
Lecture-46

INTERRUPT I/O TRANSFER

In previous lecture, we have discussed how an input device can

be interfaced with the processor in polled I/O mode. The status of the

device can be checked by inputting one bit. When several input

devices are used in a system with programmed I/O, a subroutine

checks the ready flag of each device in turn to see which is ready for

data transfer or has data available to be read by the microprocessor.

This process is known is polling. For example, if 8-input devices are

to be interfaced with the processor, their ready flags can be

connected to D7-D0 bits of the status port as shown in fig.8.1.

Is

Device 7 data

available

?

Excute service

subroutine Device 7

Is

Device 6 data

available

?

Is

Device 0 data

available

?

Excute service

subroutine Device 6

Excute service

subroutine Device 0

Yes

No

Yes

Yes

Fig.8.1 Serving 8 Devices in Polled I/O Mode

The polling subroutine checks the status flag of each input

device one by one and branches to a service subroutine for the

device if its flag is set. It also sets up a priority among the eight input

devices by the order in which it tests the service requested bits, with

input device ‘7’ having the highest priority. The service subroutine for

each input device saves the content of the accumulator (A), then

inputs the data byte and stores it in memory or process it.

DQ

+5V

STB 07

IDSP 07

DQ

+5V

STB 00

IDSP 00

D7

D6

D0

IDSP 08

STB 07

Data from Inpt

Device 07

IDSP 07

STB 00

Data from Inpt

Device 00

IDSP 00

8-bit

 Latch

8-bit

 Latch

Tr-state

Buffer

Tr-state

Buffer

Tr-state

Buffer

Fig.8.2 Schematic Diagram of Connecting 8 Devices in Polled I/O Mode

Before returning from the service subroutine, accumulator is restored.

For output operations, a ready flag in the output device indicates

when the device can accept the next data byte. This is necessary

when an output device requires time to process the data previously

transferred to it before it can accept new data.

POLL: IN STSTUS

 RAL

 CC SRV 7

 RAL

 CC SRV 6

 RAL

 CC SRV5

 :

 :

 RET

 If the devices are interfaced as above there are few problems.

The processor is all the time busy in checking the readiness of the I/O

devices. If the wait away tine is more, the processor is continually

busy in checking the readiness of the devices. If there are few time

critical operations and need immediate service, they may not be

serviced immediately. Further, the sequence in which a device is

checked for its readiness assigns the priority to the device and cannot

be changed under running condition. To overcome these problems,

devices initiated I/O data transfer technique is used.

Interrupt controlled data transfer is a device initiated processor

controlled I/O transfer. A p may be communicating to a number of

devices at one or the other time. As discussed above, in case of CPU

initiated polled I/O transfer, polling of I/O service request flags

monopolizes a significant amount of a microprocessor time. This

reduces system through put the total useful information processed or

communicated during a specified time period. Therefore, it is

advantageous, in term of increasing throughput as well as reducing

program complexity, if an I/O device demands service directly from

the microprocessor.

 Interrupts provide this capability essentially an interrupt is a

subroutine call initiated by external hardware device and is

asynchronous, meaning it can be initiated at any time without

reference to the system clock. However, the response to an interrupt

is directed or controlled by the microprocessor.

A simple structure that allows a single device to interrupt a

microprocessor is shown figure.

DQ

+5V

INTR

INTA

Interrupt Request

from I/O Device

Intrerrupt Request Flip-flop

Microprocessor

CLK

Fig.8.3 Generation of Interrupt by a Device

When an I/O device requires service, it sets its interrupt request

flip-flop. This flip-flop is functionally the same as the service request

flip-flop except that instead of its output being connected to an input

port, it is connected to an interrupt pin of the microprocessor. Thus,

the D-flip-flop stores the I/O device interrupt request until it is

acknowledged by the processor.

Main Program

Interrupt

Interrupt Service Subroutine

NN-1 N+1 N+2

Instruction Cycles

Fig.8.4 Servicing of Interrupt

 Since the interrupt request is asynchronous, it may occur at any

point in a program’s execution. When an interrupt occurs, the

execution of the current instruction is completed, the interrupt is

acknowledged by the microprocessor and the control is transferred to

a subroutine that services the interrupt. When the microprocessor

responds to the interrupt; the interrupt request flip-flop is cleared by a

signal directly from the processor or by a device select pulse

generated by the service subroutine. To resume program execution

at the proper point when the I/O service subroutine is finished, the

program counter is automatically saved on the top of the stack before

control is transferred to the service subroutine. The service

subroutine saves the contents of any registers it uses on the stack

and restores the register’s contents before returning. The contents of

the program counter, flag register, accumulator, and general purpose

registers together represent the state of the microprocessor.

There are two types of interrupt input - non-maskable and

maskable. When a logic signal is applied to a non maskable interrupt

input, the microprocessor is immediately interrupted. When a logic

signal is applied to a maskable interrupt input, the microprocessor is

interrupted only if that particular interrupt input is enabled. Maskable

interrupts are enabled or disabled under program control. If disabled

an interrupt request is ignored by the microprocessor.

A non-maskable interrupt input can be masked externally by an

interrupt mask signal from an output port. The mask bit from an

output port gates the interrupt signal. If an instruction writes a ‘1’ in

the mask bit position, the interrupt is enabled; if it writes a ‘0’, it is

disabled.

D0

S

R

CLK

Q

Q
D

CLk

p

p

Non-Maskable

interrupt-input

Interrupt

Enable

Interrupt

Disable

Interrupt
INTE F/F

 Maskable

interrupt-input

 Device select

 pulse

Non Maskable

Interrupt I/P

Maskable

Interrupt I/P

Fig.8.5 Maskable and Non-Maskable Interrupt Inpurs

In response to an interrupt, the following operations occur:

1. The processing of current instruction of the main program is

completed.

2. An interrupt instruction cycle is executed during which the

program counter is saved and control is transferred to an

appropriate memory location.

3. The state of the microprocessor is saved on top of stack.

4. If more than one I/O device is associated with the location

transferred to, the highest priority device requesting an interrupt

is identified.

5. A subroutine is executed which services the interrupting I/O

device. This subroutine clears the interrupt service request flip-

flop if it was not cleared in step 2.

6. The saved state of the microprocessor is restored.

7. Control is returned to the instruction that follows the interrupted

instruction.

Each step requires a certain amount of time. The combined

times for a given microprocessor and external interrupt logic

determine how quickly the processor responds to an I/O devices

request for service.

Fig.8.6 shows the timing involved in servicing the single

interrupt.

Interrupt

Interrupt Service Subroutine

NN-1 N+1 N+2

Instruction Cycles

1

2 3 4 5 6

7

Fig.8.6 Different Operations After Occurance of Interrupt

 The time taken in different operations as indicated in the figure

are:

(1) Latency time

(2) Interrupt machine cycle time or Bus idle machine cycle time

(3) Saved states

(4) Time taken to identify the device

(5) Actual servicing

(6) Restore states

(7) Return to previous procession of main program.

The time that elapses between the occurrence of the interrupt

and the beginning of the execution of the interrupt handling

subroutine is the response time, the sum of the times of steps (1)

through (4). The difference between the total time that the

microprocessor is interrupted and the actual execution time of the

service subroutine is referred to as interrupt overhead. Interrupt

structures with low overhead allow greater throughput.

 Latency time is the time between the occurrence of an interrupt

request and the beginning of the interrupt machine cycle.

CLK

INTR

(1/2 T+ 200msec)

T1 T2

tINS

tINH

End of Instruction cycle Interrupt Machine cycle

Fig.8.7 Timing Requirement for Acknowledgement of Interrupt

As shown in fig, the interrupt signal must be valid for a time

greater or equal to the interrupt set up time tINS, before the falling

edge of CLK of the last state of the instruction cycle in order for the

next machine cycle to be an interrupt machine cycle. For the Intel

8085A, the minimum value of tINS is 160nsec.

 If the interrupt becomes valid precisely, tINS seconds before the

beginning of the next machine cycle, then that cycle is an interrupt

cycle with a minimum latency time, tLATMIN = tINS. If, however, the

interrupt signal becomes valid just after this setup time, then it is not

responded to until after the next instruction is executed. This provides

a worst case latency time of

 tLATMAX =160ns + 18T.

This relationship assumes there are no WAIT and HOLD states in the

instruction cycle during which an interrupt request occurs. A further

assumption is, of course, that the interrupt is enabled when the

interrupt request occurs.

Lecture-47

INTEL 8085A INTERRUPT STRUCTURE

 There are five interrupt inputs TRAP, RST7.5, RST6.5, RST5.5

and INTR. TRAP is a non-maskable interrupt, that is, it cannot be

disabled by an instruction. RST7.5, RST6.5, RST5.5 and INTR are

maskable interrupts i.e. they can be enabled or disabled through

software. The 8085A interrupt structure is shown in fig.8.8.

Fig.8.8 Interrupt Structure of Intel 8085A

Get RST

Code from

external

device

002C

0034

003C

Q

Q

Q
M7.5

M6.5

M5.5

S

R

S

S

R

R

MSE
R

S

INTE F/F

Q

CLR

D Q

D Q

CLK

CLR

1

CLK

TRAP

RESET IN

TRAP ACKNOWLEDGE

RST 7.5

R 7.5

RESET IN

RST 6.5

RST 5.5

DI
RESET IN

Any Interrupt

Acknowledge

ACKNOWLEDGE

INTR

6

RST 7.5

Vector location
0024

7

8

8

9

10

The following flip-flops are internally provided in the interrupt

system of the 𝜇𝑝.

1. R7.5 F/F: The RST7.5 signal is a LOW to HIGH transition active

interrupt control signal input. The LOW to HIGH transition of the

signal is registered in R7.5 flip-flop. Thus R7.5 F/F provides a

seat for RST7.5 interrupt. It is normally RESET when the power

is on. Only LOW to HIGH transition of RST7.5 sets this R7.5 flip-

flop to store interrupt. When M7.5 is RESET only then R7.5

signal can interrupt the processor. R7.5 flip-flop can be reset or

cleared through the SIM instruction. It is for the user to make

use of these facilities.

2. MSE F/F: A common chain MASK SET ENABLE (MSE) F/F is

provided for all the interrupt masks. This flip-flop must be SET

Mask set enable (MSE) flip-flop is also set. This flip-flop can be

SET to ‘1’ using SIM instruction for individually enabling or

disabling the MASK doors.

3. INTE F/F: It is an interrupt enable flip-flop. When the power is

turned ON for the first time, RESET IN signal goes LOW. It

resets the processor 8085A. It also resets the INTE flip-flop so

that the entire interrupt structure is disabled. The INTE F/F can

be SET or RESET using instructions. When INTE F/F is RESET,

except for TRAP no other interrupt signal can interrupt the

processor. When the INTE F/F is SET, the interrupt system is

enabled and other interrupt control signals can be selectively

enabled or disabled.

4. INTA F/F: This is an Interrupt acknowledge flip-flop used only

for internal operation by the microprocessor. When first the

power is ON this F/F is reset by the RESET IN control signal.

Thereafter, whenever a valid interrupt is recognized by the 𝜇𝑝 it

always resets the INTE F/F and then sets the INTA F/F before

further action. Thus, further interrupts shall not be recognized,

unless, user through instructions in the programme desires

further recognition of the interrupt.

5. MASK F/F (M5.5, M6.5, M7.5): M7.5, M6.5 and M5.5 are mask

flip-flops. These Mask F/Fs are used individually to MASK the

interrupts RST5.5, RST6.5 and RST7.5 When these F/Fs are

individually SET, then the corresponding interrupt is masked

and the interrupt control signal in question can not interrupt the

𝜇𝑝. These mask flip-flops are SET to ‘1’ during power ON by

RESET IN control signal going LOW. These mask flip-flops can

be individually and selectively clear to ‘0’ through SIM instruction

(SET INTERRUPT MASK) provided MSE F/F is also SET.

MASK SET ENABLE F/F can be SET simultaneously using SIM

instruction.

TRAP:

 TRAP is a non-maskable vectored interrupt. It can interrupt the

𝜇p once the power is ON. Most 𝜇p interrupt inputs are level sensitive

however, some are edge sensitive and others are both edge and

level sensitive. The TRAP input is both edge sensitive and level

sensitive interrupt. It means that TRAP make a low to high transition

and remain high until it is acknowledged. The positive edge of the

TRAP signal sets the D flip-flop. Because of the AND gate, however

the final TRAP also depends on a sustained high level TRAP input.

This is why the TRAP is both edge and level sensitive. This also

avoids false triggering caused by noise and transients.

For example, suppose the 8085A is midway through an

instruction cycle with another 2μsec to completion. If a 300nsec noise

spike hits the TRAP input, it will edge triggered but not level trigger

the TRAP interrupt because 8085A is still working on the current

instruction cycle. Because the TRAP is both edge and level sensitive

the 8085A avoids responding to false TRAPs.

Since the TRAP input has the highest priority, it is used for

catastrophic events such as power failure, parity errors, and other

events that require immediate attention. In the case of brief power

failure it may be possible to save critical data. With parity errors, the

data may be re-sampled or corrected before going on.

 Whenever TRAP comes, 𝜇p completes the current instruction,

pushes the program counter on the top of the slack and branches to

fixed location 0024H. Once the 8085A microprocessor recognizes a

TRAP interrupt, it will send a high TRAP ACKNOWLEDGE bit to the

TRAP F/F, thus clears the F/F so that even if TRAP remains high it is

not recognized again and again. It is further recognized only if it goes

low, then high and remains high. The TRAP F/F is also cleared when

𝜇p is being reset during which RESET IN goes low and clears the

F/F.

RST7.5, RST6.5 & RST5.5:

These are maskable vectored interrupts. These interrupts can

be enabled or disabled through software. RST 7.5 has the highest

priority among these & RST5.5 has the lowest priority.

 RST7.5 control signal input is a rising edge sensitive interrupt.

Whenever LOW to HIGH transition occurs, it can interrupt the

microprocessor. This LOW to HIGH transition is registered in second

D flip-flop. The output of this flip-flop is labeled I7.5. Whenever the

other inputs are high the 𝜇p recognizes this interrupt. This request is

remembered until

1. the processor 8085A responds to the interrupt. When interrupt

is acknowledged, it sends a high RST7.5ACKNOWLEDGE bit

to the clear input of D flip-flop. This clears it for future interrupts.

2. or until the request is RESET by SIM instruction. R7.5 bit is

made high through SIM instruction and the flip-flop can be

cleared. It is for the user to make use of these facilities.

3. or until the 𝜇p is being reset i.e., RESET IN signal becomes

low. Whenever RST7.5 is recognized, control is transferred to

003CH.

RST6.5 & RST5.5 are also vectored and maskable interrupts but are

HIGH level sensitive interrupt control signal inputs. These are directly

connected to AND gate. The signal at these inputs must be

maintained until the interrupt is acknowledged. Whenever RST6.5 is

recognized, the control is transferred to 0034H & whenever RST5.5 is

recognized, the control is transferred to 002CH.

 The internal control signals I7.5, I6.5 & I5.5 are called pending

interrupts. The signal IE (output of bottom flip-flop) is called interrupt

enable flag. It must be high to activate the AND gates. Also, notice

the M7.5, M6.5 & M5.5 signals. They must be low to enable the AND

gates. e.g., to activate RST7.5 interrupt, I7.5 must be high, M7.5 must

be low and IE must be high.

The interrupt enable flip-flop can be set or reset through

software. This flip-flop can be set using EI instruction. EI stands for

enable interrupt. Whenever EI is executed, it produces a high EI bit

and sets the INTE F/F and produces a high IE output. This flip-flop

can be reset in three ways.

1. When the power is ON for the first time or RESET IN signal

goes low, it resets the INTE F/F so that that entire interrupt

structure is disabled. When INTE F/F is reset except for TRAP

no other interrupt can interrupt the 𝜇p.

2. The INTE F/F can be reset using DI instruction. DI stands for

disable interrupt. When executed it produces a high DI bit &

clear the INTE F/F.

3. When the processor 8085A recognizes an interrupt, it produces

a high ANY INTERRUPT ACKNOWLEDGE bit. This disables

the interrupts.

Because the interrupts are automatically disabled by the ANY

INTERRUPT ACKNOWLEDGE bit, programmer usually includes an

EI as the next to last instruction in the service subroutine so that the

interrupt structure is enabled again. For instance, the last two

instructions of interrupt service subroutines typically are

 Subroutine: :

 :

 EI

 RET

This subroutine cannot be interrupted (except by a TRAP). After

the EI is executed, the processing returns to the main program with

the interrupt system enabled.

INTR:

INTR is a maskable interrupt. A high on this pin interrupts the

processor. The interrupt signal input INTR is not affected by SIM

instruction. Only INTE F/F must be SET to ‘1’ before this interrupt

comes.

With the above explanation can write the logic expression for the

logic variable, VALID INT

VALID INT = 0 when none of the interrupt control signal input are

interrupting the.

VALID INT = 1 when any of the interrupt control signal is active.

Thus, in 8085A, we can write the logical expression for the LOGIC

variable VALID INT as below:

 VALID INT = TRAP + INTE.[INTR + R75. M7.5 + RST6.5. M6.5 +

RST5.5. M5.5]

Lecture-48

Interrupt I/O Transfer

 In previous lectures, it was discussed that whenever an

interrupt is recognized, the control is transferred to an interrupt

service subroutine. If the interrupt acknowledged is a vectored

interrupt (TRAP, RST7.5, RST6.5 or RST5.5), the control is

transferred to fixed locations depending on the interrupt. If the

interrupt acknowledged is non-vectored interrupt (INTR), the address

where the control is transferred is provided by the interrupting device.

The question is how the control is transferred to these addresses?

 Whenever any interrupt is recognized after the execution of the

current instruction during which interrupt has occurred, it executes an

interrupt machine cycle. If the VALID INT is true due to either TRAP

or RST7.5, or RST6.5 or RST5.5 then the interrupt machine cycle

executed is BUS IDLE machine cycle of 6 states, during which the 𝜇p

initially generates the operation code for a restart instruction with the

appropriate restart address (e.g. 0024H for TRAP). This OP code is

loaded in to the instruction register for execution. The PC is not

increment during this BIMC and thus contains the one address of the

instruction following the one being executed when the interrupt

occurs.

The action of this internally generated instruction is as follows;

 RST (internal)

 M [(SP)-1] ← (PCH)

 M [(SP)-2] ← (PCL)

 (SP) ← (SP)-2

 (PC) ← restart address

The Bus Idle machine cycle is identical to OFMC except that the RD

line remains high during BIMC. The operation code which is generally

read in during OFMC is instead generated internally during the BI

machine cycle by the microprocessor. Similar to RSTn instruction,

after BIMC, two more machine cycles (MWRMC) of 3 states each will

be executed to save the content of program counter (PC) on top of

stack.

 After an RST(internal) is executed, the (PC) contains the

address of the starting location for the subroutine that handles the

interrupt. This procedure for identifying the interrupting device and

directly transferring control to the starting location is called a vectored

interrupt. Since only a few memory locations separate the different

vector addresses, there is usually a jump instruction at the vector

address that transfer control to another memory location where the

actual service subroutine begins.

In the case of an INTR interrupt, the interrupt machine cycle

entered is an Interrupt Acknowledged machine cycle. INTAMC is also

similar to OFMC except that in OFMC processor reads the instruction

opcode from program memory and in INTAMC the processor reads

the opcode from the interrupting device. Therefore, IO/M =1 and

instead of RD the 𝜇p generates an INTA strobe during T2 and T3 state

and the value of the program counter is not incremented during

INTAMC. Thus the PC contains the address of the instruction

following the one being executed when instruction occurred.

 In response to the INTA strobe, external logic places an

instruction Opcode on the data bus. This opcode may be of either

CALL ADDR or RST-n. CALL ADDR is 3-byte call instruction and

RST-n is 1-byte call. CALL ADDR is placed by 8259(PIC). If the CALL

ADDR instruction is jammed on the data bus by the external device

then three INTA machine cycles will be executed. First one will be of

6 states during which time the operation code. CDH is placed on the

data bus and loaded into the IR. In the subsequent two machine

cycles, each of 3-states, the lower order 8-bits of the address and the

higher order 8-bits are placed on the data bus and then stored in (Z)

and (W) registers, respectively; this address being the starting

address of the service subroutine. So to save the return address two

more MWRMCs are executed, each of 3 states and the return

address from (PC) is saved at the top of stack.

When the OP-code placed on the data bus is RST-n than only

one INTAMC is executed of 6 states. The restart instruction RST n

has variation from 0 to 7.

 RST (internal)

 [(SP)-1] ← (PCH)

 M [(SP)-2] ← (PCL)

 (SP) ← (SP)-2

 (PC) ← 8xn

This instruction is essentially the same as the previously

mentioned internal restart, except for the restart address, and the fact

that it is generated by external hardware. Restart has the following bit

pattern, frequently referred to as the restart or interrupt vector.

1 1 N N N 1 1 1 N

Where n=NNN is a 3 bit binary number. When this instruction is

executed the program counter is saved on the top of stack, thus save

the return address. The control is transferred to a location with an

address which is 8 times NNN, thus facilitating branch to any one of

eight fixed addresses 00H, 08H, 10H, 20H, 28H, 30H, 38H or 3CH

depending on the value of NNN these addresses are referred to as

restart location, 0, 1, 2.......7.

External logic controls a tri-state buffer with the INTA signal in

order to place a restart vector onto the data bus. In fig a single I/O

device is connected to the 𝜇𝑝 interrupt structure. The output of the

interrupt request F/F is directly connected to the INTR interrupt pin of

the microprocessor. The instruction RST-n can be selected by the 3-

toggle switches NNN (000 to 111) whenever the external input device

is ready to send the pulse of very short duration. This sets the

interrupt request F/F and the INTR signal becomes active. The

processor completes the execution of the current instruction and then

initiates an interrupt acknowledge machine cycle. During this cycle,

the internal INTE F/F is cleared, disabling further interrupt from

affecting the 𝜇𝑝. The INTA signal that is generated enables the three

state buffer and the RST-n instruction opcode is placed on the data

bus. INTA also clears the interrupt request flip-flop. The 𝜇𝑝 inputs the

restart vector, saves the program counter and branches to desired

memory location. The subroutine that starts at location services the

I/O devices.

Fig.8.9 Generation of RST-n Instruction Code in Response to Interrupt

Example:

We have already discussed how an ADC can be interfaced with the

processor and data transfer takes place in polled I/O mode. Let us

interface ADC for data transfer in interrupt mode. The start of

conversion pulse (SOC), end of conversion signal (EOC) and outpur

enable (OE) signals are as shown below.

Fig.8.10 Timing Diagram During ADC Operation

BDB

Tristate Buffer

INTR

INTA
p

Data ready pulse

D7 D6 D5 D4 D3 D2 D1 D0

+5V+5V

DQ

+5V

Enable

Input

Device

8

8

SOC

EOC

OE

The ADC is interfaced to 8085A through port ‘00’ and ‘01’ as shown

fig. Port ‘00’ is used to get 8-bit data from ADC and port ‘01’ is used

for generating control signals SOC and OE.

Fig.8.11Interfacing of ADC with Microprocessor Using I/O Ports 00 and 01

End of conversion (EOC) signal output of ADC is connected to

RST7.5 interrupt. In the main program start of conversion (SOC)

pulse is issued LOW to HIGH to LOW to initiate the data conversion.

RST7.5 interrupt is unmasked and interrupt structure is enabled

before SOC pulse is issued. The microprocessor enters into the halt

state. During conversion EOC is LOW and when the conversion is

over, EOC is made HIGH by ADC. This low to high transition of EOC

generates RST7.5 interrupt and then microprocessor jumps to

interrupt service subroutine (ISS) i.e., (PC) is loaded with 003CH

address. In the subroutine the OE signal is issued and data is read

via port 00.

 Port 00

 Bit 0 of port 01

 RST 7.5

 Bit 1 of port 01

D7,D0

SOC

EOC

OE

8
ADC

