
Lecture-35

FUNDAMENTALS OF PROGRAMMING:

It is very difficult for the user to write his program directly in machine

code. It is more common to write the program in Assembly Language

and then translate the assembly language program into machine

language either by hand coding or using an assembler program.

The best method to introduce software program is to take few

examples first and solve.

Problem-1: Write a software program to obtain the sum of N natural

numbers. Only 8-bit registers are to be used.

SUM= i

N

i=1

First we should note down all the constraints. In this problem since

we have to use only 8-bit registers, SUM cannot exceed 255D.

Working back we can find out the constraint on N. We know SUM of

N natural number is given by

SUM=
N (N+1)

2

Therefore, for SUM ≤ 255 the value of N ≤ 22.

The second stage is to list down the algorithm to be used to solve the

problem and draw the flow chart of the algorithm. For this problem,

the flowchart is shown in fig.6.1. Fig.6.2 gives better picture in terms

of FORTRAN flow chart.

Fig.6.1 Flow Chart of Algorithm Fig.6.2 FORTRAN Flow Chart

Having obtained the flow chart of this problem we shall identify the

registers or the memory locations. To define all the variables in the

flow chart in deciding this we shall follow one general rule namely.

Use internal register or register pairs only as far as possible. If they

are not available then only think of a memory location as a variable.

For the problem under consideration following may be defined as the

variables:

 SUM (A)

 COUNTER (C)

 I (B)

START

SUM = 0

COUNTER = N

I = 0

GENERATE NEXT

NATURAL NUMBER

ADD THE GENERATED

NATURAL NUMBER TO

THE RUNNING SUM

HAS

ALL THE

NATURAL NUMBERS

ADDEDD

?

STOP

No

Yes

SUM = 0

COUNTER = N

I = 0

I = I +1

SUM = SUM +I

IS

COUNTER

= 0 ?

No

Yes

COUNTER = COUNTER -1

STOP

START

Fig.6.3 Micro RTL Flow Chart

Having decided the variables in the register we draw the macro RTL

flow chart. While drawing this flow chart we take the help of FRTRAN

flow chart drawn earlier and also the instruction set. Every block in

the macro RTL flow chart must be implemented using one instruction

at this stage. For the given problem this is shown in fig.6.3..

Having written the macro RTL flow chart we can directly write ALP.

The preliminary ALP for fig.6.3 is shown in fig.6.4.

(A) 0

(A) (A) + (B)

IS

Z =1 ?
No

Yes

STOP

START

(C) N

(B) (A)

(B) (B) + 1

(B) (A)

(C) (C) - 1

NSUM: XRA A ; Clear Accumulator

 MVI C, N ; Initialize the Counter with Last Natural Number

 MOV B, A ; Initialize Natural Number in (B) to zero

NEXT: INR B ; Generate Next Natural Number

 ADD B ; Obtain running SUM in Accumulator

 DCR C ; Has all Natural Number added?

 JNZ NEXT; No, Go Back to Generate Next Natural Number

 HLT ; Yes, stop.

Fig.6.4 Assembly Language program for SUM of Natural Numbers

Assembly language programmes are usually written in a standard

form so that they can be easily translated to machine language by an

assembler program (may be self on cross assembler). In general, the

assembly language statements have four sectors in general known

as fields:

Label Mnemonic Operand Comment

1) Label field: The first field of ALP statement is the label field. A label is

a symbol used to represent an address that is not specifically known

or it is a name to be assigned to an instruction’s location. The lebel

field is usually ended with a colon (:).

2) Mnemonic field: This field contains the mnemonic for the instruction

to be performed. Sometimes mnemonics are referred to as operation

codes or opcode. It may consist of pseudo mnemonics.

3) Operand field: Operand field consists of operand and operands -

either constants or variables with reference to the instruction in the

mnemonic field. It may be any register, data, or address on which the

instruction is to be performed. Depending upon the instruction, the

operand filed may be absent, may contain one operand or two

operands separated by a comma. A comma is required between

register initials or between register initial and a data byte.

4) Comment field: A very important part of an ALP is the comment field.

For most assemblers, the comment field is started with a semicolon

(;). Comments do not become part of the machine program. They are

written for the reference of the user. If you write a program without

comment and set it aside for 6 months it may be very difficult for you

to understand the program again when you look back to it. It may

even appear that someone else has written it. Comments should be

written to explain in detail what each instruction or group of

instructions is doing. Comments should not just describe the

mnemonic, but also the function of the instruction in the particular

routine. For best result, write comments as if you are trying to explain

the program to someone who initially knows nothing about the

program’s purpose.

 In addition to the comments, a program or subroutine should

start with a series of comments describing what the program is

supposed to do. The staring comments should also include a list of

parameters, registers and memory locations used.

For example, an ALP statement is given below:

NEXT: INR B; Generate next natural number

In this statement NEXT is in the LEBEL field. INR is the mnemonic. B

is the operand and rest is the comment. It is also clear that label field

& remark field are optional.

 All the programs written down in assemble language should

start from a specific address which is not known before hand.

Therefore, the symbolic name is given to the starting address of ALP.

In the program written NSUM is given the name to the program.

 The program is said to be completely written if all the instruction

mnemonics including labels are listed along with proper comments.

Next the program is assembled, i.e. the source code (instruction

mnemonics) is translated to object code (machine code), a form in

which the program can be loaded into the program memory. It is done

by hand or using an assembler.

 Hand assembling a program consists of assigning memory

address and machine codes for each of the labels, opcode and

operands. For hand assembly, two blank columns are allocated to the

left of the label field. After assembly, the first column i.e. the address

column contains the address of the first byte of each instruction and

the second column contains the hexadecimal representation of the 1,

2, or 3 bytes of code that comprise the instructions.

 Manual assembly is carried out in two steps, each requiring a

complete scan or pass through the program. The first pass or scan

determines the memory location into which the first byte of each

instruction is assembled and creates a table for the values of the all

symbolic names used in the program. A starting address is assigned

to the first byte of the first instruction and is recorded in the address

column. This is the initial value for a count that is increment by the

number of bytes in each instruction. This count corresponds to the

location in memory which the first byte of each instruction is to be

placed. A counter refers to as the location counter keeps the count.

The counter location of the first byte of each instruction is recorded in

the address column. The label (for each instruction that has one) is

recorded is a symbol table together with the address of the first byte

of the instruction. At the completion of the first pass (or first scan)

through the ALP, all the symbolic labels and operands appear in the

symbol table along with their assigned values. Thus, at the end of the

first pass, the address columns & symbol tables are complete.

 The second pass (or second scan) of the assembly process

fills in the object code column. During this pass, each instruction is

examined and the instruction mnemonic is replaced by its machine

code written in hexadecimal notation. If the address or constant

constituting the additional byte is written symbolically, the symbol

table is consulted to determine the hexadecimal code for the symbolic

operand. At the end of the second pass, the assembly process is

complete. The resulting object code can be loaded into the

microprocessor’s memory and executed.

 Insertion or deletion of instruction requires program

reassembly. To avid reassembly, NOP instruction may be inserted

after every few instruction. Few NOPs should left between the main

program and subroutines, so that the main program can be expanded

without having to change the addresses contained in the subroutine

calls.

 If we are not using an assembler to obtain machine language

program (MLP) from assembly language program (ALP) then fig.4 is

sufficient to obtain MLP directly using hand coding procedure.

However, then the starting address should be known to us. Obviously

this should be in the RWM area. Let us suppose that the starting

address for the problem is 2000H. Then the hand coding for fig.6.4 is

done as shown in fig.6.5.

Lebel Addr Contents Mnemonics
& Operands

 Remarks

NSUM 2000H AF XRA A Clear accumulator.

 2001H 0E ….. MVI C,N Initialize the counter with ‘N’

 2003H 47 MOV B,A Initialize next natural number
in (B) to 00.

NEXT 2004H 04 INR B Generate next natural number

 2005H 80 ADD B Obtain running SUM

 2006H 0D DCR C Has all natural numbers
added?

 2007H C2 04 20 JNZ NEXT No, go back to generate next
natural number

 200AH 76 HLT Yes, Stop

Fig.6.5 Hand Coding of Assembly Language Program

If the hand coding has to be performed automatically using an

assembler, then assembler needs directions from the user w.r.t the

following:

1) From which address (ADDR) the programme assembly is to

start?

2) What is the value of the constant like ‘N’?

Such directions are given to the assembler by pseudo instruction.

These are also written similar to ALP statements with mnemonics in

the mnemonic field. But remember these mnemonics have no

operation codes like mnemonic of instruction set. They are only used

for the directions given to the assembler,

Lecture-36

ASSEMBLER DIRECTIVES

 To assemble a program automatically the assembler needs

information in the form of assembler directives that controls the

assembly. For example, the assembler must be told at what address

to start assembling the program. These assembler directives are

command placed in the program by the designer that provides

information to the assembler. They do not become part of the final

program as they are not the part of the instruction set of the

microprocessor nor did they translate into executable code.

Therefore, they are also known as pseudo-instruction on false

instructions.

 Each assembler has its own unique pseudo instructions or

assembler directives. These instructions differ from assembler to

assembler but most of the assembler contains an equivalent set of

pseudo instructions written in assembly language format.

1. ORG: The origin (ORG) instruction tells the assembler the

address of the memory location for the next instruction or data byte

should be assembled. ORG is entered at the beginning of a program.

When different parts of a programme (e.g. subroutines) are to be

placed in different areas of memory, an ORG pseudo instruction is

used before each part of the program to specify the starting location

for assembly of that part of the program. The origin instruction has

the following form,

 ORG expression

 where expression evaluates to a 16-bit address, i.e., ORG is

followed by an address. If no origin pseudo instruction appears before

the first instruction in the program, assembly will begin, by default, at

memory location 0000H.

For example, ORG 0100H tells the assembler to start assembling the

immediately following program at 0100H in memory.

2. END: When an assembler scans the program to be assembled it

must know, where the program ends. It cannot depend on a HLT

instruction for this because some programmes don’t contain a halt

instruction as the last instruction and other don’t contain a halt at all.

An application program used, e.g., in process monitoring on control

might run continuously and, therefore, not contain a halt instruction.

Thus, an end assembly, END directive must be the last instruction.

The directive has a form.

 END

 The END statement explicitly indicates the end of the program

to the assembler. If no END statement is given, then the assembler

just keeps on running through all the memory.

 The ORG and END assembler directives, in effect, frame the

program to be assembled.

 ORG 0000H

 [Assembly language instructions]

 END

 When there is more than one ORG assembler directive, then

the assembly of group of instruction start at the location specified by

the origin assemble directive that proceeds. But there will be only one

END instruction to tell the assembler the physical end of the program.

For example,

 ORG 0000H

 [Assembly language instructions]

{This block of instructions is assembled starting at location 0000H}

 ORG 0100 H

 [Assembly language instructions]

{This block of instructions is assembled starting at location 0100H}

END

3. EQU: Symbolic names, which appear in assembly language

programs as labels, instructions mnemonics and operands are

translated to binary values by the assembler. As discussed in hand-

assembly the labels are assigned the current value of the

assembler’s location counter when encountered in the first pass of

the assembly. Instruction mnemonics have predefined values that the

assembler obtains from a table that is part of the assembler.

 A symbolic operand can be a register name, an address or a

data constant. Register names have predefined values. All addresses

correspond to labels in the program and their values are defined.

Data constants, on the other hand, are defined by the designer using

an equate assembler directive. The equate instruction EQU defines

symbols used in the program. Equate assembler directives usually

appear as a group at the beginning of a program and have the form.

 name EQU expression.

 ‘name’ stands for the symbolic name. The assembler evaluates the

expression and equates the symbolic name to it by placing the name

in its symbol table along with the value of the expression. Therefore,

whenever the name appears in the program, it is replaced by the

value the expression in the equate pseudo instruction. For example,

 COUNT EQU 0100 H

Note the symbolic name is not followed by a colon and is not a label

even though it appears in the label field. The symbolic name in one

equate statement cannot be used in another nor can it be used as the

label of another instruction. That is, the name in an equate directive

cannot be redefined. If its value is changed, the equate assembler

directive must be changed and the program reassembled.

4. SET: SET is similar to EQU assembler directive. This directive

also assigns a value to the name associated it. However, the same

symbol can be redefined by another SET statement later in the

program. Thus, more than one SET instructions can have the same

name the SET assembler directive has the form.

 name SET expression.

5. DS: Another pseudo instruction, the define storage, reserves or

allocates read/write memory locations for storage of temporary data.

The first of the locations allocated can be referred to by an optional

symbolic label. The define storage instruction has the form

 opt. label: DS expression.

A number of bytes of memory equal to the value of the expression

are reserved. However, no assumptions can be made about the initial

values of the data in these reserves locations, i.e, the assembler

does not initialize the contents of these locations in anyway.

If has a symbolic name is used with the DS pseudo instructions,

it has the value of the address of the first reserved location. Some of

the assemblers use DFS for define storage. For example, to establish

two 1-byte storage registers in RWM memory with the names TEMP1

& TEMP2, the instruction are written.

TEMP1: DS 1

 TEMP2: DS 2

During the first pass, the assembler assigns the values of its location

counter to TEMP1 and TEMP2 respectively and thus an address is

associated with each label. Instructions in the program can read or

write these locations using memory reference instructions such as

STA TEMP1 or LDA TEMP2.

 A memory buffer is a collection of consecutive memory

locations and also used to store data temporarily. For example,

BUFFER: DS 50D

It tells the assembler to reserve 50 memory locations for storage

when it assembles the program. The address of the first location is

BUFFER (BUFFER to BUFFER + 50 -1). Such a buffer is usually

written and read sequentially using register indirect addressing.

6. DB: When a table of fixed data values is required, memory must

also be allocated. However, unlike the DS, each memory locations

must have a defined value that is assembled into it. The pseudo

instructions for this is define, DB and the general form is

 opt. name: DB list

‘list’ refers either to one or more arithmetic or logic expressions that

evaluate to 8-bit data quantities or to strings of character enclosed in

quotes that the assembler replaces with their equivalent ASCII

representations. Assembled bytes of data are stored in successive

memory locations until the list is exhausted. Some of the assemblers

use DFB for this assembler directive.

For example,

DB 07AH

It stores 7AH in memory location right after the preceding instruction.

Another example is

DB ‘J’, ‘O’, ‘H’, ‘N’

It stores 4AH, 4FH, 48H & 4EH in the four successive memory locations

to represent the string of ASCII characters.

7. DW: Define word DW instruction is similar to define byte pseudo

instruction.

opt. name: DW list

The only difference between the DB & DW is that expression in this

define word list is evaluated to 16-bit quantity and stored as 2-bytes. It

is stored with the lower order byte in the lower of the two memory

locations and the higher order byte in the next higher location. This is

consistent with the convention for storing 16- bit quantities in 8085A

systems. Some of the assemblers use DFW for this assembler

directive.

Macros: Sometimes it is required that same set of instructions are to

be repeated again & again. One way to simplify the problem is the

use of subroutine. This increases the execution time due to overhead.

The other way is the use of macros. The assemblers which have the

capability to process macro instructions are called macro assemblers.

The assemblers are designed such that the programmer need to

write set of instruction once and then refer it many times as desired.

A macro instruction is a single instruction that the macro

assemble replaces with a group of instruction whenever it appears in

an assembly language program. The macro instruction and the

instruction that replace it are defined by the system design only once

in the program. Macros are useful when a small group of instruction

must be repeated several times in a program, with only minor or no

changes in each repetition.

The use of macro in ALP entails three groups:

1) The macro definition

2) The macro reference

3) The macro expansion.

The macro definition defines the group of instructions

equivalent to macro. Macro reference is the use of the macro

instruction as an instruction in the program. A macro expansion is the

replacement of the macro instruction defined by its equivalent. The

first two steps are carried out by the system designer and the third by

the macro assembler.

 The macro definition has the following format:

 LABEL CODE (Mnemonic) OPERAND

 Name MACRO List

 [Macro body]

 ENDM

‘Name’ stands for the name of the macro that appears in the label

field of the macro definition. A list of dummy parameters may be

specified as List and, if so, these parameters also appear in the

macro body. The macro body is the sequence of assembly language

instructions that replace the macro reference into program when

assembled. The macro definition produces no object code

(hexadecimal number); it simply indicates to the assembler what

instructions are represented by the macro name.

Example-1:

Consider the use of a macro involving a large amount of indirect

addressing. An indirect addressing input capability is provided by the

two instructions:

 LHLD addr

 MOV r, M

This sequence can be written as a macro named LDIND; with a

macro definition of

 LDIND MACRO REG, ADDR

 LHLD ADDR

 MOV REG, M

 ENDM

To have the macro body appear at any given point in the program, it

requires a macro reference. This format is identical to that of an

assembly language instruction.

Label Code (Mnemonic) Operand

optional label name parameters list

‘Name’ is the label by which the macro is referenced or called. The

following macro instructions load register (C) indirectly through the

address PRT

 LDIND C, PTR

When a program containing macro is input to a macro assembler the

assembler carries out a test substitution, the macro expansion,

substituting for each macro reference the macro body specified in the

macro definition. And for each dummy parameter list in the macro

body, the appropriate parameter from the parameter list of the macro

reference macro assembler encounter the macro instruction

 LDIND C, PTR

It replaces it with the instructions

 LHLD PTR

 MOV C, M

Example-2:

The following macro rotation the contents of the accumulator to the

left through carry, N times. This is done with a loop that is terminated

when a register is counted down to zero. The numbers of rotation, N.

and the register to be used as the counter are the parameters in the

macro definition:

 RALN MACRO N, REG

 MVI REG, N

 LOOP: RAL

 DCR REG

 JNZ LOOP

 ENDM

If this macro appears in a program, a problem results as it will be

referred twice. When the macro is expanded, the label LOOP will

appear twice in the program, resulting in a multiply define symbol

error when the program is assembled. This problem is avoided by

use of the LOCAL directive; which is placed in the macro definition.

The LOCAL directive has the form:

 LABEL CODE OPERAND

 --- LOCAL label names

The specified label names are defined to have meaning only within

the current macro expansion. Each time the macro is referenced and

expanded; the assembler assigns each local symbol a unique symbol

in the form ‘??nnnn’. The assembler assigns ‘??0001’ to the first

symbol, ‘??0002’ to the second symbol and so on. The most recent

symbol name generated always indicates the total number of symbols

created for all macro expansions. These symbols are never

duplicated by the assembler.

Lecture-37

Problem-2: Write the software program for the same problem as in

problem-1 if the largest natural number exceeds 22.

In this case the sum shall exceed 8-bits; therefore, 16-bit

operations are involved. Therefore, let us take the sum to be in (H, L)

register pair (16-bits). If the sum is in (H, L) pair, the constraint on the

sum is

SUM ≤ 65535.

This shall give the largest value for N ≤ 361. Thus the largest number

also needs 16-bit register for 16 bit arithmetic operation.

Fig.6.6 ALP for SUM of N Natural Numbers

(H,L) 0

(H,L) (H,L) + (D,E)

IS

Z =1 ?
No

Yes

STOP

START

(B,C) N

(D,E) 0

(D,E) (D,E) + 1

(B,C) (B,C) - 1

(A) (B)

(A) (A) U (C)

 Therefore, both counter and next natural numbers be placed in 16-bit

registers

 COUNTER (B, C)

 Next Natural Number, I (D, E)

Therefore the macro RTL flow chart will be as shown in fig.6.6 and

the ALP is given in fig.6.7

; This programme / sum of N natural numbers for N greater than 22.

 ORG 2000H

LNN EQU 360 D

NSUM: LXI H, 0000 H

; Initialize SUM

 LXI B, LNN ; Initialize COUNTER

 LXI D, 0000H ; Initialize current natural no.

NEXT: INX D ; Generate next natural no.

 DAD D ; Obtain running sum in (H,L)

 DCX B ; Decrement counter

 MOV A,B ; Is counter zero?

 ORA C

 JNZ NEXT ;No, go to generate natural number

 HLT ; Yes, SUM is in (H,L)

Fig.6.7 ALP of SUM of N Natural Numbers

Problem-3: Write a program me to introduce 1msec delay in the

main programme. Assume 4MHz crystal is used in 𝜇𝑝 .

 The philosophy of software delay is to ask the microprocessor

to do some irrelevant job for the requested delay duration. In general,

the irrelevant job is to load an internal register with a pre-calculated

number ‘N’, ask the microprocessor to decrement it repeatedly till the

register or counter becomes zero, and came out of the loop when the

counter becomes zero. In this process the processor must have spent

the required time delay duration. The two points to be noted in this

connection are:

i) Number ‘N’ to be loaded is to be recalculated

ii) The register used for initial loading the number should not

contain any useful data of main programme.

The necessary macro RTL flow chart for introducing the necessary

1msec delay is shown in fig.6.7.

Fig.6.7 Flow Chart to Introduce 1 ms Delay

The corresponding ALP is shown in fig.6.8.

 :

 MVI D, N 7 states

LP: DCR D 4 x N states

 JNZ LP 10 x (N-1) + 7

 :

Fig.6.8 Assembly Language Program to Introduce 1 ms Delay

IS

(D) =0 ?
No

Yes

(D) N

(D) (D) - 1

The fig.6.7 also shows the number of states elapsed in executing

each instruction.

Total number of states elapsed = 7 + 4N + 10 (N-1) +7

 = 14N + 4

If T secs is the duration of a state then time delay introduced is

≈td=(K N + 4)×T. This must be equal to 1msec. For 4MHz clock, the

time period T=0.5μsec.

On substitution, we get,

 (14N + 4) x 0.5 x 10-6 =1 x 103

 7 x 10-6 x N = 1 x 10-3 – 2 x 10-6

 ≈ 1x 10-3

 Therefore, N = 142.88 143D = 8FH.

Therefore, in fig.11 the number ‘N’ to be loaded in to the (D) register

is 8FH to introduce 1msec delay in the main pregame.

Problem-4: Modify problem-3 to introduce K msec delay

Fig.6.9 Flow Chart to Introduce K ms Delay

In this problem we have to introduce a variable time delay from 1

msec up to K msec. The register pair (B, C) can be used for loading,

the constant K. K shall be 1 for 1msec delay and K shall be 60000D

for 1min delay. The corresponding macro RTL flow chart in given in

flg-14

K ms Delay

Fig.6.10 Macro RTL Flow Chart to Introduce K ms Delay

While drawing the macro RTL flow chart of fig-14 it is assumed that

register pain (B, C), the register (D) and the accumulator (A) are

available to the user. The corresponding ALP for fig- 14 is shown in

fig.6.11.

(D) (D) - 1

IS

Z = 1 ?
No

Yes

(B,C) K

(D) N

(B,C) (B,C) - 1

(A) (B)

(A) (A) U (C)

IS

Z =1 ?
No

Yes

 : Number of states

 : required for K=1

 LXI B, K 10

LP2: MVI D, N 7

LP1: DCR D 4N

 JNZ LP1 10(N-1)+7

 DCX B 6

 MOV A,B 4

 ORA C 4

 JNZ LP2 7

 :

Fig.6.11 ALP to Introduce K ms Delay

The constant N can be calculated again to introduce 1msec delay.

The constant so calculated shall not differ from 8FH calculated in

problem -3 because only few extra instructions are involved in this

problem. However we shall calculate the value of N?

For K = 1, the delay is given by

 Td = [10 + 7 + 4N + 10(N-1) + 7 + 6 + 4 + 4 + 7] T

 = [14N + 35] T

In this case, outer loop will not be traversed at all.

Assuming T=0.5 μsec, i.e., 2MHz external clock

 1x 10-3 = [14N + 35] x 0.5 x 106

or, 14N + 35 = 2 x 103

or, N = 140D = 8CH

8CH can be taken as 1msec constant for introducing 1mesc delay

using ALP of fig.15. This constant shall not change even if some

more instructions are added to fig.15.

 Consider now that of we have to implement Kmsec delay, K

variable at different points in the main programme as shown in

fig.6.12.

Fig.6.12 Flow Chart to Introduce K ms Delay at Different Points

 One way to solve the problem of fig.6.12 is to repeat the flow

chart of fig.6.10 every time loading the (B, C) pair in the appropriate

constant K. This is clumsy and occupies tremendous amount of

memory space unnecessarily. We can, therefore, write a subroutine

program for Kmsec time delay starting from the symbolic address

KDELAY. While writing the subroutine, it is assumed that the value of

K is available in the (B, C) register pair. This means that the value of

K must be loaded in to the (B, C) pair in the main programme before

calling the subroutine. This is known as the input to subroutine or

parameter passing from the main programme to subroutine

programme. The second point has to be noted while writing the

subroutine. Contents of all the registers made use of in the subroutine

programme should not be destroyed. They should be saved on the

top of stack using PUSH instructions. Further, the contents of these

K1 ms Delay

K2 ms Delay

K3 ms Delay

registers should be restored by POP operations before returning to

the main programme. These extra instructions increases the delay

introduced by the subroutine. The subroutine incorporating the above

details is shown in fig6.13.

KDELAY: PUSH B

 PUSH D

 PUSH PSW

LP2: MVI D, 8CH

LP1: DCR D

 JNZ LP1

 DCX B

 MOV A,B

 ORA C

 JNZ LP2

 POP PSW

 POP D

 POP B

 RET

Fig.6.13 ALP for K ms Delay Subroutine

Lecture-38

Problem-5:

 An output port with an 8-bit register latch driver is interfaced

using isolated I/O PORT address 30H. This register latch driver output

drives 8 LEDs (0-0FF, 1-ON). Write a software programme in ALP to

simulate an 8-bit ring counter at the PORT 30H. Ring counter must go

from one state to the next in 10 sec. Kmsec delay subroutine

programme (KDELAY) is available from the starting address 0430H.

Fig.6.14 LEDs connected to an Output Port 30H

The 8-LEDs are connected to the 8-bit latch as shown in fig.6.14.

The latch is capable to driving the LEDs. In the ring counter only one

flip-flop is SET at a time. Therefore, only one LED is to be switched

ON at a time as shown in fig.6.15.

Fig.6.15 8-bit Ring Counter

30 H
8-Bit Data Latch

BDB

80 40 20 10

08040201

The assembly language program to implement 8-bit ring counter is

given in fig.6.16. Each bit of the port 30H is made HIGH one by one

at an interval of 10 sec. 10 sec delay is implemented by calling K ms

delay subroutine with (B,C) register pair initialized with K (=10000D)

value.

 LXI B, 10000D

 MVI A, 80H Set MSB of Accumulator

NEXT: OUT 30H

 CALL KDELAY

 RRC Set next bit of A

 JMP NEXT

Fig.6.16 ALP for 8-bit Ring Counter

Tutorial Problem for students:

 Simulate a BCD counter for up counting. The counting should

be MOD-25 BCD up counting. This should go from one state to other

in 10sec.

Problem-6:

 Write a subroutine programme to multiply two unsigned

numbers. The multiplicand is inputted as a 16-bit number through

(D,E) pair. The multiplier is inputted to the subroutine through the

accumulator register. The product should be outputted in the (H,L)

register pair on return. In the process of multiplication no register

should be destroyed except (H,L) register pair.

 The algorithm used for unsigned multiplication can be best on

explained by taking a simple example. Consider multiplication of 2 4-

bit unsigned numbers [(7x10)D = 70D]

Multiplication = 0111B Make it an 8-bit number 0000 0111B

Multiplication = 1010B m3m2m1m0

Partial Sum = 0000 0000B

Check MSB.

m3 =1, Add Multiplicand to partial sum 0000 0000

 0000 0111

 0000 0111

 Shift left the partial result 0000 1110

m2 =0, No addition 0000 1110

 Shift left the partial result 0001 1100

m1=1, Add multiplicand 0000 0111

 0010 0011

 Shift left the partial result 0100 0110

 m0 =0, No addition 0100 0110

 No shifting 0100 0110B

 = 46H = 70D

From this example, we see clearly the algorithm. Check the multiplier

bit starting from MSB. If multiplier bit is 1, add the multiplicand to

current partial product and then shift the partial product by one bit to

the left. If the current multiplier bit is zero, do not add the multiplicand

and only shift left the partial product by one bit. Repeat this number

of times for n-bit multiplier. Few more refinements will be done when

we draw the flow chart. The subroutine macro RTL flowchart is

shown in fig.6.17.

Fig.6.17 Flow Chart of Multiplication Subroutine

(H,L) 0

(H,L) (H,L) + (H,L)

IS

(B) =0 ?
No

RET

START

(B) 08

IS

(A) = 0?
Yes

Yes

RET

PUSH B

RLC

IS

CY =1 ?
NoYes

(H,L) (H,L) + (H,L)

(B) (B) -1

Yes

POP B

Fig.6.18 gives the ALP for subroutine programme.

UNSMUL: LXI H, 0000H ; Initialize partial result

 ANA A ; Check multiplier for 0

 RZ

 PUSH B

 MVI B, 08H ; Set counter for 8-bits

NEXT: DAD H ;Shift result left by 1-bit

 RLC ;Check multiplier bit

 JNZ TEST

 DAD D ;Add multiplicand

TEST: DCR B ;Decrement counter

 JNZ NEXT ;Go for next bit if not zero

 POP B

 RET

Fig.6.18 Assembly Language Program of Multiplication Subroutine

SUBROUTINE NAME: UNSMUL

INPUT: In this we should give the parameters passed from

the main programme to the subroutine programme.

In this case multiplicand is in (D, E) pair & multiplier

is ACC.

OUTPUT: Product in (H, L)

CALLS: Nothing

DESTROYS: (H, L) register pair.

DESCRIPTION: This subroutine multiplies a 16-bit multiplicand by

an 8-bit multiple to give 16- bit product.

Fig.6.19 Description of Subroutine

The fig.6.19 gives the summary of the subtraction in the proper

format. Proper formatting of subroutine is necessary because once

the subroutine is satisfactorily tested; it can be used as library for

further use. It can be used by anybody having access to this library

provided the relevant information are given as per fig.6.19.

Problem-7: Write a subroutine to obtain

SUM = 𝑎𝑖

𝑁

𝑖=0

 𝑥𝑖

It is assumed that SUM can be accounted in 16-bits. The coefficients,

𝑎𝑖 , 𝑖 = 0 − 𝑁 are the positive integers and stored is a look up table

from the starting address COEFF.

 The variable 𝑥 is an unsigned 8-bit integer inputted from PORT

whose symbolic address is PRTX through isolated I/O. The

subroutine is entered with all the coefficients entered is the look up

table as explained and the starting address COEFF, namely

X3X2X1X0H available in memory locations CLP to (CLP+1) and the

number „N‟ is available in B register.

COEFF 𝑎𝑛 X3X2X1X0

 𝑎𝑛−1

 :

 𝑎1

 𝑎0 X3X2X1X0 + N

CLP X1X0

 X3X2

On return from the subroutine the SUM should be available is (H, L)

pair. It is the only register destroyed by the subroutine. We can make

use of the subroutine written earlier for unsigned, multiplication of two

numbers.

SUBROUTINE : USMUL

INPUT : Multiplier (A)

 : Multiplicand (D, E)

OUTPUT : Product (H,L)

CALLS : Nothing

DESTROY : (H, L) pair

Description of the subroutine to be written is given in following format,

SUBROUTINE : SUM (POLSM)

INPUT : (1) Coefficients are arranged in the form of look

up table from the starting address “COEFF”.

 (2) The number N is in (B) register.

 (3) The address COEFF is parsed through two

memory location CLP and (CLP + 1).

OUTPUT : SUM = 𝑎𝑖
𝑁
𝑖=0 𝑥𝑖 is (H, L) pair.

CALLS : USMUL

DESTRCYS : (H, L)

Algorithm:

SUM = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛−2𝑥
𝑛−2 + ⋯………+ 𝑎1𝑥

1 + 𝑎0𝑥
0

= ………… . 𝑎𝑛𝑥 + 𝑎𝑛−1 𝑥 + 𝑎𝑛−2 𝑥 + 𝑎𝑛−3 𝑥 + ⋯……𝑎1 𝑥 + 𝑎0

POLSM: PUSH PSW ; Save processor status word

 PUSH D ; Save (D,E) register pair

 PUSH B ; Save (B,C) register pair

 LXI D, 0000H ; Initialize running SUM

 IN PRTX ; Input X value from input port

NEXT: LHLD CLP ; Load (H,L) with CLP

 MOV C,M ; Bring current COEFF into C

 INX H ; (H,L) points to next COEFF

 SHLD CLP ; Save the next addr in CLP

 MOV L,C ; Bring current COEFF in (L)

 MVI H,00H ; Extend the COEFF to 16-bits

 DAD D ; Add the current COEFF

 XCHG ; Current multiplicand is in (D,E)

 CALL USMUL ; Current product is in (H,L) pair

 XCHG ; Update the running SUM

 DCR B ; All done?

 JNZ NEXT ; No

 LHLD CLP ; (H,L) pair noe points to a0

 MOV L,M ; Bring a0 to (L)

 MVI H,00H ; Extend it to 16-bit

 DAD D ; (H,L) now contains total SUM

 POP B

 POP D

 POP PSW

 RET

Fig.6.20 Assembly Language Program of Problem-7

Problem-8: It is desired to divide a 16-bit unsigned number in

locations 2000H and 2001H (Higher byte in 2001H) by an 8-bit

unsigned number in location 2002H using the division algorithm

Fig.6.21 Flow Chart for Division Program

The division program is based on continuous subtraction of divisor

from dividend till dividend becomes less than divisor. Every time

subtraction s made, an index is increment which gives quotient at the

end. The value left in the lower byte of 16-bit register used to store

dividend gives the remainder. The ALP of the problem is shown in

fig.6.22.

START

Yes

Initialize Register D with 00

Subtraction = 16-bit Dividend - 16-bit Divisor

IS

Sign flag 0 ?

No
Increment D Reg.

RET

Quotient = Contents of Reg. D

Remainder = Previous Value of Lower byte of Dividend

 MVI D, 00H ; Initialize (D) = 00

NEXT: LXI H, 2000H ; (H,L) points to 2000H

 MOV A, M ; Lower byte of dividend in (A)

 LXI H, 2002H ; (H,L) points to 2002H

 ANA A ; To clear the CY

 SBB M
; Dividend – divisor (Lower
byte)

 LXI H, 2000H ; Save the result of subtraction

 MOV M, A ; in 2000H

 LXI H, 2001H

 MOV A, M

 LXI H, 2003H

 SBB M
; Dividend – divisor(Higher
byte)

 LXI H, 2001H

 MOV M, A ; Save it in 20001H

 JP LP

 LXI H, 2000H

 MOV A, M ; Dividend in (A)

 LXI H, 2002H

 ADD M ; Divisor in (M)

 MOV E, A

 HLT

LP: INR D ; Increment (D)

 JMP NEXT

Fig.6.20 Assembly Language Program of Problem-8

Lecture-39

Passing Parameters to Subroutines

 Many subroutines accept data inputs from the calling program

and provide as output results that are a function of the input data to

the calling program. Subroutines are normally written such that they

can be used with different programmes. One need not to write the

same subroutine everytime. Thus makes the software development

fast. This is possible only if subroutine is parameterized. The data,

also called the subroutine parameters or arguments, must be

transferred or passed to the subroutine by that partion of the program

that calls the subroutine. In addition, results generated by the

subroutine must be passed back to the calling program. There are a

number of ways of passing parameters (data) between the calling

program and the subroutine. The method is normally selected

depending on number of parameters to be passed on. Data can be

passed via

1. Internal registers

2. Reserved memory locations

3. Pointers to parameter lists in memory

4. The stack.

1. Parameter Passing via Internal Registers

 When the number of parameters (data) to be passed is

fewer than the internal general purpose registers available, it is

convenient to transfer the data via internal registers accessible to

the user. In this case, when transferring parameters to a

subroutine, instructions that load the data into the specific internal

registers preceded the actual CALL instruction. In other words,

before calling the subroutine, the parameters are loaded into the

specific registers using instructions. These instructions and the

subroutine CALL itself are together referred to as the subroutine

linkage or calling sequence.

 The subroutine obtains its parameters from predetermined

registers when called. The results generated are placed in

predetermined registers before the return instruction is executed.

For example, the 8085A microprocessor does not have any

multiplication instruction, but a subroutine can be written for this

purpose. In previous lecture in example-6, a subroutine UNSMUL

was written to multiply a 16-bit multiplicand with an 8-bit multiplier.

The multiplicand and multiplier were passed on to the subroutine

via (D,E) pair and ACC respectively before calling the subroutine.

The subroutine returns the result of multiplication to the main

program through (H,L) register pair. Subsequent instructions in

the main program can use the result as required.

2. Use of Reserved Memory Locations for Parameter Passing

 Parameters and results are also passed between the main

program and a subroutine or between subroutines by reserved

memory locations. A reserved memory location could be any

memory location in RWM and is set aside or reserved to hold the

value of a specific variable or parameter. These locations are

established by the define storage, DS or DFS, assembler

directive. Instructions in the calling sequence to put the parameter

in the reserved memory location and in the subroutine to return

the result, refer to the parameter by its symbolic name, the label

on the assembler directive that reserves its storage. For example,

in the same multiplication subroutine, instead of passing the

parameters through internal general purpose registers, one may

put the multiplicand and multiplier in reserved memory locations

MUTLIPLICAND and MULTIPLIER as shown in fig.6.22.

Fig.6.22 Parameter Passing using Reserved Memory Locations

 The result of multiplication can also be returned by the

putting the result in memory location RESULT before return

instruction as shown in fig.6.22.

3. Use of Pointers to Parameter List in Memory

When a subroutine requires a large number of arguments,

they can e placed in RWM, and pointers to the data can be

provided in internal registers or in reserved memory locations –

before the subroutine is called. For example, in example-8 of

previous lecture, to calculate

all the coefficients a0….aN were stored in look up table or

sequential memory location with the starting address COEFF

MULTIPLICAND

MULTIPLIER

RESULT

Y1 Y0

Y3 Y2

X1 X0

Z1 Z0

Z3 Z2

(=X3X2X1X0H) and this address was passed on to the subroutine

through reserved memory locations CLP to (CLP+1) and the

number ‘N’ through B register.

Similarly, if a subroutine is to written to compute the average

of N data, the data are to be stored in sequential memory

locations with the value of ‘N’ in the first location. The starting

address may be passed on though (H,L) register pair used as

memory pointer. In the same manner, (D,E) register pair may be

used to indicate the location where the average id to be stored.

4. Parameter Passing Through Stack

The stack can be used to pass parameter. The parameters

required by a subroutine are placed on the top of stack by the

calling sequence, using the PUSH instructions before calling the

subroutine. These parameters, together with the return address,

which is automatically pushed onto the stack by the CALL

instruction, comprise a stack frame as shown in fig. 6.23(a). After

a subroutine is called, the stack pointer points to its return

address, which is followed by the required parameters. The

subroutine obtains the parameters from the stack, leaving the

return address on the top of stack as shown in fig. 6.23(b). The

number of parameters passed on the stack when calling a

particular subroutine can be fixed, or the last parameter placed on

the stack can be a count of parameters.

(a) (b)

Fig.6.23 Stack Frame (a) Before Subroutine Call (b) After Subroutine Call

A simple approach to implement this method of passing

parameters to a subroutine is to first POP the return address from

the top of the stack and save it in a register pair or in any reserved

memory location. The subroutine than POPs the parameters from

the stack as needed. When all the parameters are POPed from

the stack and processed, the subroutine PUSHes the return

address back onto the top of the stack and executes a return

instruction. For example, the following instructions use a reserve

memory location to save the return address:

POP H ; pop return address into H and L

SHLD RADDR ; save return address in reserve memory location

: ; pop parameters and remove from the stack

:

LHLD RADDR ; obtain return address from reserve memory location

PUSH H ; place the return address on top of stack

RET

(SP)

Return Addr Lower Byte

Full

Return Addr Higher Byte

Parameter 1

Parameter 2

Parameter N-1

Parameter N

(SP)

Return Addr Lower Byte

Full

Return Addr Higher Byte

If all the parameters pushed onto the stack are popped off, before

executing the PUSH H instruction, the stack looks like as shown

in fig.6.23(b). If on the other hand, they are not all popped off, the

stack is left with one or more unused parameters below the return

address, which causes a permanent shift of the of the top of the

stack every time the subroutine is called. This condition, referred

to as stack creep, is cumulative. It may result in stack to move

from RWM to ROM or to undesired locations of RWM. In either

case, the program will fail.

The XTHL instruction provides a means of obtaining

parameters from the stack one at a time while leaving the return

address on the top of the stack:

POP H ; pop return address from top of stack into H and L

XTHL ; place parameters in H and L register and place the

; return address back on top of stack

:

:

XTHL ; place parameters from H and L register on top stack

; and the return address in H and L registers

PUSH H ; save the return address on top of stack

RET ; return from the subroutine.

After control has been transferred to the subroutine, this

sequence pops the return address from the stack and places it in

H and L, then exchanges the return address in H and L with the

parameters on top of stack. As a result, the top 2 bytes of the

parameters come in H and L registers, and the return address is

on top of the stack. This instruction sequence can be repeatedly

executed until all the parameters placed on the stack have been

removed.

Results of a subroutine can also be returned by the same

technique. Before the subroutine returns, it first exchanges the

results with return address available on top of stack and then

pushes the return address on top of stack. Execution of return

instruction pops the return address from the top of stack and put it

in PC. The calling program then pops all the result from the stack.

