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FUNDAMENTALS OF PROGRAMMING: 

It is very difficult for the user to write his program directly in machine 

code. It is more common to write the program in Assembly Language 

and then translate the assembly language program into machine 

language either by hand coding or using an assembler program.  

The best method to introduce software program is to take few 

examples first and solve. 

 

Problem-1: Write a software program to obtain the sum of N natural 

numbers. Only 8-bit registers are to be used. 

SUM=  i

N

i=1

 

First we should note down all the constraints. In this problem since 

we have to use only 8-bit registers, SUM cannot exceed 255D. 

Working back we can find out the constraint on N. We know SUM of 

N natural number is given by 

SUM=
N (N+1)

2
 

Therefore, for SUM ≤ 255 the value of N ≤ 22. 

The second stage is to list down the algorithm to be used to solve the 

problem and draw the flow chart of the algorithm. For this problem, 

the flowchart is shown in fig.6.1. Fig.6.2 gives better picture in terms 

of FORTRAN flow chart. 

 



     

Fig.6.1 Flow Chart of Algorithm                         Fig.6.2 FORTRAN Flow Chart 

Having obtained the flow chart of this problem we shall identify the 

registers or the memory locations. To define all the variables in the 

flow chart in deciding this we shall follow one general rule namely. 

Use internal register or register pairs only as far as possible. If they 

are not available then only think of a memory location as a variable. 

For the problem under consideration following may be defined as the 

variables: 
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Fig.6.3 Micro RTL Flow Chart 

 

Having decided the variables in the register we draw the macro RTL 

flow chart. While drawing this flow chart we take the help of FRTRAN 

flow chart drawn earlier and also the instruction set. Every block in 

the macro RTL flow chart must be implemented using one instruction 

at this stage. For the given problem this is shown in fig.6.3.. 

 

Having written the macro RTL flow chart we can directly write ALP. 

The preliminary ALP for fig.6.3 is shown in fig.6.4. 
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NSUM:   XRA  A    ;   Clear Accumulator 

              MVI  C, N  ;   Initialize the Counter with Last Natural Number 

              MOV  B, A ;   Initialize Natural Number in (B) to zero 

NEXT:   INR  B   ;   Generate Next Natural Number 

              ADD  B    ;   Obtain running SUM in Accumulator  

              DCR  C    ;   Has all Natural Number added? 

              JNZ  NEXT;   No, Go Back to Generate Next Natural Number 

              HLT                ;   Yes, stop. 

Fig.6.4 Assembly Language program for SUM of Natural Numbers  

 

Assembly language programmes are usually written in a standard 

form so that they can be easily translated to machine language by an 

assembler program (may be self on cross assembler). In general, the 

assembly language statements have four sectors in general known 

as fields: 

Label Mnemonic Operand Comment 

 

1) Label field: The first field of ALP statement is the label field. A label is 

a symbol used to represent an address that is not specifically known 

or it is a name to be assigned to an instruction’s location. The lebel 

field is usually ended with a colon (:). 

2) Mnemonic field: This field contains the mnemonic for the instruction 

to be performed. Sometimes mnemonics are referred to as operation 

codes or opcode. It may consist of pseudo mnemonics. 

3) Operand field: Operand field consists of operand and operands - 

either constants or variables with reference to the instruction in the 



mnemonic field. It may be any register, data, or address on which the 

instruction is to be performed. Depending upon the instruction, the 

operand filed may be absent, may contain one operand or two 

operands separated by a comma. A comma is required between 

register initials or between register initial and a data byte. 

4) Comment field: A very important part of an ALP is the comment field. 

For most assemblers, the comment field is started with a semicolon 

(;). Comments do not become part of the machine program. They are 

written for the reference of the user. If you write a program without 

comment and set it aside for 6 months it may be very difficult for you 

to understand the program again when you look back to it. It may 

even appear that someone else has written it. Comments should be 

written to explain in detail what each instruction or group of 

instructions is doing. Comments should not just describe the 

mnemonic, but also the function of the instruction in the particular 

routine. For best result, write comments as if you are trying to explain 

the program to someone who initially knows nothing about the 

program’s purpose.  

 In addition to the comments, a program or subroutine should 

start with a series of comments describing what the program is 

supposed to do. The staring comments should also include a list of 

parameters, registers and memory locations used. 

 

For example, an ALP statement is given below: 

NEXT:  INR B;  Generate next natural number  



In this statement NEXT is in the LEBEL field. INR is the mnemonic. B 

is the operand and rest is the comment. It is also clear that label field 

& remark field are optional. 

 All the programs written down in assemble language should 

start from a specific address which is not known before hand. 

Therefore, the symbolic name is given to the starting address of ALP. 

In the program written NSUM is given the name to the program. 

 The program is said to be completely written if all the instruction 

mnemonics including labels are listed along with proper comments. 

Next the program is assembled, i.e. the source code (instruction 

mnemonics) is translated to object code (machine code), a form in 

which the program can be loaded into the program memory. It is done 

by hand or using an assembler. 

         Hand assembling a program consists of assigning memory 

address and machine codes for each of the labels, opcode and 

operands. For hand assembly, two blank columns are allocated to the 

left of the label field. After assembly, the first column i.e. the address 

column contains the address of the first byte of each instruction and 

the second column contains the hexadecimal representation of the 1, 

2, or 3 bytes of code that comprise the instructions.  

 Manual assembly is carried out in two steps, each requiring a 

complete scan or pass through the program. The first pass or scan 

determines the memory location into which the first byte of each 

instruction is assembled and creates a table for the values of the all 

symbolic names used in the program. A starting address is assigned 

to the first byte of the first instruction and is recorded in the address 

column. This is the initial value for a count that is increment by the 



number of bytes in each instruction. This count corresponds to the 

location in memory which the first byte of each instruction is to be 

placed. A counter refers to as the location counter keeps the count. 

The counter location of the first byte of each instruction is recorded in 

the address column. The label (for each instruction that has one) is 

recorded is a symbol table together with the address of the first byte 

of the instruction. At the completion of the first pass (or first scan) 

through the ALP, all the symbolic labels and operands appear in the 

symbol table along with their assigned values. Thus, at the end of the 

first pass, the address columns & symbol tables are complete. 

           The second pass (or second scan) of the assembly process 

fills in the object code column. During this pass, each instruction is 

examined and the instruction mnemonic is replaced by its machine 

code written in hexadecimal notation. If the address or constant 

constituting the additional byte is written symbolically, the symbol 

table is consulted to determine the hexadecimal code for the symbolic 

operand. At the end of the second pass, the assembly process is 

complete. The resulting object code can be loaded into the 

microprocessor’s memory and executed. 

 Insertion or deletion of instruction requires program 

reassembly. To avid reassembly, NOP instruction may be inserted 

after every few instruction. Few NOPs should left between the main 

program and subroutines, so that the main program can be expanded 

without having to change the addresses contained in the subroutine 

calls. 

 If we are not using an assembler to obtain machine language 

program (MLP) from assembly language program (ALP) then fig.4 is 



sufficient to obtain MLP directly using hand coding procedure. 

However, then the starting address should be known to us. Obviously 

this should be in the RWM area. Let us suppose that the starting 

address for the problem is 2000H. Then the hand coding for fig.6.4 is 

done as shown in fig.6.5. 

Lebel Addr Contents Mnemonics    
& Operands 

             Remarks 

NSUM 2000H       AF   XRA A Clear accumulator. 

 2001H       0E  …..   MVI  C,N Initialize the counter with ‘N’ 

 2003H       47   MOV  B,A Initialize next natural number 
in (B) to 00. 

NEXT 2004H       04   INR  B Generate next natural number 

 2005H       80   ADD  B Obtain running SUM 

 2006H       0D   DCR  C Has all natural numbers 
added? 

 2007H   C2 04 20   JNZ  NEXT No, go back to generate next 
natural number 

 200AH       76   HLT Yes, Stop 

Fig.6.5 Hand Coding of Assembly Language Program  

 

If the hand coding has to be performed automatically using an 

assembler, then assembler needs directions from the user w.r.t the 

following: 

1) From which address (ADDR) the programme assembly is to 

start?  

2) What is the value of the constant like ‘N’? 

Such directions are given to the assembler by pseudo instruction. 

These are also written similar to ALP statements with mnemonics in 

the mnemonic field. But remember these mnemonics have no 

operation codes like mnemonic of instruction set. They are only used 

for the directions given to the assembler,  
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ASSEMBLER DIRECTIVES 

 To assemble a program automatically the assembler needs 

information in the form of assembler directives that controls the 

assembly. For example, the assembler must be told at what address 

to start assembling the program. These assembler directives are 

command placed in the program by the designer that provides 

information to the assembler. They do not become part of the final 

program as they are not the part of the instruction set of the 

microprocessor nor did they translate into executable code. 

Therefore, they are also known as pseudo-instruction on false 

instructions. 

           Each assembler has its own unique pseudo instructions or 

assembler directives. These instructions differ from assembler to 

assembler but most of the assembler contains an equivalent set of 

pseudo instructions written in assembly language format. 

 

1. ORG: The origin (ORG) instruction tells the assembler the 

address of the memory location for the next instruction or data byte 

should be assembled. ORG is entered at the beginning of a program. 

When different parts of a programme (e.g. subroutines) are to be 

placed in different areas of memory, an ORG pseudo instruction is 

used before each part of the program to specify the starting location 

for assembly of that part of the program. The origin instruction has 

the following form, 

  ORG  expression 



        where expression evaluates to a 16-bit address, i.e., ORG is 

followed by an address. If no origin pseudo instruction appears before 

the first instruction in the program, assembly will begin, by default, at 

memory location 0000H.  

For example, ORG 0100H tells the assembler to start assembling the 

immediately following program at 0100H in memory. 

 

2. END: When an assembler scans the program to be assembled it 

must know, where the program ends. It cannot depend on a HLT 

instruction for this because some programmes don’t contain a halt 

instruction as the last instruction and other don’t contain a halt at all. 

An application program used, e.g., in process monitoring on control 

might run continuously and, therefore, not contain a halt instruction. 

Thus, an end assembly, END directive must be the last instruction. 

The directive has a form. 

    END 

         The END statement explicitly indicates the end of the program 

to the assembler. If no END statement is given, then the assembler 

just keeps on running through all the memory. 

 The ORG and END assembler directives, in effect, frame the 

program to be assembled. 

    ORG     0000H     

    [Assembly language instructions] 

    END 

       When there is more than one ORG assembler directive, then 

the assembly of group of instruction start at the location specified by 



the origin assemble directive that proceeds. But there will be only one 

END instruction to tell the assembler the physical end of the program. 

For example, 

 ORG      0000H 

 [Assembly language instructions] 

{This block of instructions is assembled starting at location 0000H} 

 ORG      0100 H 

 [Assembly language instructions] 

{This block of instructions is assembled starting at location 0100H} 

END 

 

3. EQU: Symbolic names, which appear in assembly language 

programs as labels, instructions mnemonics and operands are 

translated to binary values by the assembler. As discussed in hand- 

assembly the labels are assigned the current value of the 

assembler’s location counter when encountered in the first pass of 

the assembly. Instruction mnemonics have predefined values that the 

assembler obtains from a table that is part of the assembler. 

  A symbolic operand can be a register name, an address or a 

data constant. Register names have predefined values. All addresses 

correspond to labels in the program and their values are defined. 

Data constants, on the other hand, are defined by the designer using 

an equate assembler directive. The equate instruction EQU defines 

symbols used in the program. Equate assembler directives usually 

appear as a group at the beginning of a program and have the form. 

     name  EQU   expression. 



 ‘name’ stands for the symbolic name. The assembler evaluates the 

expression and equates the symbolic name to it by placing the name 

in its symbol table along with the value of the expression. Therefore, 

whenever the name appears in the program, it is replaced by the 

value the expression in the equate pseudo instruction. For example, 

       COUNT    EQU    0100 H 

Note the symbolic name is not followed by a colon and is not a label 

even though it appears in the label field. The symbolic name in one 

equate statement cannot be used in another nor can it be used as the 

label of another instruction. That is, the name in an equate directive 

cannot be redefined. If its value is changed, the equate assembler 

directive must be changed and the program reassembled. 

 

4. SET: SET is similar to EQU assembler directive. This directive 

also assigns a value to the name associated it. However, the same 

symbol can be redefined by another SET statement later in the 

program. Thus, more than one SET instructions can have the same 

name the SET assembler directive has the form. 

      name  SET   expression. 

5. DS: Another pseudo instruction, the define storage, reserves or 

allocates read/write memory locations for storage of temporary data. 

The first of the locations allocated can be referred to by an optional 

symbolic label. The define storage instruction has the form 

       opt. label:  DS   expression. 

A number of bytes of memory equal to the value of the expression 

are reserved. However, no assumptions can be made about the initial 



values of the data in these reserves locations, i.e, the assembler 

does not initialize the contents of these locations in anyway. 

If has a symbolic name is used with the DS pseudo instructions, 

it has the value of the address of the first reserved location. Some of 

the assemblers use DFS for define storage. For example, to establish 

two 1-byte storage registers in RWM memory with the names TEMP1 

& TEMP2, the instruction are written. 

TEMP1:  DS  1 

            TEMP2:  DS  2 

During the first pass, the assembler assigns the values of its location 

counter to TEMP1 and TEMP2 respectively and thus an address is 

associated with each label. Instructions in the program can read or 

write these locations using memory reference instructions such as 

STA TEMP1 or LDA TEMP2. 

     A memory buffer is a collection of consecutive memory 

locations and also used to store data temporarily. For example,  

BUFFER:  DS 50D 

It tells the assembler to reserve 50 memory locations for storage 

when it assembles the program. The address of the first location is 

BUFFER (BUFFER to BUFFER + 50 -1). Such a buffer is usually 

written and read sequentially using register indirect addressing. 

 

6. DB:   When a table of fixed data values is required, memory must 

also be allocated. However, unlike the DS, each memory locations 

must have a defined value that is assembled into it. The pseudo 

instructions for this is define, DB and the general form is  

                 opt. name: DB  list 



‘list’ refers either to one or more arithmetic or logic expressions that 

evaluate to 8-bit data quantities or to strings of character enclosed in 

quotes that the assembler replaces with their equivalent ASCII 

representations. Assembled bytes of data are stored in successive 

memory locations until the list is exhausted. Some of the assemblers 

use DFB for this assembler directive. 

For example,  

DB  07AH  

It stores 7AH in memory location right after the preceding instruction. 

Another example is  

DB  ‘J’, ‘O’, ‘H’, ‘N’  

It stores 4AH, 4FH, 48H & 4EH in the four successive memory locations 

to represent the string of ASCII characters. 

 

 

7. DW: Define word DW instruction is similar to define byte pseudo 

instruction. 

opt. name:  DW  list 

The only difference between the DB & DW is that expression in this 

define word list is evaluated to 16-bit quantity and stored as 2-bytes. It 

is stored with the lower order byte in the lower of the two memory 

locations and the higher order byte in the next higher location. This is 

consistent with the convention for storing 16- bit quantities in 8085A 

systems. Some of the assemblers use DFW for this assembler 

directive. 

Macros:  Sometimes it is required that same set of instructions are to 

be repeated again & again. One way to simplify the problem is the 



use of subroutine. This increases the execution time due to overhead. 

The other way is the use of macros. The assemblers which have the 

capability to process macro instructions are called macro assemblers. 

The assemblers are designed such that the programmer need to 

write set of instruction once and then refer it many times as desired. 

A macro instruction is a single instruction that the macro 

assemble replaces with a group of instruction whenever it appears in 

an assembly language program. The macro instruction and the 

instruction that replace it are defined by the system design only once 

in the program. Macros are useful when a small group of instruction 

must be repeated several times in a program, with only minor or no 

changes in each repetition. 

The use of macro in ALP entails three groups: 

1) The macro definition  

2) The macro reference 

3) The macro expansion. 

The macro definition defines the group of instructions 

equivalent to macro. Macro reference is the use of the macro 

instruction as an instruction in the program. A macro expansion is the 

replacement of the macro instruction defined by its equivalent. The 

first two steps are carried out by the system designer and the third by 

the macro assembler.  

        The macro definition has the following format: 

       LABEL                CODE (Mnemonic)   OPERAND  

    Name                      MACRO                       List  

            [Macro body] 

                                          ENDM      



‘Name’ stands for the name of the macro that appears in the label 

field of the macro definition. A list of dummy parameters may be 

specified as List and, if so, these parameters also appear in the 

macro body. The macro body is the sequence of assembly language 

instructions that replace the macro reference into program when 

assembled. The macro definition produces no object code 

(hexadecimal number); it simply indicates to the assembler what 

instructions are represented by the macro name. 

 

Example-1: 

Consider the use of a macro involving a large amount of indirect 

addressing. An indirect addressing input capability is provided by the 

two instructions:  

                                    LHLD  addr 

                                    MOV   r, M 

This sequence can be written as a macro named LDIND; with a 

macro definition of   

  LDIND MACRO  REG, ADDR 

    LHLD     ADDR 

                                     MOV          REG, M 

                                      ENDM 

 

To have the macro body appear at any given point in the program, it 

requires a macro reference. This format is identical to that of an 

assembly language instruction. 

Label    Code (Mnemonic)   Operand  

optional label   name     parameters list  



‘Name’ is the label by which the macro is referenced or called. The 

following macro instructions load register (C) indirectly through the 

address PRT     

                           LDIND  C, PTR 

When a program containing macro is input to a macro assembler the 

assembler carries out a test substitution, the macro expansion, 

substituting for each macro reference the macro body specified in the 

macro definition. And for each dummy parameter list in the macro 

body, the appropriate parameter from the parameter list of the macro 

reference macro assembler encounter the macro instruction  

                             LDIND  C, PTR 

It replaces it with the instructions    

    LHLD  PTR 

                        MOV   C, M 

Example-2: 

The following macro rotation the contents of the accumulator to the 

left through carry, N times. This is done with a loop that is terminated 

when a register is counted down to zero. The numbers of rotation, N. 

and the register to be used as the counter are the parameters in the 

macro definition: 

  RALN  MACRO  N, REG 

                               MVI   REG, N  

  LOOP:  RAL 

                              DCR   REG 

                              JNZ   LOOP 

                               ENDM 



If this macro appears in a program, a problem results as it will be 

referred twice. When the macro is expanded, the label LOOP will 

appear twice in the program, resulting in a multiply define symbol 

error when the program is assembled. This problem is avoided by 

use of the LOCAL directive; which is placed in the macro definition. 

The LOCAL directive has the form: 

         LABEL   CODE  OPERAND    

  

          ---     LOCAL  label names 

The specified label names are defined to have meaning only within 

the current macro expansion. Each time the macro is referenced and 

expanded; the assembler assigns each local symbol a unique symbol 

in the form ‘??nnnn’. The assembler assigns ‘??0001’ to the first 

symbol, ‘??0002’ to the second symbol and so on. The most recent 

symbol name generated always indicates the total number of symbols 

created for all macro expansions. These symbols are never 

duplicated by the assembler. 
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Problem-2:  Write the software program for the same problem as in 

problem-1 if the largest natural number exceeds 22. 

In this case the sum shall exceed 8-bits; therefore, 16-bit 

operations are involved. Therefore, let us take the sum to be in (H, L) 

register pair (16-bits). If the sum is in (H, L) pair, the constraint on the 

sum is  

SUM    ≤    65535. 

This shall give the largest value for N ≤ 361. Thus the largest number 

also needs 16-bit register for 16 bit arithmetic operation. 

 

Fig.6.6 ALP for SUM of N Natural Numbers 

(H,L)          0

(H,L)       (H,L) + (D,E)

IS

Z =1 ?
No

Yes

STOP

START

(B,C)           N

(D,E)           0

(D,E)        (D,E) + 1

(B,C)         (B,C) - 1

(A)         (B)

(A)        (A) U (C)



 Therefore, both counter and next natural numbers be placed in 16-bit 

registers 

        COUNTER   (B, C) 

        Next Natural Number, I  (D, E) 

Therefore the macro RTL flow chart will be as shown in fig.6.6 and 

the ALP is given in fig.6.7 

 

; This programme / sum of N natural numbers for N greater than 22. 

 ORG 2000H  

LNN EQU         360 D  

NSUM:     LXI  H, 0000 H 
  

; Initialize SUM 

 LXI B, LNN            ; Initialize COUNTER 

 LXI D, 0000H ; Initialize current natural no. 

NEXT: INX D ; Generate next natural no.                 

 DAD D ; Obtain running sum in (H,L) 

 DCX B ; Decrement counter  

 MOV A,B ; Is counter zero? 

 ORA C  

 JNZ NEXT ;No, go to generate natural number 

 HLT  ; Yes, SUM is in (H,L)      

Fig.6.7 ALP of SUM of N Natural Numbers 

 

Problem-3: Write a program me to introduce 1msec delay in the 

main programme. Assume 4MHz crystal is used in  𝜇𝑝 . 

 The philosophy of software delay is to ask the microprocessor 

to do some irrelevant job for the requested delay duration. In general, 

the irrelevant job is to load an internal register with a pre-calculated 



number ‘N’, ask the microprocessor to decrement it repeatedly till the 

register or counter becomes zero, and came out of the loop when the 

counter becomes zero. In this process the processor must have spent 

the required time delay duration. The two points to be noted in this 

connection are:  

i) Number ‘N’ to be loaded is to be recalculated  

ii) The register used for initial loading the number should not 

contain any useful data of main programme.  

The necessary macro RTL flow chart for introducing the necessary 

1msec delay is shown in fig.6.7. 

 

Fig.6.7 Flow Chart to Introduce 1 ms Delay 

 

The corresponding ALP is shown in fig.6.8. 

 :   

 MVI D, N 7 states 

LP: DCR D 4 x N states 

 JNZ LP 10 x (N-1) + 7 

 :   

Fig.6.8 Assembly Language Program to Introduce 1 ms Delay 

IS

(D) =0 ?
No

Yes

(D)       N

(D)          (D) - 1



The fig.6.7 also shows the number of states elapsed in executing 

each instruction.  

Total number of states elapsed =  7 + 4N + 10 (N-1) +7 

       = 14N + 4  

If T secs is the duration of a state then time delay introduced is 

≈td=(K N + 4)×T. This must be equal to 1msec. For 4MHz clock, the 

time period T=0.5μsec. 

On   substitution,   we get, 

                      (14N + 4) x 0.5 x 10-6 =1 x 103 

                                      7 x 10-6 x N = 1 x 10-3 – 2 x 10-6 

                                                         ≈   1x  10-3 

                   Therefore,                N    =  142.88 143D = 8FH. 

Therefore, in fig.11 the number ‘N’ to be loaded in to the (D) register 

is 8FH to introduce 1msec delay in the main pregame. 

 

Problem-4:   Modify problem-3 to introduce K msec delay  

                                     

Fig.6.9 Flow Chart to Introduce K ms Delay 

In this problem we have to introduce a variable time delay from 1 

msec up to K msec. The register pair (B, C) can be used for loading, 

the constant K. K shall be 1 for 1msec delay and K shall be 60000D 

for 1min delay. The corresponding macro RTL flow chart in given in 

flg-14 

K ms Delay



 

Fig.6.10 Macro RTL Flow Chart to Introduce K ms Delay 

 

While drawing the macro RTL flow chart of fig-14 it is assumed that 

register pain (B, C), the register (D) and the accumulator (A) are 

available to the user. The corresponding ALP for fig- 14 is shown in 

fig.6.11. 

(D)           (D) - 1

IS

Z = 1 ?
No

Yes

(B,C)           K

(D)              N

(B,C)         (B,C) - 1

(A)         (B)

(A)        (A) U (C)

IS

Z =1 ?
No

Yes



 :  Number of states  

 :  required for K=1 

 LXI B, K 10 

LP2: MVI D, N 7 

LP1: DCR D 4N 

 JNZ LP1 10(N-1)+7 

 DCX B 6 

 MOV A,B 4 

 ORA C 4 

 JNZ LP2 7 

 :   

Fig.6.11 ALP to Introduce K ms Delay 

The constant N can be calculated again to introduce 1msec delay. 

The constant so calculated shall not differ from 8FH calculated in 

problem -3 because only few extra instructions are involved in this 

problem. However we shall calculate the value of N? 

For K = 1,   the delay is given by  

    Td = [10 + 7 + 4N + 10(N-1) + 7 + 6 + 4 + 4 + 7] T 

                                 = [14N + 35] T 

In this case, outer loop will not be traversed at all. 

Assuming T=0.5 μsec, i.e., 2MHz external clock  

                      1x 10-3 = [14N + 35] x 0.5 x 106 

or,                           14N + 35 =  2 x 103 

or,                                      N  =  140D = 8CH 

 

8CH can be taken as 1msec constant for introducing 1mesc delay 

using ALP of fig.15. This constant shall not change even if some 

more instructions are added to fig.15. 



 Consider now that of we have to implement Kmsec delay, K 

variable at different points in the main programme as shown in 

fig.6.12.  

 

Fig.6.12 Flow Chart to Introduce K ms Delay at Different Points 

 

 One way to solve the problem of fig.6.12 is to repeat the flow 

chart of fig.6.10 every time loading the (B, C) pair in the appropriate 

constant K. This is clumsy and occupies tremendous amount of 

memory space unnecessarily. We can, therefore, write a subroutine 

program for Kmsec time delay starting from the symbolic address 

KDELAY. While writing the subroutine, it is assumed that the value of 

K is available in the (B, C) register pair. This means that the value of 

K must be loaded in to the (B, C) pair in the main programme before 

calling the subroutine. This is known as the input to subroutine or 

parameter passing from the main programme to subroutine 

programme. The second point has to be noted while writing the 

subroutine. Contents of all the registers made use of in the subroutine 

programme should not be destroyed. They should be saved on the 

top of stack using PUSH instructions. Further, the contents of these 

K1 ms Delay

K2 ms Delay

K3 ms Delay



registers should be restored by POP operations before returning to 

the main programme. These extra instructions increases the delay 

introduced by the subroutine. The subroutine incorporating the above 

details is shown in fig6.13. 

 

KDELAY: PUSH B 

 PUSH D 

 PUSH PSW 

LP2: MVI D, 8CH 

LP1: DCR D 

 JNZ LP1 

 DCX B 

 MOV A,B 

 ORA C 

 JNZ LP2 

 POP PSW 

 POP D 

 POP B 

 RET  

 

Fig.6.13 ALP for K ms Delay Subroutine 

 



Lecture-38 

Problem-5: 

 An output port with an 8-bit register latch driver is interfaced 

using isolated I/O PORT address 30H. This register latch driver output 

drives 8 LEDs (0-0FF, 1-ON). Write a software programme in ALP to 

simulate an 8-bit ring counter at the PORT 30H. Ring counter must go 

from one state to the next in 10 sec. Kmsec delay subroutine 

programme (KDELAY) is available from the starting address 0430H. 

 

Fig.6.14 LEDs connected to an Output Port 30H 

 

The 8-LEDs are connected to the 8-bit latch as shown in fig.6.14. 

The latch is capable to driving the LEDs. In the ring counter only one 

flip-flop is SET at a time. Therefore, only one LED is to be switched 

ON at a time as shown in fig.6.15. 

 

Fig.6.15 8-bit Ring Counter  

30 H
8-Bit Data Latch

BDB

80 40 20 10

08040201



The assembly language program to implement 8-bit ring counter is 

given in fig.6.16. Each bit of the port 30H is made HIGH one by one 

at an interval of 10 sec. 10 sec delay is implemented by calling K ms 

delay subroutine with (B,C) register pair initialized with K (=10000D) 

value. 

    LXI B, 10000D  

 MVI A, 80H Set MSB of Accumulator 

NEXT: OUT 30H  

 CALL KDELAY  

 RRC  Set next bit of A 

 JMP NEXT  
 

Fig.6.16 ALP for 8-bit Ring Counter  

 

Tutorial Problem for students:  

 Simulate a BCD counter for up counting. The counting should 

be MOD-25 BCD up counting. This should go from one state to other 

in 10sec.    

Problem-6: 

 Write a subroutine programme to multiply two unsigned 

numbers. The multiplicand is inputted as a 16-bit number through 

(D,E) pair. The multiplier is inputted to the subroutine through the 

accumulator register. The product should be outputted in the (H,L) 

register pair on return. In the process of multiplication no register 

should be destroyed except (H,L) register pair.  

 The algorithm used for unsigned multiplication can be best on 

explained by taking a simple example. Consider multiplication of 2 4-

bit unsigned numbers [(7x10)D = 70D] 



Multiplication = 0111B    Make it an 8-bit number  0000 0111B 

Multiplication = 1010B            m3m2m1m0   

Partial Sum   = 0000 0000B 

Check MSB. 

m3 =1,        Add Multiplicand to partial sum  0000 0000 

                                                                                  0000 0111  

 0000 0111 

                   Shift left the partial result                         0000 1110 

m2 =0,  No addition                             0000 1110 

                  Shift left the partial result                          0001 1100 

 

m1=1, Add multiplicand     0000  0111 

         0010  0011 

                  Shift left the partial result                          0100  0110 

 m0 =0,  No addition                             0100  0110 

  No shifting      0100  0110B 

         = 46H = 70D 

From this example, we see clearly the algorithm. Check the multiplier 

bit starting from MSB. If multiplier bit is 1, add the multiplicand to 

current partial product and then shift the partial product by one bit to 

the left. If the current multiplier bit is zero, do not add the multiplicand 

and only shift left the partial product by one bit. Repeat this number 

of times for n-bit multiplier. Few more refinements will be done when 

we draw the flow chart. The subroutine macro RTL flowchart is 

shown in fig.6.17. 



 

 

Fig.6.17 Flow Chart of Multiplication Subroutine 

 

(H,L)          0

(H,L)       (H,L) + (H,L)

IS

(B) =0 ?
No

RET

START

(B)           08

IS

(A) = 0?
Yes

Yes

RET

PUSH B

RLC

IS

CY =1 ?
NoYes

(H,L)       (H,L) + (H,L)

(B)           (B) -1

Yes

POP B



Fig.6.18 gives the ALP for subroutine programme. 

 

UNSMUL:   LXI H, 0000H ; Initialize partial result 

 ANA A ; Check multiplier for 0 

  RZ   

 PUSH B  

 MVI B, 08H ; Set counter for 8-bits 

NEXT: DAD H ;Shift result left by 1-bit 

 RLC  ;Check multiplier bit 

 JNZ TEST  

 DAD D ;Add multiplicand 

TEST: DCR B ;Decrement counter 

 JNZ NEXT ;Go for next bit if not zero 

 POP B  

 RET   
 

Fig.6.18 Assembly Language Program of Multiplication Subroutine 

 

SUBROUTINE NAME:    UNSMUL 

INPUT: In this we should give the parameters passed from 

the main programme to the subroutine programme. 

In this case multiplicand is in (D, E) pair & multiplier 

is ACC. 

OUTPUT:      Product in (H, L) 

CALLS:        Nothing 

DESTROYS:   (H, L) register pair. 

DESCRIPTION:  This subroutine multiplies a 16-bit multiplicand by 

an 8-bit multiple to give 16- bit product. 

Fig.6.19 Description of Subroutine 



The fig.6.19 gives the summary of the subtraction in the proper 

format. Proper formatting of subroutine is necessary because once 

the subroutine is satisfactorily tested; it can be used as library for 

further use. It can be used by anybody having access to this library 

provided the relevant information are given as per fig.6.19. 

 

Problem-7: Write a subroutine to obtain  

SUM =  𝑎𝑖

𝑁

𝑖=0

 𝑥𝑖  

It is assumed that SUM can be accounted in 16-bits. The coefficients, 

𝑎𝑖 , 𝑖 = 0 − 𝑁 are the positive integers and stored is a look up table 

from the starting address COEFF. 

 The variable 𝑥 is an unsigned 8-bit integer inputted from PORT 

whose symbolic address is PRTX through isolated I/O. The 

subroutine is entered with all the coefficients entered is the look up 

table as explained and the starting address COEFF, namely 

X3X2X1X0H available in memory locations CLP to (CLP+1) and the 

number „N‟ is available in B register. 

COEFF 𝑎𝑛  X3X2X1X0 

 𝑎𝑛−1  

 :  

 𝑎1  

 𝑎0 X3X2X1X0 + N 

 

CLP X1X0  

 X3X2  



On return from the subroutine the SUM should be available is (H, L) 

pair. It is the only register destroyed by the subroutine. We can make 

use of the subroutine written earlier for unsigned, multiplication of two 

numbers.  

SUBROUTINE :   USMUL 

INPUT              :      Multiplier (A) 

                             :  Multiplicand (D, E) 

OUTPUT           :     Product (H,L) 

CALLS               :     Nothing  

DESTROY         : (H, L) pair 

 

Description of the subroutine to be written is given in following format, 

SUBROUTINE :  SUM (POLSM) 

INPUT                  :  (1) Coefficients are arranged in the form of look 

up table from the starting address “COEFF”. 

  (2) The number N is in (B) register. 

  (3) The address COEFF is parsed through two 

memory location CLP and (CLP + 1). 

OUTPUT :   SUM =  𝑎𝑖
𝑁
𝑖=0  𝑥𝑖  is (H, L) pair.   

CALLS      :  USMUL 

DESTRCYS    :  (H, L) 

Algorithm:  

SUM =  𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛−2𝑥
𝑛−2 + ⋯………+ 𝑎1𝑥

1 + 𝑎0𝑥
0 

=  ………… .    𝑎𝑛𝑥 + 𝑎𝑛−1 𝑥 + 𝑎𝑛−2 𝑥 + 𝑎𝑛−3 𝑥 + ⋯……𝑎1 𝑥 + 𝑎0 

 

 



POLSM:   PUSH PSW ; Save processor status word 

 PUSH D ; Save (D,E) register pair 

  PUSH B ; Save (B,C) register pair 

 LXI D, 0000H ; Initialize running SUM 

 IN PRTX ; Input X value from input port 

NEXT: LHLD CLP ; Load (H,L) with CLP 

 MOV C,M ; Bring current COEFF into C 

 INX H ; (H,L) points to next COEFF 

 SHLD CLP ; Save the next addr in CLP 

 MOV L,C ; Bring current COEFF in (L) 

 MVI H,00H ; Extend the COEFF to 16-bits 

 DAD D ; Add the current COEFF  

 XCHG  ; Current multiplicand is in (D,E) 

 CALL USMUL ; Current product is in (H,L) pair 

 XCHG  ; Update the running SUM 

 DCR B ; All done? 

 JNZ NEXT ; No 

 LHLD CLP ; (H,L) pair noe points to a0 

 MOV L,M ; Bring a0 to (L) 

 MVI H,00H ; Extend it to 16-bit 

 DAD D ; (H,L) now contains total SUM 

 POP B  

 POP D  

 POP PSW  

 RET   

 

Fig.6.20 Assembly Language Program of Problem-7 

 

Problem-8: It is desired to divide a 16-bit unsigned number in 

locations 2000H and 2001H (Higher byte in 2001H) by an 8-bit 

unsigned number in location 2002H using the division algorithm  



 

 

Fig.6.21 Flow Chart for Division Program 

 

The division program is based on continuous subtraction of divisor 

from dividend till dividend becomes less than divisor. Every time 

subtraction s made, an index is increment which gives quotient at the 

end. The value left in the lower byte of 16-bit register used to store 

dividend gives the remainder. The ALP of the problem is shown in 

fig.6.22. 

 

 

 

 

 

START

Yes

Initialize Register D with 00

Subtraction = 16-bit Dividend  - 16-bit Divisor

IS

Sign flag 0 ?

No
Increment D Reg.

RET

Quotient = Contents of Reg. D

Remainder = Previous Value of Lower byte of Dividend



 MVI D, 00H ; Initialize (D) = 00 

NEXT: LXI H, 2000H ; (H,L) points to 2000H 

 MOV A, M ; Lower byte of dividend in (A) 

 LXI H, 2002H ; (H,L) points to 2002H 

 ANA A ; To clear the CY 

 SBB M 
; Dividend – divisor (Lower 
byte) 

 LXI H, 2000H ; Save the result of subtraction 

 MOV M, A ; in 2000H 

 LXI H, 2001H  

 MOV A, M  

 LXI H, 2003H  

 SBB M 
; Dividend – divisor(Higher 
byte) 

 LXI H, 2001H  

 MOV M, A ; Save it in 20001H 

 JP LP  

 LXI H, 2000H  

 MOV A, M ; Dividend in (A) 

 LXI H, 2002H  

 ADD  M ; Divisor in (M) 

 MOV E, A  

 HLT   

LP: INR D ; Increment (D) 

 JMP NEXT  
 

Fig.6.20 Assembly Language Program of Problem-8 

 

 



Lecture-39 

Passing Parameters to Subroutines 

 Many subroutines accept data inputs from the calling program 

and provide as output results that are a function of the input data to 

the calling program. Subroutines are normally written such that they 

can be used with different programmes. One need not to write the 

same subroutine everytime. Thus makes the software development 

fast.  This is possible only if subroutine is parameterized. The data, 

also called the subroutine parameters or arguments, must be 

transferred or passed to the subroutine by that partion of the program 

that calls the subroutine. In addition, results generated by the 

subroutine must be passed back to the calling program. There are a 

number of ways of passing parameters (data) between the calling 

program and the subroutine. The method is normally selected 

depending on number of parameters to be passed on. Data can be 

passed via 

1. Internal registers 

2. Reserved memory locations 

3. Pointers to parameter lists in memory 

4. The stack. 

 

1. Parameter Passing via Internal Registers 

 When the number of parameters (data) to be passed is 

fewer than the internal general purpose registers available, it is 

convenient to transfer the data via internal registers accessible to 

the user.  In this case, when transferring parameters to a 

subroutine, instructions that load the data into the specific internal 



registers preceded the actual CALL instruction. In other words, 

before calling the subroutine, the parameters are loaded into the 

specific registers using instructions. These instructions and the 

subroutine CALL itself are together referred to as the subroutine 

linkage or calling sequence. 

 The subroutine obtains its parameters from predetermined 

registers when called. The results generated are placed in 

predetermined registers before the return instruction is executed. 

For example, the 8085A microprocessor does not have any 

multiplication instruction, but a subroutine can be written for this 

purpose. In previous lecture in example-6, a subroutine UNSMUL 

was written to multiply a 16-bit multiplicand with an 8-bit multiplier. 

The multiplicand and multiplier were passed on to the subroutine 

via (D,E) pair and ACC respectively before calling the subroutine. 

The subroutine returns the result of multiplication to the main 

program through (H,L) register pair. Subsequent instructions in 

the main program can use the result as required. 

 

2. Use of Reserved Memory Locations for Parameter Passing 

 Parameters and results are also passed between the main 

program and a subroutine or between subroutines by reserved 

memory locations. A reserved memory location could be any 

memory location in RWM and is set aside or reserved to hold the 

value of a specific variable or parameter. These locations are 

established by the define storage, DS or DFS, assembler 

directive. Instructions in the calling sequence to put the parameter 

in the reserved memory location and in the subroutine to return 



the result, refer to the parameter by its symbolic name, the label 

on the assembler directive that reserves its storage. For example, 

in the same multiplication subroutine, instead of passing the 

parameters through internal general purpose registers, one may 

put the multiplicand and multiplier in reserved memory locations 

MUTLIPLICAND and MULTIPLIER as shown in fig.6.22. 

                        

Fig.6.22 Parameter Passing using Reserved Memory Locations 

 The result of multiplication can also be returned by the 

putting the result in memory location RESULT before return 

instruction as shown in fig.6.22. 

 

3. Use of Pointers to Parameter List in Memory 

When a subroutine requires a large number of arguments, 

they can e placed in RWM, and pointers to the data can be 

provided in internal registers or in reserved memory locations – 

before the subroutine is called. For example, in example-8 of 

previous lecture, to calculate  

 

all the coefficients a0….aN were stored in look up table or 

sequential memory location with the starting address COEFF 

MULTIPLICAND

MULTIPLIER

RESULT

Y1 Y0

Y3 Y2

X1 X0

Z1 Z0

Z3 Z2



(=X3X2X1X0H) and this address was passed on to the subroutine 

through reserved memory locations  CLP to (CLP+1) and the 

number ‘N’ through B register. 

Similarly, if a subroutine is to written to compute the average 

of N data, the data are to be stored in sequential memory 

locations with the value of ‘N’ in the first location. The starting 

address may be passed on though (H,L) register pair used as 

memory pointer. In the same manner, (D,E) register pair may be 

used to indicate the location where the average id to be stored. 

  

4. Parameter Passing Through Stack 

The stack can be used to pass parameter. The parameters 

required by a subroutine are placed on the top of stack by the 

calling sequence, using the PUSH instructions before calling the 

subroutine. These parameters, together with the return address, 

which is automatically pushed onto the stack by the CALL 

instruction, comprise a stack frame as shown in fig. 6.23(a). After 

a subroutine is called, the stack pointer points to its return 

address, which is followed by the required parameters. The 

subroutine obtains the parameters from the stack, leaving the 

return address on the top of stack as shown in fig. 6.23(b). The 

number of parameters passed on the stack when calling a 

particular subroutine can be fixed, or the last parameter placed on 

the stack can be a count of parameters. 

 



        

(a)                                                           (b) 

Fig.6.23 Stack Frame (a) Before Subroutine Call (b) After Subroutine Call 

A simple approach to implement this method of passing 

parameters to a subroutine is to first POP the return address from 

the top of the stack and save it in a register pair or in any reserved 

memory location. The subroutine than POPs the parameters from 

the stack as needed. When all the parameters are POPed from 

the stack and processed, the subroutine PUSHes the return 

address back onto the top of the stack and executes a return 

instruction. For example, the following instructions use a reserve 

memory location to save the return address: 

POP H ; pop return address into H and L 

SHLD RADDR ; save return address in reserve memory location 

:  ; pop parameters and remove from the stack 

:   

LHLD RADDR ; obtain return address from reserve memory  location 

PUSH H ; place the return address on top of stack 

RET   

(SP)

Return Addr Lower Byte

Full

Return Addr Higher Byte

Parameter 1

Parameter 2

Parameter N-1

Parameter N

(SP)

Return Addr Lower Byte

Full

Return Addr Higher Byte



If all the parameters pushed onto the stack are popped off, before 

executing the PUSH H instruction, the stack looks like as shown 

in fig.6.23(b). If on the other hand, they are not all popped off, the 

stack is left with one or more unused parameters below the return 

address, which causes a permanent shift of the of the top of the 

stack every time the subroutine is called. This condition, referred 

to as stack creep, is cumulative. It may result in stack to move 

from RWM to ROM or to undesired locations of RWM. In either 

case, the program will fail. 

The XTHL instruction provides a means of obtaining 

parameters from the stack one at a time while leaving the return 

address on the top of the stack: 

 

POP H ; pop return address from top of stack into H and L 

XTHL  ; place parameters in H and L register and place the  

; return address back on top of stack 

:   

:   

XTHL  ; place parameters from H and L register on top stack 

; and the return address in H and L registers  

PUSH H ; save the return address on top of stack  

RET  ; return from the subroutine. 

 

After control has been transferred to the subroutine, this 

sequence pops the return address from the stack and places it in 

H and L, then exchanges the return address in H and L with the 

parameters on top of stack. As a result, the top 2 bytes of the 



parameters come in H and L registers, and the return address is 

on top of the stack. This instruction sequence can be repeatedly 

executed until all the parameters placed on the stack have been 

removed. 

Results of a subroutine can also be returned by the same 

technique. Before the subroutine returns, it first exchanges the 

results with return address available on top of stack and then 

pushes the return address on top of stack. Execution of return 

instruction pops the return address from the top of stack and put it 

in PC. The calling program then pops all the result from the stack. 


