alaamit	thma for a	
• (specific problem	ructures and argor	fitting and use it to des	ign algori	linns for a	
• 1	Understand the necessary r	nathematical abst	traction to solve proble	ms.		
	J. J	Course S	ynopsis			
The cou	rse seeks to empower st	tudents with adv	vanced programming	concepts	to enabl	e them
to becom	ne efficient programmer	·S.				
TT • /	1	Course Outlin	ne / Content			
Unit		Topics			Wee	ek
1.	Strings: Representational library functions.	oncept of data, son, String operat	structures and pointe ions, Implementing S	rs. tring.h	1	
2.	Arrays: Represen representation. Limita	tation, impl tions.	ementation, poly	nomial	1	
3.	Linear Data Structur	res: Linked Lis	ts		4	
	Linked List and its con of Linked lists, Applic Lists using structures.	mparison with a ations of Linked Insertion, Delet	rray implementation. l lists. Implementing ion, Search, Print.	Types Linked		
4.	Stacks: Static and I Stacks. Prefix Postfix conversion, Expressio	Dynamic Imple x and Infix Ex n evaluation, an	mentation. Applicati pressions. Infix to d expression trees.	ons of postfix	3	

5.	Queues: Static and Dynamic Implementation. Applications of Queues, Types of Queues, Array Implementation of Circular Queues,	3
	Search and Update Operations on Varieties of Linked Lists, Linked List Implementation of Stacks and Oueues	
6.	Recursion : Recursion, Recursion and Stacks. Expression	
	evaluation using stacks.	
7.	Non-Linear Data Structures:	4
	Introduction to Trees, Implementation of Trees, Binary Trees,	
	Tree Traversals with an Application, Binary Search Trees (BSTs),	
	Query and Update Operations on BSTs, static and dynamic	
	implementation. Tree operations, insert, delete, and search.	
	Heaper Definition and Implementation of May and Min Heap	
	Priority Queue ADT Binary Heap Implementation and	
	Applications of Priority Queues	
8	Hashing: Implementation of Dictionaries Hash Function	2
0.	Collisions in Hashing, Separate Chaining, Open Addressing.	_
9.	Sorting Algorithms: Stability and In Place Properties, Insertion	3
	Sort, Merge Sort, Quick Sort, Heap Sort, Lower Bound for	
	Comparison Based Sorting Algorithms,	
	Linear Sorting Algorithms: Counting Sort, Radix Sort, Bucket	
	Sort	
10.	Graph Algorithms: Graphs and their Representations, Graph	3
	Traversal Techniques: Breadth First Search (BFS) and Depth First	
	Search (DFS), Applications of BFS and DFS, Minimum Spanning	
	Connected Components, Dijketra's Algorithm for Single Source	
	Shortest Paths, Tree Traversals	
11	Storage Management: Memory Management techniques	1
	garbage collection.	1
	Text Books	
1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and C.	lifford Stein,
	Introduction to Algorithms, Second Edition, PHI, 2009.	
2.	Ellis Horowitz, SartajSahni and SanguthevarRajasekaran, Fundame	entals of
	Computer Algorithms, Second Edition, Universities Press, 2011.	
3.	Data Structures by Rajni Jindal	
4.	Data Structures - Schaum's Series	
	References	
1.	Data Structures by Knuth	
2.	Data Structures by Farouzan	
3.	Data Structures using C and C++ by Langsam, Augestern, Tanenba	aum.

Subject: Laboratory Practice in Corrosion Engineering	Year & Semester: B. Tech Metallurgical and Materials	Total Course Credit: 1				
(Code: MML 306)	Engineering 3 th Year & 5 th Semester	L	Т	Р		
		0	0	2		
Evaluation Policy	Mid-Term/Class Assessment (40 Marks)		Final-Term (60 Marks)			

Course Outcomes:

- **C01:** To study the microstructure of a corroded sample.
- **C02:** To study the galvanic corrosion of metals by weight loss method
- C03: To study the effect of cathodic protection on given couple of metallic samples
- C04: To study the influence of various inhibitors on corrosion protection
- C05: To understand the working principle of potentiostat. Aqueous corrosion.
- **C06:** To study the High temperature oxidation of metals/alloys.

List of Experiments

- 1. To study the microstructure of a corroded sample.
- 2. To understand the working principle of pH meter.
- 3. To study the galvanic corrosion of metals by weight loss method.
- 4. To study the effect of cathodic protection on given couple of metallic samples.
- 5. To study the influence of various inhibitors on corrosion protection.
- 6. To understand the working principle of potentiostat. Aqueous corrosion.
- 7. To study the High temperature oxidation of metals/alloys.

Subject: Laboratory Practice in Foundry Technology	Year & Semester: B. Tech Metallurgical and Materials	Total Course Credit: 1				
(Code: MML 307)	Engineering 3 rd Year & 5 th Semester	L	Т	Р		
		0	0	2		
Evaluation Policy	Mid-Term/Class Assessment (40 Marks)		Final-Term (60 Marks)	L		

Course Outcome:

- CO1. Identify the sand morphology and understand the effect of sand particle size distribution on the sand mold properties.
- CO2. Illustrate different sand testing methods available for sand mold preparations.
- CO3. Ability to prepare molds for casting process.
- CO4. Knowledge about furnaces used for melting purpose.
- CO5. Ability to perform casting of different alloys.

List of Experiments:

- 1. To find the distribution of sand grains using a set of sieves and to find the average grain fineness number.
- 2. To determine the percentage of clay present in base sand.
- 3. To find the effect of water content, clay content on green permeability of foundry sand.
- 4. To find the green compression strength of the given specimen at different percentage of clay and moisture
- 5. To determine the green shear strength of the given specimen for different percentages of clay and moisture.
- 6. To determine the tensile strength of sand using two types of binders Viz. core oil binder and sodium silicate binder.
- 7. To determine the hardness of sand core and sand mould by using steel ball tester.
- 8. Preparation of green sand mould.
- 9. To determine the flowability of moulding sand.
- 10. Demonstration of foundry melting practice of ferrous and non-ferrous alloys

Subject: Laboratory Practice in Mechanical Working of Materials	Year & Semester: B. Tech Metallurgical and Materials	Total Course Credit: 1			
(Code: MML 308)	Engineering	L	Т	Р	
	^{3^{ru}} Year & 5 ^m Semester	0	0	2	
Evaluation Policy	Mid-Term/Class Assessment (40 Marks)		Final-Term (60 Marks)	L	

Course Objectives:

- CO-1. To test a metal specimen subjected to dynamic loading.
- CO-2. To examine and analyze different bulk metal forming operations.
- CO-3. To assess the shearing and bending operations.

List of Experiments:

- 1. To perform fatigue test on a ferrous sample and plot the S-N curve.
- 2. To perform rolling of materials and co-relate the percentage cold-working with hardness and microstructure.
- 3. To perform wire drawing of ferrous and non-ferrous materials.
- 4. To perform forging by forging hammer.
- 5. To perform V-bending of the rod.
- 6. To perform shearing operation on the metallic rod.

METALLURGICAL AND MATERIALS ENGINEERING DEPARTMENT							
Subject: Ceramic Technology (Code: MMT351)	Year & Se Metallurgic	mester: B. Tech al and Materials	Total (Course C	redit: 3		
	Engineering		L	Т	Р		
	3 rd Year & 6 th Semester		2	1	0		
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n		
	30 Marks 10 Marks		60 Marks				

Course Outcomes:

C01: To understand the structural characteristics & structural imperfections of ceramic materials.

C02: To understand the phase equilibria, microstructures & high temperature reactions of ceramic systems.

C03: To understand the microstructural characteristics, sintering and methods of forming and mechanical properties of ceramic products.

Details of the Course:

Module 1:

Introduction to ceramics, Structural characteristics of ceramics and glasses, structural imperfections, surfaces, interfaces and grain boundaries.

Module 2:

Atom mobility, ceramic phase equilibrium diagrams, phase transformation, glass formation and glass ceramics, reactions with and between solids.

Module 3:

Grain growth, sintering and vitrification, microstructure of ceramics, fabrication processes mechanical properties.

Suggested Books:

S.	Name of the Books	Author(s)	Publisher	Year of
No.				Publication
1.	Fundamentals of Ceramics	Michael Barsoum	Mc Graw Hill Publishing Co.	1997
2.	Foundations of Materials Science and Engineering	William F.Smith	McGraw-Hill Inc, New York	1993
3.	Introduction to Fine Ceramics	NobukaIchinose	John Wiley	1987
4.	Composite Materials: Engineering & Science	Mathews and Rawlings	Chapman & Hall, London,	1994
5.	Ceramic Matrix Composites	Chawla K K	Chapman and Hall, UK	1993
6.	Modern Composite Materials	Broutmanand Krock, VanVlack	Addison Wesley Co.	1967
7.	Physical Ceramics for Engineers	КН	Addison Wesley Co.	1964
	Introduction to Ceramics	Kingery, W D		
	Modern Ceramic Engineering- properties, processing and use in design.		John Wiley, USA	
	Introduction to the principles of ceramic processing.			

_

Subject: Materials Characterization	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester		Total Course Credit:		
(Code: MMT352)			L	Т	Р
			2	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n
	30 Marks 10 Marks 60 Marl		60 Marks	8	

Course Outcome:

- **CO1:** Understanding the working principles of the optical microscopy, XRD and electron microscopy
- **CO2**: Describe the various sample preparation techniques for structural and microstructural characterization techniques
- **CO3:** Ability to analyze the materials, grain size, crystal structure, composition and phases by using XRD and microscopy techniques
- **CO4**: Ability to analyze materials by SEM and TEM in different modes
- **CO5**: Understand the operation and application of different spectroscopic and thermal analysis techniques

Module 1:

Optical microscopy: Introduction, Image formation, concept of resolution, numerical aperture, empty magnification, depth of field and depth of focus, lens aberrations, components of microscope- illumination system, objective lens and eyepiece, etc.; specimen preparation for optical microscopy; Imaging mode- bright-field and dark-field, principles and application of polarized, phase contrast and interference microscopy; quantitative microscopy- estimation of grain size, volume fraction and grain boundary area.

Module 2:

X-ray diffraction (XRD): Brief review of crystal structure; Production and properties of X-ray, Bragg's law and X-ray diffraction, diffraction intensities, factors affecting intensity, structure factor calculations- SC, BCC, FCC. NaCl structure, etc., Working principles and components of an X-ray diffractometer; application of X-ray diffraction – Indexing of XRD patterns for crystal structure determination, determination of crystallite size and lattice strain, residual stress measurement, elemental analysis by X-ray fluorescence (XRF) spectrometry.

Module 3:

Electron Microscopy

Scanning electron microscopy (SEM): Introduction to electron microscopy, interaction of electrons with the specimen; principle, construction and operation of SEM; sample preparation; different detectors, modes of operation, image formation of plane and fractured surfaces, elemental analysis by EDS.

Transmission electron microscopy (TEM): Construction and working principles of TEM; specimen preparation technique for TEM; principles of electron diffraction in TEM, bright and dark field imaging, selected area diffraction, indexing of diffraction patterns.

Module 4:

Introduction to additional characterization techniques: working principle and application of-Atomic force micrososcopy, Auger Spectroscopy, Electron probe microanalyis (EPMA), dilatometry, Thermogravimetric analysis (TGA) & Differntial Scanning calorimetry (DSC), emission spectroscopy, raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), four probe resistivity measurement and magnetic measurements, X-ray photoelectron spectroscopy (XPS).

Text Books

- 1. Metallography, principle and practice ,Vander Voort, Mc Graw Hill,1984
- 2. Elements of X-ray Diffraction, B.D. Cullity, Addison–Wesley Publishing Company, 2001
- 3. Electron Microscopy and Analysis, P.J Goodhew J. Humphreys R Beanland, Taylor and Francis, 2001.
- 4. 'Fundamentals of light microscopy and electronic imaging, Douglas B. Murphy, Wiley-Liss, Inc. USA, 2001.
- 5. Scanning Electron Microscopy and X-Ray Microanalysis: Joseph Goldstein and Dale E. Newbury, Springer, 2011
- 6. X-ray diffraction, C. Suryanarayana, M. G. Norton, Springer US, 1998
- 7. Materials characterization, Yang Leng, JohnWiley & Son, 2008

References:

- 1. David B. Williams, C. Barry Carter, "Transmission Electron Microscopy: A Textbook for Materials Science", Springer, pub. 2009.
- 2. ASM Handbook, Volume 10, Materials Characterisation, Whan R E (Ed), ASM international, 1986

Subject: Transport Phenomena in Materials Engineering	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester		Total Course Credit: 3		
(Code: MMT353)			L	Т	Р
			2	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n
	30 Marks	10 Marks	60 Marks		8

Course Outcomes:

CO1: Explain the basics and scientific aspects of mass transfer, heat flow, fluid flow and mass transfer

CO2: Apply the transport concepts and equations of mass transfer, heat transfer and fluid flow for modelling of metallurgical processes

CO3: Obtain the ability to convert actual (descriptive) processes into appropriate equations and then attempt to solve the same

CO4: Solving different numericals pertaining to heat transfer, mass transfer and fluid flow

Module-I

Mass Transfer: Mass transfer processes and Metallurgical Kinetics-Rate controlling step, Diffusion- Laws of diffusion; steady state one dimensional; Pseudo-steady state diffusion; unsteady state diffusion. Diffusion in gases, liquid and solid. Convection and Mass Transfer in Fluids under Laminar and Turbulent flow, Mass transfer between a fluid and a solid. Boundary Layer – Mass Transfer Coefficient, Fluid flow viscosity, Differential mass and momentum balances,

Module-II

Variables K-influencing Dimensionless groups in Mass Transfer – Analytical, Solution of Mass Transfer co-relations. Mass Transformer between two fluids – film and Boundary Layer Theories, Surface renewed theory of Mass transformer. Theory of reaction rates. Mass transfer processes, convective mass transfer, concept of mass transfer coefficient.

Module-III

Gas-solid and gas liquid interfacial reaction – Adsorption – Slow surface reactions in high temp. metallurgy. Thermodynamics activity of absorbed atomic species. Reaction kinetics, Basic definition and concepts, reaction rate theories, Slag Metal Reaction –Electrochemical Kinetics at High Temp. Nucleation and growth – Homogeneous and Heterogeneous Nucleation – Nucleation of CO Bubbles in molten iron and in de-oxidation of steel.

Module-IV

Diffusivity and mechanism of diffusion.

Some special topics- Diffusion of gases through porous solid. Role of Merangoni Effect in Fluid Mass Transfer, Heat Transfer and Reaction Rates. Heat conduction equations and their applications. Convective heat transfer and radiative heat transfer.

Text Books

- 1. Rate Processes in Metallurgy, Mohanty AK, PHI, 2000
- 2. Basic Fluid Mechanics, Kothandaraman C.P. and Rudramoorthy, R., New Age International, 1998
- 3. Fundamentals of Engineering Heat and Mass Transfer, Sachdeva, R C, New Age International, 1996
- 4. Fundamentals of heat and Mass Transfer, Kothandaraman C P., New Age International, 1997
- 5. Transport Phenomena, Bird R.B, Stewart E.S and Light foot, John Wiley & Sons, 2002
- 6. Transport Phenomena in Metallurgy, Geiger GH and Poirier DR, Addison Wesley, 1973

Subject: Steel Making (Code: MMT354)	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester		Total Course Credit: 4			
			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
	30 Marks 10 Marks 60 Mark		60 Marks	8		

Course Outcomes:

CO1: Understand the basics of Physical Chemistry applied to Steel Making Processes

CO2: Classify different kinds of furnaces and their ancillary equipments used for Steel making

CO3: Analyze various factors influencing quality of the steel produced in steel making

CO4: Compare the traditional steelmaking to modern day manufacturing routes for the improvement of quality

CO5: Differentiate between various steel making processes like Bessemer, LD, Kaldo, etc.

Module-I

Basics: Brief history and earlier methods of steel making. Mixers and their merits. Desiliconization and desulphurization of B.F iron.

Module-II

Steel Making Processes: Steel making by Bessemer and side blown converters. O.H and Duplex/Triplex methods, Electric-Arc and Induction processes. Basic oxygen processes -L.D KALDO, ROTOR, LDAC, and top and bottom blown practices.

Module-III

Principles: Physico-Chemical principles of each of the above practices. Inclusions in steel. Deoxidation and vacuum treatment of steels. Electroslag refining.

Module-IV

Casting: Ingot mould and base plate preparation for casting. Steel casting practice. Ingot defects and their control. Continuous casting practice of steel and its merits.

Module-V

Different Steels: Recent trends in plain and alloy steel technology. Principles and production of alloy steels - HSLA, Tool and die, stainless, spring, magnetic and silicon steels etc.Instrumentation in steel works. Indian Steel plants and practices.

Text Books

- 1. Iron Making and Steel Making Theory and practice, Ahindra Ghosh and Amit Chatterjee, PHI, 2008
- 2. Introduction to Modern Steel Making Tupkary, R.H. Khanna Publications, New Delhi, 1994
- 3. The Making, Shaping and Treating of Steel, Richard J Fruchal, AISE Steel Foundation, 1998
- 4. Manufacture of Iron and Steel, Vol 2 Bashforth, GR Chapman & Hall, London, 1965
- 5. Introduction to Steel making, R.H.Tupkari, Khanna Publishers, 2004
- 6. Physical Chemistry of Iron and Steel Making, C.Bodswarth. Edward Arnold Publications, 1988

Subject: Joining of Materials (Code: MMT355)	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester		Total Course Credit: 3			
			L	Т	Р	
			2	1	0	
Evaluation Policy	Evaluation Policy Mid-Term Class Assessment		nt End-Term			
_ · · · · · · · · · · · · · · · · · · ·	30 Marks	10 Marks		60 Marks	5	

Course Outcomes:

- CO 1: identify, formulate, and solve engineering problems related to welding
- CO 2: select and design welding materials, processes and inspection techniques based on application, fabrication and service conditions.
- CO 3: identify the defects in welded joints and recommend remedial actions to prevent such defects in a professional manner
- CO 4: design welding techniques for materials with poor weldability.

Module 1

Principles and classification of joining methods. Welding equipments.

Module 2

Conventional and special/recent welding practices including submerged, Laser, Plasma, MIG, TIG, Electron beam welding, solid-state welding processes, etc. Brazing and Soldering.

Module 3

Transformations in parent metal, design of weldments, slag-metal equilibria, gas pick up by welds and its influence. Weld cracking and its prevention. Preheating of base metals. Preheating temperature etc. Heat treatment of welds. Testing and quality control of welds-Macro and micro examinations etc.

Module 4

Metallurgical aspects of welding. Structure of welds and fusion zones. Weld defects and testing. Weldability of carbon, stainless steel and other alloy steels, cast irons, Cu, Al, Ti and their alloys, etc.

Text books

- 1. Modern Welding Technology, Howard B Cary, Helzar, Pearson Prentice Hall, 2005.
- Manufacturing Engineering And Technology, S. Kalpakjian R.S. Steven, Prentice Hall, 2001.
- 3. Welding Engineering And Technology, R.S.Parmar, Khanna Publishers, 2002.
- 4. Welding Technology, Gower A. Kennedy, Macmillan Publishing Company, 1974.
- 5. Welding Principles And Application, Larry Jeffus, Delmar Thomson Learning, 1999.
- 6. Principles Of Welding, R W Messler, John Wiley Sons, 1999.

Subject: Failure Analysis (Code: MMT 006)	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester		Total Course Credit: 4			
			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
_ · · · · · · · · · · · · · · · · · · ·	30 Marks	10 Marks		60 Marks	8	

Course Outcomes:

- **C01:** Discuss different sources of failure and the techniques and stages of failure analysis
- C02: Understand the fundamentals of fracture mechanics
- **C03:** Analyze elevated temperature and environmentally induced failures.Predict the reasons behind failures of various engineering components like shaft, bearing.

Module-I

Fundamental sources of failures.

Module-II:

General practice in failure analysis.

Module-III:

High and low temperature failures, Mechanisms of and the influence of structural, Environmental

parameters on failure, Identification of types of failure.

Module-IV:

Service failures of cold formed parts, forgings, castings, weldments.

Module-V: Case studies - failures in power plants, etc

Text Books

- 1. Metallurgy of Failure Analysis, A.K.Das, Tata Mc Graw Hill Publishing Company Ltd New Delhi
- 2. Understanding How Components fail, by Donal J. Wulpi, second Edition.
- 3. Metas Hand book, 8th edition vol .10. Americal Society For Metals
- 4. Testing of Metallic Materials, Suryanarayana AVK, PHI,1

Subject: Entrepreneurship for Engineers	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester		Total Course Credit: 4			
(Code: HST 007)			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
	30 Marks	10 Marks		60 Marks	8	

Course Objectives:

Upon successful completion of this course, the learner will be able:

- To develop and strengthen entrepreneurial quality and motivation.
- To understand and develop entrepreneurial skills and understanding to run a business efficiently and effectively.
- To identify the various sources of financial and non financial support for entrepreneurs.

Module	Topic(s)	Learning Outcomes		
1	Introduction to Entrepreneurship	 Define Entrepreneur, Entrepreneurship and Entrepreneurial Traits Differentiate between Entrepreneur, Innovator and Manager Explain the Entrepreneurial decision process Identify the Role of Entrepreneurship in Economic Development Explain Ethics and Social responsibility of Entrepreneurs. Outline Opportunities for Entrepreneurs in India and abroad Describe Woman as Entrepreneur 		
2	Creating and Starting the Venture	 Identify Sources of new Ideas Discuss methods of generating ideas, problem solving, product planning and development process 		
3	The Business Plan	 Explain the Nature and scope of Business plan Write Business Plan Evaluate Business plans Use and implement business plans Prepare Marketing plan, financial plan and the organizational plan, Launching formalities 		
4	Financing and Managing the new venture	 Identify Sources of capital, Prepare and Keep Accounting Records Discuss recruitment, motivation and leadership Discus Marketing and sales controls. Describe E-commerce and Internet advertising 		
5	New venture Expansion	 Identify features and evaluation of joint ventures, acquisitions, merges, franchising. 		

	Strategies and Issues	2. Explain Public issues, rights issues, bonus issues and stock splits
6	Institutional support to Entrepreneurship	 Identify the role of following institutions in supporting and financing entrepreneurial growth in India: Directorate of Industries, District Industries, Centers (DICs), Industrial Development Corporation (IDC), State Financial corporation (SFCs), Commercial banks Small Scale Industries Development Corporations (SSIDCs), Khadi and village Industries Commission (KVIC), National Small Industries Corporation (NSIC), Small Industries Development Bank of India (SIDBI)

Suggested Readings:

- 1. Zimmerer T.H, Scarborough N.M, Winson D, Essentials of Entrepreneurship and Small Business Management, PHI Learning, New Delhi
- 2. Mary Coulter, Entrepreneurship in Action, PHI Learning Pvt. Ltd, N. Delhi
- 3. Barringer Bruce R & Ireland R Duane, Entrepreneurship –Successfully Launching New Ventures, Pearson Education
- 4. Charantimath P.M, Entrepreneurship Development and Small Business Management, Pearson Education, New Delhi
- 5. TanejaSatish, Entrepreneurship Development, Himalaya Publishing House, Mumbai

Subject: Object Oriented Programming with Java	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester		Total Course Credit: 4				
(Code: ITT 008)			L	Т	Р		
			3	0	2		
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n		
	30 Marks	10 Marks		60 Marks	5		

Course Objectives:

- **C01:** To study the background and history of java.
- **C02:** To understand the fundamentals of object-oriented programming in Java, including defining classes, objects, invoking methods etc.
- C03: To study the various exceptions and string handling mechanisms with examples.
- **C04:** To understand different approaches to concurrent programming and file handling mechanisms.
- **C05:** To understand the structure various GUI components with examples.

UNIT I - Introduction:

Programming language Types and Paradigms, Computer Programming Hierarchy, How Computer Architecture Affects a Language?, Why Java? Role of Java Programmer in industry, Features of Java Language, JVM –The heart of Java, Java's Magic Bytecode.

The Java Environment: Installing Java, Java Program Development , Java Source File Structure, Compilation, Executions.

UNIT II - Object-Oriented Programming Concepts:

Basic Language Elements: Lexical Tokens, Identifiers, Keywords, Literals, Comments, Primitive Data types, Operators Assignments. Object-Oriented Programming: Class Fundamentals, Object & Object reference, Object Lifetime & Garbage Collection, Creating and Operating Objects, Constructor & initialization code block, Access Control, Modifiers, methods Nested, Abstract Class & Interfaces, Defining Methods, Argument Passing Mechanism, Method Overloading, Recursion, Dealing with Static Members, Finalize() Method, Native Method.

UNIT III - Extending Classes and Inheritance

Use and Benefits of Inheritance in OOP, Types of Inheritance in Java, Inheriting Data members and Methods, Role of Constructors in inheritance, Overriding Super Class Methods ,Use of "super", Polymorphism in inheritance.

UNIT IV - Exception Handling

The Idea behind Exception ,Exceptions & Errors ,Types of Exception,Control Flow In Exceptions, JVM reaction to Exceptions ,Use of try, catch, finally, throw, throws in Exception Handling ,In-built and User Defined Exceptions.

UNIT V - Array & String

Defining an Array, Initializing & Accessing Array, Multi –Dimensional, Array, Operation on String, Mutable & Immutable String.

UNIT VI - GUI Programming

Introduction to Applets and Interfaces, Designing Graphical User Interfaces in Java, Components and Containers

List of experiments:

- 1. Write a Hello World Program in Java.
- 2. Basic program to understand use of decision making i.e. use of for loop, if-else, while, do-while.
- 3. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divide by zero.
- 4. Write a Java Program to define a class, describe its constructor, overload the Constructors and instantiate its object.
- 5. Write a Java Program to define a class, define instance methods and overload them and use them for dynamic method invocation.
- 6. Write a Java Program to demonstrate use of nested class.
- 7. Write a Java Program to implement inheritance and demonstrate use of method overriding.
- 8. Write a program using Applet to display a message in the Applet.
- Develop an Applet that receives an integer in one text field & compute its factorial value & returns it in another text filed when the button "Compute" is clicked.

Text Books:

- 1. Java for Programmers, P.J. Dietel, H. M. Dietel, Pearson Education.
- 2. Java SE 6, Joel Murach, A. Steelman, SPD Pvt. Ltd.
- 3. Head first java, Kathy Sierra, Bert Bates, Oreilly.
- 4. Core Java, Cay Horstman and Gary Cornell, Prentice Hall

Subject: Design & Analysis Algorithm	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester		Total (Course C	redit: 4
(Code: CST 009)			L	Т	Р
			3	0	2
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n
	30 Marks	10 Marks	60 Marks		

Course Objectives

- To understand asymptotic notations to analyze the performance of algorithms.
- To understand and apply various problem solving techniques such as divide and conquer, greedy algorithm, dynamic programming, etc.
- To solve given problem by selecting the appropriate algorithm design technique and justify the selection.
- To know the concepts of P, NP, NP-hard and NP-complete problems.

Learning Outcomes

This is a first course in algorithm design. Students will:

- Learn good principles of algorithm design;
- Learn how to analyze algorithms and estimate their worst-case and average-case behavior (in easy cases);
- Analyze the asymptotic performance of algorithms.
- Write rigorous correctness proofs for algorithms
- Become familiar with fundamental data structures and with the manner in which these data structures can best be implemented; become accustomed to the description of algorithms in both functional and procedural styles;
- Learn how to apply their theoretical knowledge in practice (via the practical component of the course).

Course Synopsis

Basic strategies of algorithm design: top-down design, divide and conquer, average and worst-case criteria, asymptotic costs. Simple recurrence relations for asymptotic costs. Choice of appropriate data structures: arrays, lists, stacks, queues, trees, heaps, priority queues, graphs, hash tables. Applications to sorting and searching, matrix algorithms, shortest-path and spanning tree problems. Introduction to discrete optimisation algorithms: dynamic programming, greedy algorithms. Graph algorithms: depth first and breadth first search.

Course Outline / Content					
Unit	Topics	Week			
1.	Analysis of Algorithms: Algorithm Design paradigms,				
	motivation. Review of algorithmic strategies, asymptotic				
	analysis: upper and lower complexity bounds. Identifying	3			
	differences among best, average and worst Case Behaviours. Big				
	O, little O, omega and theta notations, Standard complexity				
	classes. Empirical measurements of performance. Time and				

	space trade-offs in algorithms. Analysing recursive algorithms				
2	Divide & Congress Structure of divide and congress classifications.				
Ζ.	Divide & Conquer: Structure of divide and conquer algorithms:				
	examples, Binary search, Quick sort, analysis of divide and	2			
	conquer run time recurrence relations.	2			
	Greedy Algorithms: Overview of the greedy paradigm				
	examples of exact optimization solution (minimum cost spanning				
	trae) approximate solution (Knancook problem) single source				
	shortest paths				
2	Shortest paris.	2			
5.	Dynamic Programming: Overview, difference between	3			
	dynamic programming and divide and conquer, applications:				
	shortest path in graph, matrix multiplication, travelling				
	salesperson problem, longest common sequence.				
4.	Graph Algorithms: Graphs and their Representations, Graph				
	Traversal Techniques: Breadth First Search (BFS) and Depth				
	First Search (DFS), Applications of BFS and DFS, Minimum	_			
	Spanning Trees (MST), Prim's and Kruskal's algorithms for	3			
	MST, Connected Components, Dijkstra's Algorithm for Single				
	Source Shortest Paths, Floyd's Algorithm for All-Pairs Shortest				
	Paths Problem.				
5.	Back Tracking: Overview, 8-Queens problem and Knapsack				
	problem.				
	Branch & Bound: LC searching, bounding, FIFO branch and	2			
	bound, Applications: 0/1 Knapsack problem, Travelling				
	salesperson problem.				
6.	Computational complexity: Complexity measures, Polynomial				
	vs non-polynomial time complexity; NP hard and NP complete	1			
	classes, Examples.				
	Text Books				
1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and	l Clifford Stein,			
	"Introduction to Algorithms", PHI.				
2.	Mark Allen Weiss, "Data Structures and Algorithm Analysis	in C++", Third			
	Edition, Pearson Education, 2006				
3.	Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, "F	undamentals of			
	Computer Algorithms", Second Edition, Universities Press, 2011				
4.	4. Anany Levitin. "Introduction to the Design and Analysis of algorithms", Pearson.				
	References				
1.	Steven S Skiena, "The Algorithm Design Manual" – Springer Put	olications			
2.	Knuth, "The Art of Programming", Addison Wesley Vol I and II				
3.	Michael T Goodrich, "Algorithm Design" WILEY Publications.				

Subject: Laboratory Practice in Ceramic Technology	ct: Laboratory ice in Ceramic beshnelegyYear & Semester: B. Tech Metallurgical and Materials		Total Course Credit: 1				
(Code: MML 356)	Engineering 3 rd Year & 6 th Semester	L	Т	Р			
		0	0	2			
Evaluation Policy	Mid-Term/Class Assessment (40 Marks)	Final-Term (60 Marks)					

Course Outcome: The student(s) shall be able:

- C01: To understand the method of making and testing refractory products
- **C02:** To understand the method of making and characterizing ceramic powders

List of Experiments:

- 1. Powder Preparation Crushing of fireclay grog, Size distribution of grog
- 2. Determination of Packing Density of refractory raw materials
- 3. Fabrication of refractory bodies using best packed refractory raw materials.
- 4. Firing of refractory bodies at different temperatures
- 5. Study of effect of Composition, Forming pressure & Firing temperature on some properties of refractory bodies.
- 6. Testing of various important properties of refractories as per IS.
- 7. Spalling Resistance Test (Thermal Shock Resistance) of refractory bodies.
- 8. Refractory corrosion test
- Outline of general Method of preparation of Ceramic powder materials

 Sol Gel Method (b) Precipitation and Co-Precipitation technique.
- 10. Some Ceramic powder preparation:

(a) Micron alumina (b) Silica Gel and precipitated Silica (c) $MgAl_2O_4$ Spinel

- (d) Mullite (e) Ferrite
- 11. Characterization of Ceramic powder:

(a) Tap density (b) DTA / TGA / DTGA (c) Raman Spectroscopy (d) Particle Size Analysis

Subject: Laboratory Practice in Materials Characterization Year & Semester: B. Tech Metallurgical and Materia		Total Course Credit: 1			
(Code: MML 357)	Engineering 3 rd Year & 6 th Semester	L	Т	Р	
		0	0	2	
Evaluation Policy	Mid-Term/Class Assessment (40 Marks)	Final-Term (60 Marks)			

Course Outcome:

CO1: Ability to prepare the specimens for microstructural analysis

CO2: Knowledge about the operation of the XRD, optical and electron microscopy

CO3: Analyze the microstructural features of different alloys by using optical and electron microscopes

CO4: Understand and interpret the grain size of the specimens by using different techniques

List of Experiments

- 1. Determination of chemical composition of metallic sample by emission spectroscopy.
- 2. To prepare the metallic sample for metallographic examination.
- 3. Determination of cubic crystal structure using powder XRD.
- 4. Precise lattice parameter determination using XRD.
- 5. Estimation of crystallite size using Scherrer formula.
- 6. Ductile and brittle fracture surface study using scanning electron microscope
- 7. Chemical analysis using energy dispersive spectroscopy (EDS) analysis in SEM.
- 8. To demonstrate the TEM sample preparation and TEM analysis.
- 9. DSC/DTA analysis.
- 10. Dilatometry analysis.

Subject: Laboratory Practice in Joining of Materials (Code: MML 358)	Year & Semester: B. Tech Metallurgical and Materials	Total Course Credit: 1				
	Engineering 3 rd Year & 6 th Semester	L	Т	Р		
		0	0	2		
Evaluation Policy	Mid-Term/Class Assessment (40 Marks)	Final-Term (60 Marks)				

Course Outcomes: At the end of course students will be able to:

- 1. Design and conduct experiments, as well as to analyze and interpret data related to material joining process
- 2. Select and design welding materials and processes based on application, fabrication and service conditions
- 3. Differentiate the microstructure and strength in fusion zone, HAZ, and base metal
- 4. Design suitable heat treatment for the welded components.

List of Experiments:

- Preparation and joining of two surfaces by soldering and brazing.
- Welding of cast irons, Aluminum, Copper and their alloys.
- Arc Welding of steel parts/welding to fill a hole in a steel trough.
- Gas welding of a given sample.
- Macro and Micro- examination of a welded joint.
- Determination of the strength properties of a welded joint and weld defects.
- Heat-treatment of a weld.
- Welding by other modern techniques for which facilities may be available.
- Welding of dissimilar metals i.e. Steel, cast iron, Stainless Steel, Mild steel, etc.

Subject: Seminar (Code: MMS 359)	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester	Total Course Credit: 1			
		L	Т	Р	
		0	0	2	
Evaluation Policy					

Course outcomes:

The student should be able:

- C01: To improve their oral communication skills
- **C02:** To become aware of recent advancement in the field of Metallurgical and Materials Engineering

Details:

- 1. A co-curricular activity based on seminar talks. This will involve a detailed study of a topic of interest and production in the candidates own style. Each student will be required to give a seminar talk on the subject of his/her interest. The handouts of the talks will be submitted by the student before the talk is delivered. These seminar talks will prepare the students for a proper survey of literature, compilation of information so gathered and presentation of the same to the audience. The handouts submitted by the students will be in accordance with the standard of technical papers.
- 2. The award of sessional will be based upon the preparation and presentation of seminar talks and performance in the group.

Subject: Tour Training and Professional Interview (Code: MMI 360)	Year & Semester: B. Tech Metallurgical and Materials Engineering 3 rd Year & 6 th Semester	Total Course Credit: 1			
		L	Т	Р	
		0	0	2	
Evaluation Policy					

Course Outcomes:

- **C01:** The students should be able to develop an understanding of the actual working environment.
- **C02:** To enhance their knowledge and skill from what they have learned in the college and its implementation in different industries.
- C03: To imbibe the good qualities of integrity, responsibility and self-confidence required in industries

Details

- 1. Each student will be required to undertake practical training during the winter vacations for a minimum period of 6 weeks in metallurgical/manufacturing industries. Each student will submit a training report in the department and give details of the jobs he was assigned during the practical training at the industry where he has taken such practical training. Separate report for the training taken at different industries will be required to be submitted by each candidate.
- 2. The students will also be required to go for a long industrial/educational tour to visit various industries and educational Organisations of Metallurgical concern. Each student will submit a tour report on completion of the tours.
- 3. The tour and training report as submitted by each student will be assessed by the staff members and evaluated for sessional awards.
- 4. A viva-voce examination will be conducted by an Examiner for assessment of Tour and Training undertaken by each student and for his/her professional achievements, Group discussing during the 6th semester course work.

SEMESTER WISE COURSE STRUCTURE AND SUBJECT WISE COURSE CONTENT

METALLURGICAL AND MATERIALS ENGINEERING DEPARTMENT

Page | 308

Subject: Non- Destructive Testing and Evaluation	- Destructive Evaluation IMT 401) Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 7 th Semester		Total (Course C	redit: 3
(Code: MMT 401)			L	Т	Р
			2	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		1
	30 Marks 10 Marks		60 Marks		

Course Outcomes:

- **C01:** Recognize the importance of NDT Techniques in quality control department of various manufacturing units and basics of NDT
- **C02:** Understand about the principles, procedure and equipments for various methods of NDT
- C03: Justify the advantages, disadvantages and limitations of each NDT Methods
- **C04:** Classify the applications of each NDT Techniques in different industry and manufacturing units
- **C05:** Differentiate and compare between all NDT methods based on their reliability, accuracy and cost for the selection of suitable method
- **C06:** Apply these NDT Techniques on test materials in laboratory and analysis the data for the prediction of defect.

Module 1

Introduction to NDT, Comparison between destructive and Non Destructive Testing, Importance of NDT testing in the quality control of materials/product, Scope and limitations of NDT, Career prospects in NDT, Introduction to different NDT Methods, Visual examination methods.

Module 2

Liquid Penetrant Testing – Principle of Liquid penetrant testing, Solid Liquid interaction (contact angle), Capillary action, types and properties of liquid penetrants. Sample preparation/cleaning, Dwell time, removal of excess penetrants, Developer application, Selection of penetrant method – solvent removable, water washable, post emulsifiable, Inspection (Normal visible dye, Flurosence dye), Advantages, disadvantages and application of LPT.

Magnetic Particle Inspection (MPI)- Principles of MPI, basic physics of magnetism, permeability, flux density, cohesive force, magnetizing force, resistivity, residual magnetism, Methods of magnetization, magnetization using products using yokes, direct and indirect method of magnetization, continuous testing of MPI, residual technique of MPI, system sensitivity, checking devices in MPI, Advantages, disadvantages and Applications

Ultrasonic Testing (UT): Types of waves, frequency, velocity, wavelength, reflection, divergence, attenuation, Couplants, Piezoelectric materials, Transducer, basic principle of Ultrasonic testing, Contact and Non-contact methods, EMAT (Electromagnetic Acoustic

Transducer), Procedure for defect inspection, ultrasonic testing techniques resonance testing, through transmission technique, pulse echo testing technique, instruments used UT, accessories such as transducers, types, frequencies, and sizes commonly used, Advantages, disadvantages and Applications.

Module 3

Acoustic Emission Testing (AET): Basic principle of Acoustic emission testing, Sources of Acoustic emission, Characteristics of A.E Signals, Relationship between crack size and stress, Kaiser and Felicity effect, Signal parameters (Counts, Peak amplitude, Duration, Rise time, MARSE), Acoustic Emission testing system, System Calibration, Source location technique for defect identification. Advantages, disadvantages and Applications

Radiography Testing (RT):

Nature of X-Ray, Generation of X-ray, Scattering phenomena, Techniques and procedure, Image formation, Radiography film, Film density, Film processing technique, Radiographic evaluation, Advantages, disadvantages and applications.

Eddy Current Testing (ECT):

Basic principle of working, Farady's Law and Lenz's Law, Resistance, Inductance and Impedance, Lift of curve, Effect of thermal conductivity, Types of Eddy current probes, Balance Bridge, Standard depth of penetration, Effect of sample thickness, frequency, thermal conductivity on lift of curve, Calibration, Material thinning, , Advantages, disadvantages and Applications.

Module 4

Thermography and Holography:

Basic principle of thermography, Infrared radiation, Law of radiation, Active and Passive Infrared radiation technique, Principle of holography, Interference and diffraction, Recording of hologram and Reconstruction of image, Defect analysis, Advantages, disadvantages and application of thermography and holography.

In-situ Metallographic Examination:

Sample preparation steps for test material, Different damage mechanisms detected through microstructure, Analysis of defect present on material surface by optical microscopy, Advantages, Limitation and applications.

Comparison and selection of NDT methods

Text Books

- 1. Non-Destructive Evaluation and Quality Control, ASM Metals Handbook, American Society of Metals, Metals Park, Ohio, 2001
- 2. Non-Destructive Testing, MC, Gonnagle, WT, McGraw Hill Book Co, 1988
- 3. Non-Destructive Testing, Louis Cartz, ASM International, Metals Park Ohio, 1995
- 4. Non-Destructive Testing, Barry Hull and Vernon John, ELBS / Macmillan, 1989

Subject: Polymer Technology (Code: MMT402)	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 7 th Semester		Total Course Credit: 3			
(00000000000000000000000000000000000000			L	Т	Р	
			2	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		1	
	30 Marks 10 Marks		60 Marks			

Course Outcomes: After completing the course, the student should be able-

C01: To understand the chemistry, size, kinetics and structure of polymers

C02: To understand Tg, crystallinity, copolymerization and degradation of polymers

C03: To understand the reactions, solutions, types and processing of polymers

Course Detail:

Module 1

Genesis, Chemistry of polymerization, Molecular weight and size, Kinetics of polymerization, chemical and geometrical structure,

Module 2

Glass transition temperature, crystallinity in polymers, copolymerization, individual polymers, polymer degradation,

Module 3

Polymer reactions, polymer solutions, elastomeric, fiber forming and plastic materials, polymer processing

S.	Name of the Books	Author(s)	Publisher	Year of
110.				Publication
1.	Polymer Science	Gowariker, Viswnathan, JayadevSreedhar	New Age International Ltd.	2005
2.	Foundations of Materials Science and Engineering	William F.Smith	McGraw-Hill Inc, New York	1997 2000
3.	Plastics: Materials and processing	Brent Strong A	Prentice-Hall, New Jersey	1989
4.	Polymer Processing Plastic Materials	Morton-Jones D.H	Chapman and Hall, New York	

_

Subject: Physical Metallurgy of Light Metals and Alloys	urgyYear & Semester: B. TechbysMetallurgical and MaterialsEngineering4th Year & 7th Semester		Total (Course C	redit: 4
(Code: MMT 403)			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		
	30 Marks 10 Marks			60 Marks	5

Course Outcomes:

After completing the course, the student should be able-

- C01: To understand the physical metallurgy of cast and wrought Aluminum alloys
- C02: To understand the physical metallurgy of Magnesium and Titanium alloys
- **C03:** To understand the physical metallurgy of composites and foams

Details of Course:

Module 1:

Introduction: Definition of light metals, cast and wrought alloys, characteristics of light metals and alloys, trends in applications

Module 2:

Physical metallurgy of aluminum alloys: Work hardening and annealing, forming limit curves, textures, principles of age hardening, micro-alloying effects, hardening mechanisms, aging processes, mechanical behavior, corrosion behaviour.

Wrought aluminum alloys: Designation and tempers, heat treatable and non-heat treatable alloys, Li containing alloys, joining, special products- aircraft alloys, automotive alloys, packaging alloys, electrical conductor alloys

Cast aluminum alloys: Designations, tempers and characteristics, alloys based on Al-Si, Al-Cu, Al-Mg, Al-Zn-Mg systems, modification in Al-Si alloys, joining

Module 3:

Magnesium alloys: Introduction to alloying behavior, alloy designations, Zr-free and Zrcontaining alloys, wrought magnesium alloys, extrusion alloys, forging alloys, trends in applications of Mg alloys, electrochemical aspects

Titanium alloys: Introduction and classification, basic principles of heat treatment, alpha alloys, α/β alloys, beta alloys, wrought and cast commercial titanium alloys, texture effects, surface treatments, engineering performance- tensile, creep, and fatigue behaviour, applications- general applications, aerospace, power generation, automotive, marine, biomaterials

Module 4:

Novel Materials: Light metal matrix composites, metallic foams, nanophase alloys

Suggested Books:

Sl. No.	Name of Authors/ Books/ Publisher	Year of
		Publication/
		Reprint
1	Polmear I.J., Light Alloys, 4th Ed., Elsevier	2004
2	Brandes E.A. and Brook G.B., Smithells Light Metals Handbook,	1998
	Elsevier	
3	Totten G.E. and Mackenzie D.S., Handbook of Aluminum Vol. 1:	2003
	Physical Metallurgy and Processes, CRC Press	
4	Friedrich H.E., Mordike B.L. and Friedrich H., Magnesium	2004
	Technology, 1st Ed., Springer	
5	Ber L.B., Kolobnev N. and Kablov E.N., Heat Treatment of	2010
	Aluminum Alloys: Advances in Metallic Alloys, CRC Press	
6	Lütjering G., Williams J.C., Titanium, 2nd edition, Springer	2007

_

Subject: Pollution and Environmental Science	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 7 th Semester		Total	Course C	redit: 3
(Code: MMT 404)			L	Т	Р
			2	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		
	30 Marks 10 Marks		60 Marks		

Course Outcomes:

- **C01:** Providing teaching and learning to make students acquainting with advanced science and technology in Environmental Science so as to skill them in pollution control in various metallurgical industries
- **C02:** Be skilled both to control and maintenance in Environmental pollution, waste water treatment and other related activities in Environmental Engineering.
- **C03:** Substantially prepared to take up prospective research assignments.

Module I:

Environment: Concepts of Environment, Environmental gradients, Tolerance levels of environmentfactor, EU, US and Indian Environmental Law. Chemistry in Environmental Engineering: Chemistry of the atmosphere, combustion related air pollution, global environmental problems - ozone depletion, greenhouse effect, acid rain etc.

Ecological Concepts: Biotic and Abiotic components, Ecosystem Process: Energy transfer, FoodChain and Food Web, Water cycle, Oxygen cycle, Carbon cycle, Nitrogen cycle etc., Soil chemistry,

Soil composition, properties, identification and classification, Noise pollution Effect of noise on people, rating systems, community noise sources and criteria, traffic noise predicti on, noise control, Noise standards, measurement and control.

Module 2:

Waste Water Treatment: Water Treatment: water quality standards and parameters, Ground water.Water treatment processes, Pre-treatment of water, Conventional process, advanced water treatment process. DO and BOD of Waste water treatment process, primary and secondary treatment of waste water, Activated sludge treatment: Anaerobic digestion, Reactor configurations and methane production.Water resources, characteristics of water, water pollutants, oxygen demanding wastes, sur face water quality, groundwater quality, water treatment systems, biomedical wastes treatment technologies and disposal options.

Module 3:

Solid waste, Definition and characteristics of industrial and hazardous wastes, Hazardous waste management, Solid Waste Management, Source classification and composition of MSW: Separation, storage and transportation, Reuse and recycling, Waste Minimization Techniques, Hazardous waste and their generation, Transportation and treatment: Incinerators, Inorganic waste treatment. E.I.A., Environmentalauditing,Hazardous substances and risk analysis: Hazardous
substance legislation, risk assessment, hazard deification, potential carcinogens, toxicity testing in animals, human exposure assessment.

Module 4:

Air quality standards, emission standards, emission standards, criteria pollutants, air pollution and me teorology, atmospheric dispersion, emission controls, Air pollution and pollutants, criteria pollutants, Acid deposition, Global climate change –greenhouse gases, non-criteria pollutants, air pollution meteorology, Atmospheric dispersion, Industrial Air Emission Control, Flue gas desulphurization, NOx removal, Fugitive emissions.

Text Books

- 1. G. Kiely, "Environmental Engineering" Irwin/ McGraw Hill International Edition, 1997, ,
- 2. Arcadio P. Sincero&Gergoria A. Sincero, "Environmental Engineering" Prentice Hall India
- 3. M. L. Davis and S. J. Masen, "Principles of Environmental Engineering and Science", McGraw Hill, International Edition, 2004
- 4. Curringham&Saigo, "Environmental Science", TMH,
- 5. Gilbert M. Masters & Wendell P. Ela, "An Introduction to Environmental Engineering and Science", PHI Publication.
- 6. Gilbert M Masters, "Introduction to Environmental Engineering and Science" Prentice Hall
- 7. M.L. Davis and D.A. cornwell "Introduction to Environmental Engineering" McGraw-Hill
- 8. J. G. Hen"Environmental Science and Engineering" Benjamin/Cummings Publishers ry and G. W Heinke Education

Subject: Secondary Steel Making	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 7 th Semester		Total Course Credit: 4			
(Code: MMT 010)			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term			
	30 Marks	10 Marks	60 Marks		8	

Course Outcomes:

CO 1: Understand the concept of clean steels – their characteristics and importance

- CO 2: Understand the fundamentals and practices of secondary steel making processes
- **CO 3:** perform thermodynamic and kinetic calculations
- CO 4: appreciate the science and technology of stainless steel making

Module 1

The concept of cleanliness of steels, non-metallic inclusions, dissolved gases, tramp and residual elements in steels and their effects on steel properties.

Module 2

Thermodynamic and kinetic considerations of deoxidation, desulphurization, decarburization and degassing of steel melts.

Module 3

Limitations of primary steel making, unit operations and unit processes in ladle metallurgy, slag free tapping.

Module 4

Ladle furnace designs and operation, injection metallurgy.

Module 5

Operations of degassing reactors viz. DH, RH, tank degassers etc. Re-melting refining technologies, special steel making processes viz. AOD, VOD, continuous steel making etc.

Text/Reference books

1. Principles of secondary processing & casting of liquid steels: AhindraGhosh, Oxford &

IBH.

2. Secondary steel making, principles and applications: AhindraGhosh, CRC press.

Subject: Plasma Processing of Materials	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 7 th Semester		Total Course Credit: 4			
(Code: MMT 011)			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term			
	30 Marks	10 Marks	60 Marks		8	

Course Outcomes:

1. Relate the main collisional processes to plasma composition and chemistry. 2.Distinguish the various types of interaction between plasma species and surfaces. deposition techniques. 3. Discuss plasma film growth and Contrast plasma etch mechanisms with traditional chemical etch methods. 4. 5. Solve applied problems, identifying the key parameters involved and performing relevant numerical calcuations.

Module-I

CHARACTERISTICS OF PLASMA CHEMISTRY: Introduction to plasma chemistry, various plasma generation methods for chemistry and various applications of plasma technology to chemistry, Plasma generation methods include thermal equilibrium plasma; non equilibrium plasma;

Module-II

Plasma Types: arc plasma, RF plasma, microwave plasma, glow plasma, microwave plasma, DBD plasma, and atmospheric pressure non-equilibrium plasma, Plasma-surface interactions,

Module-III

Applications: Application of high temperature heat source, organic and non organic synthesis, decomposition technology of various materials, separation technology et al. thermal plasmas, non-thermal plasmas, thermal plasma processing-material synthesis, thermal plasma processing-sparation, thermal plasma processing-material synthesis-chemical synthesis, thermal plasma processing-waste treatment.

Module-IV

Heat and Mass Transfer: Basics of heat transfer, Heat transfer by thermal plasma and nonthermal plasma, high temperature heat transfer, various mechanisms, Mass transfer in plasma processes, various mechanisms associated with mass transfer in thermal and non-thermal plasmas.

Text Books

- 1. Text Book Of Plasma Physics, Suresh Chandra, CBS Publishers, 2010
- 2. Plasma Chemistry, Fridman, A. Cambridge: Cambridge University Press, 2008

- 3. Nonequilibrium Phenomena in Plasmas, A. Surjalal Sharma and Predhiman Kaw, eds., Springer, 2005.
- 4. Plasma Chemistry, L. S. Polak and Yu A. Lebedev, eds., Cambridge, 1999.
- 5. Plasma Physics and Engineering, A. Fridman and L. Kennedy, Taylor and Francis, 2004.
- 6. Industrial Plasma Engineering, J. Reece Roth, Vol. 2 Applications, IOP, 2001.
- 7. Thermal Plasmas and New Materials Technology, vol 1&2, M. Zukov and O. Solonenko, eds., Cambridge, 1999.
- 8. Principles of Plasma Discharges and Materials Processing, Michael Lieberman and Allan Lichtenberg, Wiley & Sons, 1994.
- 9. Plasma Spraying: Theory and Applications, ed. R. Suryanarayanan, World Scientific, 1993.
- 10. Plasma Technology: Fundamentals and Applications, eds. M. Capitelli and C. Gorse, Plenum Press, 1992.
- 11. Plasma Polymerization and Plasma Interactions with Polymeric Materials, ed. H. Yasuda, Wiley & Sons, 1990.
- 12. Plasma Etching, eds. D. Manos and D. Flamm, Academic Press, 1989.
- 13. Fundamentals of Plasma Physics, J. A. Bittencourt, Pergamon, 1986

Subject: Advance Manufacturing Processes	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 7 th Semester		Total (Course C	redit: 4
(Code: MMT 012)			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n
	30 Marks	10 Marks	60 Marks		5

Course Outcomes:

CO1:To familiarize students with the latest technologies involved in manufacturing industries.

CO2: To understand additive manufacturing and the role of material science in AM.

CO3: Understanding about the near net shape casting, forging and forming processes.

Module I: Additive Manufacturing (AM)

Introduction to AM, evolution of AM, Steps in AM, Types of AM processes like Vat Photo polymerization AM Process, Material Jetting AM Process, Binder Jetting AM Process and Extrusion-Based AM Process etc. Advantages of AM and Types of materials used in AM.

Materials Science for AM: Role of solidification rate, Evolution of non-equilibrium structure, microstructural studies, Structure property relationship.

Post Processing of AM Parts: Support Material Removal, Surface Texture Improvement, Accuracy Improvement, Aesthetic Improvement, Preparation of Pattern, Property Enhancements using Non-thermal and Thermal Techniques. Criteria for selection of AM process and its applications.

Module 2: Advanced Metal Forming Processes

Metal forming processes: High energy rate forming, Electro Magnetic Forming, Electro Hydraulic forming Stretch Forming and Contour roll forming. Plastic deformation processes; Flashless forging, Cold forging. Super plastic forming, powder metal forging, liquid forging, rheo-forging and isothermal forging processes.

Module 3: Advanced Casting and Machining Processes

Precision castings processes, Economical and technological factors involved in near net shape processing of materials. Machining processing like Abrasive Jet machining (AJM), Water Jet machining (WJM), Ultrasonic machining (USM), Electric discharge machining (EDM), Laser Beem machining (LBM) and Electron Beem machining EBM.

Text Books

- Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", 2nd Edition, Springer, 2015.
- 2. Patri K. Venuvinod and Weiyin Ma, "Rapid Prototyping: Laser-based and Other Technologies", Springer, 2004.
- 3. RafiqNoorani, Rapid Prototyping: Principles and Applications in Manufacturing, John Wiley & Sons, 2006.

- 4. Principle of Metal Casting-Heine, R.W. Loper, C. Philip and C.R.Rosenthal, McGraw Hill.2.
- 5. Principle of Metal Casting- P.L.Jain, TMH3.
- 6. Manufacturing Technology- P.N.Rao, TMH
- 7. ASM Metal Hanbook, Metal forming and forging, Vol 14.
- 8. Panday P.C and Shan H.S, "Modern machining Processes" Tata McDraw-Hill, New Delhi

Subject: Alternate Methods of Iron Making	f Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 7 th Semester		Total Course Credit: 4			
(Code: MMT 013)			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	t End-Term		n	
	30 Marks	10 Marks	60 Marks		8	

Course Outcomes:

- CO 1: Understand the need for alternative routes of iron making and the current scenario in India and World.
- CO 2: Understand the thermodynamics and kinetic aspects of iron oxide reduction in solid and liquid state.
- CO 3: Design processes for the direct reduction of iron oxide.
- CO 4: Suggest remedial actions for the problems encountered during the storage and handling of DRI.

Module 1

Introduction: Need for the development of alternative routes, approaches towards new techniques. Classification of processes.

Module 2

Principles: Thermodynamic and kinetic aspects of iron ore reduction in solid and liquid state using solid/gaseous reductants.

Module 3

Methods: Sponge iron production using shaft, kiln, retort and rotary hearth reactors. Raw materials preparation.Selection of reductants.Heat and mass transfer.Energy consumption and operating problems. Storage, transportation and utilization of sponge iron in India.

Module 4

Pre-Reduced Pellets and Powders: Pre-reduced iron ore pellets for blast furnace applications, concept of composite pellets and its feasibility. Iron powder and iron carbide preparation from fluidised bed reactor and other processes. Operating/storage problems.

Module 5

Smelting-Reduction Processes: Principles, classification, merits and limitations. COREX process and electric smelting processes.

Text books

- 1. L.VonBogdandy and H.J. Engell: Reduction of Iron Ores, Springer.
- 2. R.R. Rogers (ed.): Proc. of Symp. Iron Ore Reduction, Pergamon.
- 3. A Chatterjee: Sponge iron production by direct reduction of iron oxide,PHI,New Delhi,2010.
- 4. A Chatterjee:hot metal production by smelting reduction of iron oxide, PHI,New Page | 322

Delhi,2010.

5. RH Tupkary : Modern iron making, Khanna publishers, New delhi

Reference books

1. Proc. of Int. Conf. on Alternative Routes to Iron & Steel under Indian Conditions, IIM Jamshedpur 1988.

2. A. Chatterjee, R. Singh and B. Pandey: Metallics for Steelmaking- Production and Use, Allied Publisher.

Subject: Thin Films (Code: MMT 014)	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 7 th Semester		Total Course Credit: 4			
(())			L	Т	Р	
			3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
_ (30 Marks	10 Marks	60 Marks		5	

Course Outcomes: After completing the course, the student should be able-

- **C01:** To understand the scientific principles of processing of thin films
- **C02:** To understand the science of epitaxy and technique of CVD
- C03: To characterize the film and know its applications

Module 1:

Introduction: Applications of thin films, processing techniques

Gas kinetics: Maxwell-Boltzmann distribution, molecular impingement flux, Knudsen equation, mean free path, transport properties.

Evaporation: thermodynamics of evaporation, evaporation rate, alloys, compounds, sources, deposition monitoring techniques.

Deposition: adsorption, surface diffusion, nucleation, structure development, interfaces, stress, adhesion.

Module 2:

Epitaxy: symmetry, applications, disruption, growth monitoring, composition control, lattice mismatch, surface morphology.

Chemical Vapor Deposition: Gas supply and convection, reaction equilibrium and surface processes, diffusion limited deposition and reactor models.

Module 3:

Film characterization: structure, thickness, topography, inhomogeneity, crystallography, bonding, point defects, composition, stress and optical, electrical and mechanical behavior of thin films.

Applications: Technology of polysilicon thin-film transistors, thin film transistors in activematrix liquid crystal displays, organic based thin film transistors, vacuum deposited organic thin film transistors based on small molecules.

Text Books:

Sl.	Authors/Name of Books/ Publisher	Year of
No.		Publications/
		Reprint
1	Ohring, M., "Materials Science of Thin Films", 2nd Ed.,	2001
	Academic Press.	
2	Smith D.L., "Thin-Film Deposition: Principles and Practice",	1995
	McGraw-Hill Professional.	
3	Kagan, C.R., Andry, P., "Thin Film Transistors", Marcel Dekker.	2003
4	Eishabini-Riad, A., Barlow, F. D., "Thin Film Technology	1997
	Handbook", 1st Ed., McGraw-Hill Professional.	
5	Siddal, G. (Ed.), "Thin Films Science and Technology", Elsevier.	1984

Subject: Big Data (Code: IIT 015)	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 7 th Semester		Total Course Credit: 4			
()			L	Т	Р	
			3	0	2	
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n	
	30 Marks	10 Marks	60 Marks		5	

Course Objectives:

- **C01:** Introduction to Big Data: The 3 V's, their challenges and application domains.
- C02: Collection of Big Data: Eventual Consistency and NoSQL systems, Google BigTable
- **C03:** Large-Scale Data Analytics Systems: MapReduce, Hive, and Parallel Databases
- **C04:** Basic Statistical Analysis using different Mathematical algorithms

Unit I

Introduction:

Big Data Overview, Introduction to the Big Data problem.Current challenges, trends, and applications, Algorithms for Big Data analysis. Data sets, Mining and learning algorithms that deal with large datasets Technologies for Big Data management. Big Data technology and tools, special consideration made to the Map-Reduce paradigm and the Hadoop ecosystem.

What is data sciences, The rising and importance of data sciences, Big data analytics in industry verticals, Data Analytics Lifecycle and methodology, Data Understanding, Data Preparation.

Unit II

Modeling:

Evaluation, Communicating results, Deployment, Data exploration & preprocessing.

Unit III

Measures and Evaluation:

Data Analytics: Theory & Methods, Supervised learning, Linear/Logistic regression, Decision trees, Naïve Bayes, Unsupervised learning, K-means clustering, Association rules

Unit IV

Unstructured Data Analytics:

Technologies & tools, Text mining, Web mining, operationalizing an Analytics project, Data Visualization Techniques, Creating final deliverables Term project: Using Amazon AWS, BlueMix, Cognos, Biginsights.

List of experiments:

- (i) Perform setting up and Installing Hadoop in its three operating modes: Standalone and Distributed.
- (ii) Use web-based tools to monitor your Hadoop setup.
- (iii) Implement the following file management tasks in Hadoop: Adding files and directories, Retrieving files, Deleting files
- Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities.
- (iv) Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.
- (v) Write a Map-Reduce program that mines data from any dataset or real-time data from any source
- (vi) Implement Matrix Multiplication with Hadoop Map Reduce
- (vii) Install and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your data.

(viii) Install and Run Hive then use Hive to create, alter, and drop databases, tables, views, functions, and indexes

Text Books:

- 1. Big Data: A Revolution That Will Transform How We Live, Work, and Think by Viktor Mayer-Schönberger, Kenneth Cukier.
- 2. Hadoop: The Definitive Guide by Tom White, Doug Cutting.
- 3. Real-Time Big Data Analytics: Emerging Architecture by Mike Barlow.

Subject: Personal Interview	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year &7 th Semester	Total Course Credit: 0				
(Code: HSL 405)		L	Т	Р		
		1	0	0		
Evaluation Policy						

Course Objectives:

The course aims to:

- 1. Acquaint students with the various types of interviews
- 2. Familiarize students with the employer's expectations during an interview
- 3. Apprise students with the do's and don'ts of personal interviews
- 4. Prepare students for a successful personal interview
- 5. Facilitate effective platforms for mock interviews

Syllabus Components:

- 1. Types of interviews and format of employment interviews
- 2. Types of interview questions and ways to answer them
- 3. Employer's expectations
- 4. Elements of a good and a poor interview
- 5. Successful preparation for the job interviews
- 6. Answering questions during the interview
- 7. Successful follow-up after the interview

Course Outcomes:

After successful completion of this course, the student will be able to:

C01: Prepare for personal interviews efficiently

C02: Anticipate key questions from the employer/interviewer

C03: Answer questions fluently, confidently, and clearly

Suggested Readings:

- 1. *Developing Communication Skills*. 2nd Edition. By Krishna Mohan and MeenaBanerji. Published by Macmillan, 1990, 2009.
- 2. *Effective Business Communication*. 7th Edition-Special Indian Edition. By HertaA Murphy, Herbert W Hildebrandt, Jane P Thomas. Published by McGraw Hill Education. 1997, 2018.

Subject: Laboratory Practice in Non- Destructive Testing	Year & Semester: B. Tech Metallurgical and Materials	Total (Course C	redit: 1
(Code: MML 406)	Engineering	L	Т	Р
		0	0	2
Evaluation Policy	Class Assessment	End-Term		1
	10 Marks	90 Marks		5

Course Outcomes:

- **C01:** To gain experience with and understanding of the types, advantages and applications of various NDT methods.
- **C02:** To be able to choose the best NDT method for a given part.

Details

- 1. To identify Macroscopic flaws by Visual inspection
- 2. To detect surface and near surface defects of conductive material using eddy current.
- 3. To identify/detect discontinues on given sample using Ultrasonic Inspection.
- 4. To detect flaws in magnetic materials using Magnetic Particle Inspection
- 5. To inspect flaws that breaks the surface of the sample by liquid penetration.

Subject: Laboratory Practice in Polymer Technology (Code: MML 407)	Year & Semester: B. Tech Metallurgical and Materials	Total Course Credit: 1				
	Engineering 4 th Year & 7 th Semester	L	Т	Р		
		0	0	2		
Evaluation Policy	Mid-Term/Class Assessment (40 Marks)		Final-Term (60 Marks)			

Course Outcomes: The student(s) shall be able:

- **CO1:** To synthesize polymers
- **CO2:** To characterize polymers

List of Experiments:

- 1. Determination of molecular mass of styrene by viscosity measurements.
- 2. Study the effect of temperature on the viscosity of polymer solutions.
- 3. Determination of glass transition temperature by DSC method.
- 4. Synthesis of Nylon 66 by interfacial polymerization and confirm the synthesis by IR spectroscopy.
- 5. Synthesis and kinetic investigation of radical polymerisation of styrene to polystyrene.
- 6. Synthesis of Melamine-Formaldehyde resin.
- 7. Synthesis of a conducting polymer poly-aniline/polystyrene and determine its conductivity.
- 8. To determine Iodine value in the polymer sample.

Subject: Project Literature Survey (Code: MMP 408)Yes Met4 th	Year & Semester: B. Tech Metallurgical and Materials	Total Course Credit: 2				
	Engineering 4 th Year &7 th Semester	L	Т	Р		
		0	0	3		
Evaluation Policy	Mid-Term/Class Assessment (40 Marks)		Final-Term (60 Marks)			

The student should be able to

- **C01:** To collect research papers of journals & conferences on the topic.
- **C02:** To identify inconstancies: gaps in research, conflicts in previous studies, open questions left from other research
- **C03:** To understand the research problem being studied and to identify new ways to interpret prior research

Details:

- 1. Each student will undertake a project work, involving complete literature survey, design and fabrication of some working process models, and /or a laboratory experimentation, and presentation of results, under the supervision of a faculty member to be fixed in a meeting of the faculty members of the department keeping in view the students choice of project topic, their aptitude, facilities available and the availability of staff.
- 2. The project will be assigned before the conclusion of the 6th semester examination and students will start working on literature survey etc., when 7th semester classes commence. A write-up and a complete list of consumables and non-consumable items to be needed by each student to complete the project work will be submitted to the teacher concerned in a fairly typed form for assessment and for arranging the materials from the market, if necessary, so that the practical work is started just at the commencement of the 8th semester classes. Each student will submit a complete literature survey of the project work assigned to the concerned supervisor for assessment.

SEMESTER WISE COURSE STRUCTURE AND SUBJECT WISE COURSE CONTENT

METALLURGICAL AND MATERIALS ENGINEERING DEPARTMENT							
Subject: Tribology of Engineering Materials	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 8 th Semester		Total Course Credit: 3				
(Code: MMT 451)			L	Т	Р		
			2	1	0		
Evaluation Policy	Mid-Term	Class Assessment	End-Term				
	30 Marks	10 Marks		60 Marks	5		

Course Outcomes:

After completing the course, the student should be able-

- C01: To understand the concepts of surface roughness, friction, adhesion, & wear
- **C02:** To understand wear testing methods
- **C03:** To understand the tribological properties of solids
- **C04:** To understand the surface treatments used to minimize wear

Details of the Course:

Module 1

Surface properties and surfaces in contact: Nature of metallic surface, surface geometry, measurement of surface topography, quantifying surface roughness, contact between surfaces; Friction, the laws of friction, measurement of friction, origin of friction, theories of friction adhesion- theory, extension of the adhesion theory

Module 2

Wear: Types of wear, adhesive wear, Archard's law, abrasive wear, erosion wear, factors affecting corrosive wear, wear map, various wear testing methods- pin on disc, pin on drum, slurry wear, air jet and water jet erosion as per ASTM standards

Module 3

Tribological properties of solid materials: Hardness, strength, ductility and work hardening rate, effect of crystal structure, effect of microstructure, mutual solubility of rubbing pairs and effect of temperature

Module 4

Surface treatments to reduce wear: Surface treatments with or without change of composition, surface coating- welding, flame, spraying, plasma spraying, electroplating and electroless coating, chemical vapour deposition (CVD) and physical vapour deposition (PVD), super hard coatings

Suggested Books:

SI.	Name of Authors/ Books/ Publisher	Year of
No.		Publication/
		Reprint
1	Hutchings I.M., Tribology – Friction and wear of engineering	1992
	Materials, Edward Arnold	
2	Arnold R.D., Davies P.B., Halling J. and Whomes T.L.,	1991
	Tribology – Principles and Design Applications, Springer	
	Verlag	
3	Bhushan B., Introduction to Tribology, John Wiley	2002
4	Bhushan B., Principles and Applications of Tribology, John Wiley	1999
5	Stachowiak G and Batchelor A.W., Engineering Tribology, 4th Ed.	2013
	Lisevier Dutterworth-Heinemann	

_

Subject: Composite Materials (Code: MMT452)	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 8 th Semester		Total Course Credit: 3		
(00000111112102)			L	Т	Р
			2	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n
	30 Marks	10 Marks		60 Marks	5

Course Objectives:

After completing the course, the student should be able-

- **C01:** To understand the fabrication of reinforcements, role of matrix materials and the interfaces between them
- **C02:** To understand the various types of composites
- C03: To understand the mechanical properties, making and repairing of composite materials

Details of the Course:

Module 1:

Introduction, Reinforcements, Matrix materials, Interfaces

Module 2:

Polymer matrix composites, Metal matrix composites, Ceramic matrix composites, Carbon fiber/carbon matrix composites, Multifilamentary SuperconductingComposites

Module 3:

Mechanics, Strength and fracture, fatigue and creep, Design, non-conventional composites, repair and recycling of Composites

Suggested Books:

S.	Name of the Books	Author(s)	Publisher	Year of
No.				Publication
1.	Composite Materials	Chawla K K,	Springer Verlag, New York	1998
2.	Composite Materials:	Mathews F L and Rawlings R D	Chapman & Hall , London	1994
3.	Engineering & Science	Chawla K K	Chapman and Hall, UK	1993
4.	Ceramic Matrix Composites	Broutman L J, and Krock	Addison Wesley Publishing Company	1967
5.	Modern Composite Material	Deborah Chung D		2004
6.	Composite Materials: Science and Applications		Springer International, USA	1989
	"Composites" Metals Hand Book Vol.21, 9 th Edition		ASM	

_

Subject: High Temperature Materials	ratureYear & Semester: B. TechMetallurgical and Materials3)Engineering4 th Year & 8 th Semester		Total (Course C	redit: 4
(Code: MMT 453)			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		1
_ · · · · · · · · · · · · · · · · · · ·	30 Marks	10 Marks		60 Marks	5

Course Outcomes:

After completing the course, the student should be able-

- C01: To understand the types, properties, and requirements of high temperature materials
- C02: To understand the testing methods, equipment, and creep-fatigue interactions
- **C03:** To understand the available high temperature materials and coatings

Details of the Course:

Module 1:

Introduction: Need for high temperature materials, historical development of high temperature materials, and equipment for material testing at high temperatures, requirements of high temperature materials (mechanical properties and preferred microstructure, environmental resistance, erosion and wear).

Module 2:

Principles for high temperature strengthening: Metallic materials (solid solution strengthening, precipitation strengthening, dispersion strengthening grain size and grain boundary effects) Ceramic materials (phase control, defect tolerance, thermal shock resistance) composite materials.

Module 3:

Creep and stress rupture: Creep test, stress rupture test, structural changes during creep, mechanism of creep deformation, and fracture at elevated temperatures.

Module 4:

Creep-Fatigue interaction: Modes of high temperature fracture and fatigue fracture, creep-fatigue interaction (creep accelerated by fatigue), fatigue-creep interaction (fatigue accelerated by creep), micro-mechanism of damage, fracture criterion for creep fatigue, creep-fatigue failure mapping, creep-fatigue testing, influence of environment.

Module 5:

Materials for high temperature: Metals / alloys, superalloys, steels, titanium and its alloys, ceramics (Alumina, Zirconia, Silicon carbide, Silicon nitride, Glass ceramics) composites (Metal matrix composites, ceramic matrix composites) carbon – carbon composites.

Module 6:

Coatings for protection against high temperature corrosion and erosion: Corrosion / oxidation resistant coatings (metallic, ceramic, rare and reactive metal reinforced coatings), high temperature erosion and wear, thermal barrier coats.

Module 7:

Case studies: Applications in industry, aerospace, defense and nuclear industry.

Suggested Books:

Sl.	Authors/Name of Books/ Publisher	Year of
No.		Publications/
		Reprint
1	Meetham, G. W., Van de Voorde, M. H., "Materials for High	2000
	Temperature Engineering Applications (Engineering Materials)",	
	1st Ed., Springer.	
2	Chan R. W., "High temperature structural materials", Chapman &	1996
	Hall.	
3	Reed R. C., "The Super-alloys: Fundamentals and Applications",	2008
	Cambridge University Press.	
4	Birks, N., Meier, G. H., and Pettit, F. S., "Introduction to the High	2009
	Temperature Oxidation of Metals", Cambridge University Press.	
5	Bose, S., "High Temperature Coatings", Butterworth-Heinemann.	2007

Subject: Bio- Materials (Code: MMT 016)	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 8 th Semester		Total Course Credit: 4		
()			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	ient End-Term		n
	30 Marks	10 Marks		60 Marks	5

Course Outcomes:

After completing the course, the student should be able-

- C01: To understand different metallic, ceramic and polymeric bio materials
- C02: To understand dental, orthopedic, cardiovascular, & tissue regeneration materials

C03: To understand tissue response to implants and degradation of biomaterials

Details of Course:

Module 1

Introduction: Historical background, construction materials, impact of biomaterials, strength of biological tissues, performance of implants, tissue response to implants, interfacial phenomena, safety and efficacy testing

Module 2

Metallic and Ceramic materials: Stainless steels, Co-Cr alloys, Ti-based alloys, Nitinol, biological tolerance of implant metals, ceramic implant materials, alumina, yittria stabilized zirconia, hydroxyapatite glass ceramics carbons, restorable ceramics, composites

Module 3

Polymeric implant materials: Polymers in biomedical use, polyethylene, polypropylene, acrylic polymer, hydrogels, polyurethane, polyamides, biogradable synthetic polymers, silicon rubber, micro-organisms in polymeric implants, polymer sterilization

Module 4

Dental Materials: Tooth composition and mechanical properties, impression materials, bones, liners, and varnishes for cavities, filling and restorative materials, oral implants, use of collagen in dentistry

Module 5

Cardiovascular and Orthopaedic implants: Artificial heart, aorta and valves, geometry of circulation, vascular implants, cardiac pace makers, bone composition and properties, fracture healing, joint replacement, knee joint repair, bone regeneration with restorable materials

Module 6

Tissue Engineering Materials and Regeneration: Substrate scaffolds materials, cellular aspects, viability, stem cells, bladder regeneration, cartilage regeneration, skin regeneration, regeneration in cardiovascular system

Module 7

Tissue response to implants: Normal wound healing process, body response to implants, blood compatibility, carcinogenicity

Module 8:

Degradation of Materials in the biological environment: Chemical and biochemical degradation of polymers, degradation effects on metals and ceramics, pathological classification of biomaterials

Module 9:

Case studies: Selection and design of biomaterials, implant and device failures

Sl.	Name of Authors/Books/Publisher	Year of
No.		Publication/
1	Park J.B. and Bronzino J.D., Biomaterials: Principals and Applications, CRC Press	2003
2	Park J.B., Biomaterials Science and Engineering, Springer Press	1984
3	Rattner B.D., Hoffman A.S, Schoen F.J., Lemons J.E., Biomaterials Science: An Introduction to Materials in Medicine, Academic Press	2004
4	Park J.B. and Lakes R.S., Biomaterials: An Introduction, 3rd edition, Springer press	2007
5	Bhat, S.V., Biomaterials, 2nd edition, Narosa Publishing	2006

Suggested Books:

Subject: Nano- Materials (Code: MMT 017)	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 8 th Semester		Total Course Credit: 4		
()			L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	ent End-Term		n
	30 Marks	10 Marks		60 Marks	5

Course Outcomes:

After completing the course, the student should be able-

- **C01:** To understand the thermodynamics and kinetics of nanostructured materials
- **C02:** To understand the processing and characterization of nanostructured materials
- **C03:** To understand the deformation behaviour of nanomaterials

Details of Course:

Module 1:

Nanomaterials: Introduction, Classification: 0D, 1D, 2D, 3D nanomaterials and nano-composites, their mechanical, electrical, optical, magnetic properties; Nanomaterials versus bulk materials

Module 2:

Thermodynamics and kinetics of nanostructured materials: Size and interface/interphase effects, interfacial thermodynamics, phase diagrams, diffusivity, grain growth, and thermal stability of nanomaterials

Module 3:

Processing: Bottom-up and top-down approaches for the synthesis of nanomaterials, mechanical alloying, chemical routes, severe plastic deformation, and electrical wire explosion technique

Module 4:

Structural characteristics: Principles of emerging nanoscale X-ray techniques such as small angle X-ray scattering and X-ray absorption fine structure (XAFS), electron and neutron diffraction techniques and their application to nanomaterials; Grain size, phase formation, texture, stress analysis

Module 5:

Deformation Behavior: Elastic and plastic deformation, mechanisms of plastic deformationlattice dislocation motion, evolution of grain boundary defect structures, comparison between deformation mechanisms and effect of grain size distribution, grain boundary sliding and triple junction migration, triple junction diffusion, abnormal Hall-Petch effect dependence, localization of plastic flow and rotational plastic deformation in nanostructured materials. Nanoindentation techniques- principles and measurement of elastic and plastic properties of nanomaterials

Module 6:

Case studies: Design issues and applications of nanomaterials in various industries

Sugges	ted Books:	
SI. No.	Name of Authors/ Books/ Publisher	Year of Publication/ Reprint
1	Poole C.P, and Owens F.J., Introduction to Nanotechnology, John Wiley	2003
2	Nalwa H.S., Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers	2004
3	Koch C.C., Nanostructured Materials: Processing, Properties and Applications, William Andrew	2006
4	Zehetbauer M.J. and Zhu Y.T., Bulk Nanostructured Materials, Wiley	2008
5	Wang Z.L., Characterization of Nanophase Materials, Wiley	2000
6	Gutkin Y., Ovid'ko I.A. and Gutkin M., Plastic Deformation in Nanocrystalline Materials, Springer	2004
7	Fischer A.C., Nanoindentation, Springer	2002

_

Subject: Marketing ManagementYear & Semester: B. Tech Metallurgical and Materials		Total	Course C	redit: 4	
(Code: HST 018)	Engineering 4 th Year & 8 th Semester		L	Т	Р
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n
	30 Marks	ts 10 Marks 60 Marks		5	

The course is an introduction to the language and issues of marketing with an emphasis on learning to develop responsive marketing strategies that meet customer needs. The course focuses on basic marketing concepts, the role of marketing in the organization, and the role of marketing in society. Topics include market segmentation, product development, promotion, distribution, and pricing. Further the course outlines marketing concepts related to external environment (which will focus on integrative topics with marketing, such as economics, politics, government, and nature), marketing research, international/global marketing with relevance to cultural diversity, ethics, the impact of technology on marketing, and careers inmarketing.

Course Objectives:

Upon successful completion of this course, the learner will be able:

- To analyze the role of marketing within the firm and society.
- To expose you to the two parts of a marketing strategy: the target market and themarketing mix.
- To study the four basic variables in the marketing mix: product, promotion, price, and distribution.
- To exercise analytical, communication, and presentation skills (through use of technological aids, such as

Module	Topic(s)	Learning Outcomes
1	Marketing: Creating and Capturing Customer Value Company and Marketing Strategy: Partnering to Build Customer Relationships	 Define marketing and outline the steps in the marketing process. Explain the importance of understanding customers and the marketplace, and identify the five core marketplace concepts. Identify the key elements of a customer-drive marketing strategy and discuss the marketing management orientations that guide marketing strategy. Discuss customer relationship management, and identify strategies for creating value for customers and capturing value from customers in return. Describe the major trends and forces that are changing the marketing landscape in this age of relationships. Explain companywide strategic planning and its four steps. Describe the elements of a customer-driven marketing strategy and mix, and the forces that influence it. List the marketing management functions, including the elements of a marketing plan, and discuss the importance of measuring and managing return on marketing.
2	Analyzing the Marketing Environment Managing Marketing Information to Gain Customer Insight Consumer Markets and Consumer Buyer Behavior	 Describe the environmental forces that affect the company's ability to serve its customers. Explain how changes in the demographic and economic environments affect marketing decisions. Identify the major trends in the firm's natural and technological environments. Explain the key changes in the political and cultural environments. Discuss how companies can react to the marketing environment. Outline the steps in the marketing research process Explain how companies analyze and use marketing information Discuss the special issues some marketing researchers face, including public policy and ethics issues. Define the consumer market and construct a simple model of consumer buyer behavior.

		10. Name the four major factors that influence consumer
3	Customer Driven Marketing Strategy: Creating Value for Target Customers Products, Services, and Brands: Building Customer Value	 Define the four major steps in designing a customer- driven marketing strategy: market segmentation, market targeting, differentiation, and positioning List and discuss the major bases for segmenting consumer and business markets Explain how companies identify attractive market segments and choose a market targeting strategy Discuss how companies differentiate and position their products for maximum competitive advantage in the marketplace. Discuss branding strategy—the decisions companies make in building and managing their brands Identify the four characteristics that affect the marketing of a service and the additional marketing considerations that services require
4	New Product Development and Product Life-cycle Strategies Pricing: Understanding and Capturing Customer Value	 Explain how companies find and develop new-product ideas. List and define the steps in the new-product development process and the major considerations in managing this process. Describe the stages of the product life cycle and how marketing strategies change during the product's lifecycle. Answer the question "What is price?" and discuss the importance of pricing in today's fast changing environment. Discuss the importance of understanding customer value perceptions when setting prices. Discuss the importance of company and product costs in setting prices. Identify and define the other important external and internal factors affecting a firm's pricing decisions.
5	Price Strategies Marketing Channels: Delivering Customer Value	 Describe the major strategies for pricing imitative and new products. Discuss the key issues related to initiating and responding to price changes.

	Retailing and Wholesaling	 Explain why companies use marketing channels and discuss the functions these channels perform Discuss how channel members interact and how they organize to perform the work of the channel alternatives open to a company Explain how companies select, motivate, and evaluate channel members Explain the role of retailers in the distribution channel and describe the major types of retailers. Describe the major retailer marketing decisions.
6	Communicating Customer Value: Integrated Marketing Communication s Strategy Advertising and Public Relations Personal Selling and Sales Promotion	 Define the five promotion mix tools for communicating customer value. Outline the communications process and the steps in developing effective marketing communications. Explain the methods for setting the promotion budget and factors that affect the design of the promotion mix. Define the role of advertising in the promotion mix. Describe the major decisions involved in developing an advertising program. Define the role of public relations in the promotion mix. Explain how companies use public relations to communicate with their publics. Discuss the role of a company's salespeople in creating value for customers and building customer relationships Discuss the personal selling process, distinguishing between transaction-oriented marketing and relationship

Suggested Readings:

- Kotler, P., Keller, K. L., Koshy, A., &Jha, M. Marketing Management: A South Asian Perspective. (14th Edition)
- 2. Govindarajan, M. Marketing Management. PHI Learning Pvt. Ltd.
- PrachiGupta, AshitaAggarwal, H.Majra, I. Jacob, V. Jain, G.R. Krishna, R. Narang, S. Venkatesh, Suresh Paul A, S. Goswami. Marketing Management: Indian Cases. Pearson Publishing (1st Edition)
- 4. Karunakaran, K. (2008). Marketing Management. Himalaya Publishing Hou

Subject: Block Chain (Code: ITT 019)	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year & 8 th Semester		Total Course Credit: 4		
(************			L	Т	Р
			3	0	2
Evaluation Policy	Mid-Term	Class Assessment	End-Term		n
	30 Marks	10 Marks	60 Marks		

Course Objectives:

- **C01:** Understanding the need for distributed systems
- **C02:** Learning basic cryptographic algorithms used in distributed systems
- **C03:** Understanding the basics of blockchain technology
- **C04:** Studying and evaluating various consensus algorithms
- **C05:** Studying various applications of Blockchain

Unit I - Basics:

Distributed Database, Two General Problem, Byzantine General Problem and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete.

Unit II - Cryptography:

Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.

Unit III - Blockchain:

Introduction, Advantage over conventional distributed database, Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private and Public blockchain.

Unit III - Distributed Consensus:

Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.

Unit IV - Cryptocurrency:

History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin • Cryptocurrency Regulation: Stakeholders, Roots of Bitcoin, Legal Aspects - Cryptocurrency Exchange, Black Market and Global Economy.

Unit V - Blockchain Applications:

Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain.

References:

1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder,

Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (July 19, 2016).

- 2. Wattenhofer, The Science of the Blockchain
- 3. Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies
- 4. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
- 5. DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger," Yellow paper. 2014.
- 6. Nicola Atzei, Massimo Bartoletti, and TizianaCimoli, A survey of attacks on Ethereum smart contracts

Subject: Major Project (Code: MMP 454)	Subject: Major Project (Code: MMP 454)Year & Semester: B. Tech Metallurgical and Materials Engineering 	Total Course Credit: 10		
		L	Т	Р
		0	0	15
Evaluation Policy				

Course Outcome:

The student should be able to perform an industrial **project** or applied research linked to the discipline of MME.

Details:

Final project report will be submitted by each student after making a presentation of his results/findings etc., before his/her supervisor and other faculty members. Final assessment of his/her project work will be done on the basis of a viva-voce examination by an external examiner.

Subject: Laboratory Practice in Composite Materials	Year & Semester: B. Tech Metallurgical and Materials Engineering 4 th Year &8 th Semester	Total Course Credit: 1			
(Code: MML 455)		L	Т	Р	
		0	0	2	
Evaluation Policy	Mid-Term/Class Assessment (40 Marks)	Final-Term (60 Marks)			

Course Outcomes: The student should be able:

- **C01:** To be able to fabricate various composites
- **C02:** To be able to characterize the composites

List of Experiments

- 8. Fabrication of metal matrix composites using stir casting method.
 - a. in-situ (eg.: add iron oxide MgAl₂O₄, Al₂O₃andMgO in Al)
 - b. ex-situ (Al matrix add SiC/SiO₂/Al₂O₃, etc, particles)
 - c. Characterization:
 - i. hardness
 - ii. wear behaviour
- 9. Fabrication of polymer matrix composites using hand lay-up method, etc.
 - a. Effect of fiber loading (wt.%) on the mechanical properties of the composite
 - i. Tensile strength
 - ii. Impact
 - iii. Hardness
 - iv. Flexural strength