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Corona

INTRODUCTION

Corona phenomenon is the ionization of air surrounding the power conductor. Free electrons
are normally present in free space because of radioactivity and cosmic rays. As the potential
between the conductors is increased, the gradient around the surface of the conductor increases.
Assume that the spacing between the conductors is large as compared with the diameter of the
conductors. The free electrons will move with certain velocity depending upon the field strength.
These electrons will collide with the molecules of air and in case the speed is large, they will
dislodge electrons from these molecules, thereby the number of electrons will increase. The
process of ionization is thus cumulative and ultimately forms an electron avalanche. This
results in ionization of the air surrounding the conductor. In case the ratio of spacing between
conductors to the radius of the conductor is less than 15, flash over will occur between the
conductors before corona phenomenon occurs. Usually for overhead lines this ratio is far more
than this number and hence flash-over can be regarded as impossible.

Corona phenomenon is, therefore, defined as a self-sustained electric discharge in which
the field intensified ionization is localized only over a portion of the distance between the
electrodes.

When a voltage higher than the critical voltage is applied between two parallel polished
wires, the glow is quite even. After operation for a short time, reddish beads or tufts form
along the wire, while around the surface of the wire there is a bluish white glow. If the conductors
are examined through a stroboscope, so that one wire is always seen when at a given half of
the wave, it is noticed that the reddish tufts or beads are formed when the conductor is negative
and a smoother bluish white glow when the conductor is positive. The a.c. corona, viewed
through a stroboscope, has the same appearance as direct current corona. As corona phenomenon
is initiated, a hissing noise is heard and ozone gas is formed which can be detected by its
characteristic odour.
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6.1 CRITICAL DISRUPTIVE VOLTAGE

Consider a single-phase transmission line (Fig. 6.1). N
Let r be the radius of each conductor and d the A | B
distance of separation such that d >>r. Sinceitisa g @ pe—» i O -q
single-phase transmission line, let ¢ be the charge |

per unit length on one of the conductors and hence f—x—>| i

—q on the other. If the operating voltage is V, the * : "l
potential of conductor A with respect to neutral plane |

N will be V/2 and that of B will be — V/2. Consider a Fig. 6.1 1-0 transmission line.
point P at a distance x where we want to find the

electric field intensity. Bring a unit positive charge

at P.

The field due to A will be repulsive and that due to B will be attractive; thereby the
electric field intensity at P due to both the line charges will be additive and it will be

E = q + q = q 1+ 1
T 2megx  2mea(d-x) 2mey |x d-x

The potential difference between the conductors

r d-r
V=-| Ede=| .2 L
d-r ro 2mgy |x d-x

d-r
=4 {lnx—ln(d—x)}

2me,
-9 gpdTr_ 4 4o (6.1)
2me, r TE r
Since r is very small as compared tod, d —r = d.
d
veLme (6.2)
TESO r

Now gradient at any point x from the centre of the conductor A is given by

E = g 1+ 1
Yo 2mey |x d-x

_ 4 d
" 2me,  x(d —x)
Substituting for ¢ from the above equation,
me,V
q= Od
In =
r
megVo 1 d
E = T .
n& 2me, x(d-x)
r
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\%4 d
ymd -
r
V'd
== —q (6.3)
x(d —x)In =
r

Here V’ is the line to neutral voltage of the system. In case of 3-phase system
Vi
J3

where V, is the line to line voltage.

V=

From the expression for the gradient it is clear that for a given transmission system the
gradient increases as x decreases i.e., the gradient is maximum when x = r, the surface of the
conductor, and this value is given by

V'd
gmax = Er = Emax = d
rd-r)ln —
r
—_ V’
rln =
r
, d
or V' =rg o« In - (6.4)

Critical disruptive voltage is defined as the voltage at which complete disruption of
dielectric occurs. This voltage corresponds to the gradient at the surface equal to the breakdown
strength of air. This dielectric strength is normally denoted by g, and is equal to 30 kV/em
peak at NTP i.e., 25°C and 76 cm of Hg.

At any other temperature and pressure

8y=8y"9 (6.5)
where § is the air density correction factor and is given by
-39 (6.6)
273+t

where b is the barometric pressure in cm of Hg and ¢ the temperature in °C.

Therefore, the critical disruptive voltage is given by

V'=rg,8n % KV 6.7)

In deriving the above expression, an assumption is made that the conductor is solid and
the surface is smooth. For higher voltages ACSR conductors are used. The cross-section of
such a conductor is a series of arcs of circles each of much smaller diameter than the conductor
as a whole. The potential gradient for such a conductor will, in consequence, be greater than
for the equivalent smooth conductor, so that the breakdown voltage for a stranded conductor
will be somewhat less than for a smooth conductor. The irregularities on the surface of such a
conductor are increased further because of the deposition of dust and dirt on its surface and
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the breakdown voltage is further reduced. An average value for the ratio of breakdown voltage
for such a conductor and a smooth conductor lies between 0.85 to unity and is denoted by m,,.
Suitable values of m are given below:

Polished wires 1.0

Roughened or weathered wires 0.98 to 0.93
Seven strand cable 0.87 to 0.83
Large cables with more than seven strands 0.90 approx.

The final expression for the critical disruptive voltage after taking into account the
atmospheric conditions and the surface of the conductor is given by

d
V' =rgdm, In = kV (6.8)

When the voltage applied corresponds to the critical disruptive voltage, corona
phenomenon starts but it is not visible because the charged ions in the air must receive some
finite energy to cause further ionization by collisions. For a radial field, it must reach a gradient
g, at the surface of the conductor to cause a gradient g, a finite distance away from the surface
of the conductor. The distance between g, and g is called the energy distance. According to

Peek this distance is equal to (r + 0.301+/7 ) for two parallel conductors and (» + 0.308+/r ) for
co-axial conductors. From this it is clear that g, is not constant as g is, and is a function of the
size of the conductor.

0.3
=g.0 | 1+ — | kV/cm for two wires in parallel. (6.9)
a1+ 33) :
Also if V is the critical visual disruptive voltage, then
V,=g,r1n d
r
\4 0.3
or gvz—U:gOS(l.}__)
rin & Jrs
r
0.3 d
or V,=rgd |1+ In=kV (6.10)
g5
In case the irregularity factor is taken into account,
0.3 d
V. =gm or|l+ —|Iln—
v gO v |: \/E:| r
=21.1m, or |1+ 0.3 lni kV r.m.s. (6.11)
s |

where r is the radius in cms. The irregularity factor 7, has the following values:
m, = 1.0 for polished wires
= 0.98 to 0.93 for rough conductor exposed to atmospheric severities

= 0.72 for local corona on stranded conductors.
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Since the surface of the conductor is irregular, the corona does not start simultaneously
on the whole surface but it takes place at different points of the conductor which are pointed
and this is known as local corona. For this m = 0.72 and for decided corona or general corona
m, = 0.82.

v

Example 6.1: Find the critical disruptive voltage and the critical voltages for local and
general corona on a 3-phase overhead transmission line, consisting of three stranded copper
conductors spaced 2.5 m apart at the corners of an equilateral triangle. Air temperature and
pressure are 21°C and 73.6 cm Hg respectively. The conductor dia, irregularity factor and
surface factors are 10.4 mm, 0.85, 0.7 and 0.8 respectively.

Solution: The critical disruptive voltage is given by

Vd=21.1m8rln1

r
3925 3.92x73.6 3.92x73.6
here & = - - ~0.9813
where 273+¢  273+21 294
950
V,=211x0.85 x 0.9813 x 0.52 In ¢ 2> = 56.5 kV

or the critical disruptive line to line voltage = 56.5 x V3 =97.89 kV Ans.

The visual critical voltage is given by

0.3 d
V =211mdr|1+ In=
’ ( «/rS) r
Here m = 0.7 for local corona

= 0.8 for decided corona or general corona

Now Jré = /0.52x0.9813 = 0.71433

V, for local corona = 21.1 x 0.7 x 0.9813 x 0.52(1 + 0.42) In 1
r
=10.7 x 6.175
=66.07 kV

The line to line voltage will be 66.0725.4/3 = 114.44 kV.
The visual critical voltage for general corona will be

114.44 x % =130.78 kV Ans.

Example 6.2: A conductor with 2.5 cm dia is passed centrally through a porcelain bushing
¢, = 4 having internal and external diameters of 3 cm and 9 cm respectively. The voltage
between the conductor and an earthed clamp surrounding the porcelain is 20 kV r.m.s.
Determine whether corona will be present in the air space round the conductor.

Solution: Let g, be the maximum gradient on the surface of the conductor and g, .
the maximum gradient on the inner side of the porcelain

q
2meor

glmax=
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q

g2 max
2nepe,n

glmax r =g2 max 8rrl
81 max X 125 =8, . x4x15
gl max 48g2 max

81max

or 89 max = i8 - 0.208g, .«
1.5 4.5
Now 20=g1maxrlnﬁ+g2maxx1.5lnﬁ
15 4.5
=1.25 In —— +0.208 x 1.51n —
E1max 1 705 £ 1 max 15

=0.228g,,  +0.3427g,

=0.570g,
20
= —— =35kV/em.
E1max = 5 570

Since the gradient exceeds 21.1 kV/em, corona will be present.

Example 6.3: Determine the critical disruptive voltage and corona loss for a 3-phase
line operating at 110 kV which has conductor of 1.25 ¢cm dia arranged in a 3.05 metre delta.
Assume air density factor of 1.07 and the dielectric strength of air to be 21 kV/cm.

Solution: The disruptive critical voltage

V=21m8rlng
r

305

0.625
=21 x 1.07 x 0.625 x 6.19 = 87 kV Ans.

=21 x 1.07 x 0.625 In

The line to line voltage is 87/3 = 150.6 kV.

Since the operating voltage is 110 kV, the corona loss will be absent.
Corona loss zero. Ans.

Example 6.4: A single phase overhead line has two conductors of dia 1 cm with a spacing
of 1 metre between centres. If the dielectric strength of air is 21 kV/cm, determine the line
voltage for which corona will commence on the line.

Solution: The disruptive critical voltage (phase)

V,=216r1n & =21.1x 05 1n 3_0:

r
=21 x 0.5 x5.2983 = 55.6 kV. Ans.

6.2 CORONA LOSS

The ions produced by the electric field result in space charges which move round the conductor.
The energy required for the charges to remain in motion is derived from the supply system.
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144 ELECTRICAL POWER SYSTEMS

The space surrounding the conductor is lossy. In order to maintain the flow of energy over the
conductor in the field wherein this additional energy would have been otherwise absent, it is
necessary to supply this additional loss from the supply system. This additional power is referred
to as corona loss.

An experimental set up (Fig. 6.2) can be arranged to measure corona loss in case of d.c.
in a concentric cylinder case.

U v
" X

source A Metal
- cylinder

Fig. 6.2 Corona loss measurement with d.c. source.

Since the phenomenon is resistive, the loss will be VI watt. Peek made a number of
experiments to study the effect of various parameters on the corona loss and he deduced an
empirical relation.

2
P =241 x 1075 @ \/g vV, - V,)? kW/km/phase (6.12)

where f'is the frequency of supply, 3 the air density correction factor, V, the operating voltage
inkV and V|, the critical disruptive voltage. The equation derived is for a fair weather condition.
The approximate loss under foul weather condition is obtained by taking V, as 0.8 times the
fair weather value. As a matter of fact, with perfectly smooth and cylindrical conductors no
corona loss occurs until visual critical voltage is reached when the loss suddenly takes a definite
value as calculated by the above formula. It then follows the quadratic law for higher voltages.
The empirical relation as derived by Peek has certain limitations and gives correct results only
if the supply frequency lies between 25 to 120 Hz, the conductor radius is greater than 0.25 cm

and the ratio % > 1.8. Also a small error in m, the irregularity factor, will lead to wrong
0
results when using this formula.
Factors Affecting Corona Loss
The following are the factors that affect corona loss on overhead transmission lines:
(i) Electrical factors,
(i) Atmospheric factors, and
(zi1) Factors connected with the conductors.
The factors are discussed one by one in the sequence.

Electrical Factors: Frequency and waveform of supply: Referring to the expression (6.12)
for corona loss it is seen that corona loss is a function of frequency. Thus higher the frequency
of supply the higher are corona losses. This shows that d.c. corona loss is less as compared with
a.c. corona. Actually because of corona phenomenon in case of a.c. third harmonics are always
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present and hence the frequency is not only 50 Hz but it contains 3rd harmonic component
also. Hence the corona loss is still large as compared with 50 Hz alone.

Field Around the Conductor: The field around the conductor in addition to being a function
of the voltage, depends upon the configuration of the conductors, i.e., whether they are placed
in vertical configuration, delta formation etc. Say if the formation is horizontal the field near
the middle conductor is large as compared to the outer conductors i.e., the critical disruptive
voltage is lower for the middle conductors and hence the corona loss on the middle conductor is
more as compared with the two outer conductors. The height of the conductors from the ground
has its effect on corona loss. The smaller the height, the greater the corona loss.

When lines are irregularly spaced, the surface gradients of the conductors and hence
the corona losses if any are unequal.

Atmospheric Factors: Pressure and temperature effect: From the expression for loss
(6.12) it is clear that it is a function of air density correction factor  which appears directly in
the denominator of the expression and indirectly in the value of critical disruptive voltage.

V,=21.1m,drIn 1 kv
r

The lower the value of 8 the higher the loss; because loss is a(V — Vo)z, the lower the
value of §, the lower the value of V,, and hence higher the value of (V — V)%, where V is the
operating voltage in kV. This shows that the effect of & on corona loss is very serious. For lower
values the pressure should be low and temperature higher. It is for this reason that the corona
loss is more on hilly areas than on plain areas.

Dust, Rain, Snow and Hail Effect: The particles of dust clog to the conductor; thereby
the critical voltage for local corona reduces which increases corona loss. Similarly, the bad
atmospheric conditions such as rains, snow and hailstorm reduce the critical disruptive voltage
and hence increase the corona loss.

Factors Connected with the Conductor: Diameter of the Conductor: From the expression
(6.12) for corona loss it can be seen that the conductor size appears at two places and if other

things are assumed constant,
r
loss o< ,[—
d

and loss o< (V — V)2

It appears from the first relation that loss is proportional to the square root of the size of
the conductor, i.e., larger the dia of the conductor larger will be the loss. But from the second
expression as V|, is approximately directly proportional to the size of the conductor, hence
larger the size of the conductor larger will be the critical disruptive voltage and hence smaller
will be the factor (V- V). It is found in practice that the effect of the second proportionality is
much more than the first on the corona losses, and hence larger the size of the conductor lower
is the corona loss.

Number of Conductors/ Phases: For operating voltage 380 kV and above it is found that
one conductor per phase gives large corona loss and hence large radio interference (RI) level
which interferes with the communication lines which normally run parallel to the power lines.
This problem of large corona loss is solved by using two or more than two conductors per phase
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which is known as bundling of conductors. By bundling the conductors the self GMD of the
conductors is increased thereby; the critical disruptive voltage is increased and hence corona
loss is reduced.

Profile of the Conductor: By this is meant the shape of the conductor whether cylindrical,
flat, oval etc. Because of field uniformity in case of cylindrical conductor the corona loss is less
in this as compared to any other shape.

Surface Conditions of the Conductors: The conductors are exposed to atmospheric
conditions. The surface would have dirt etc. deposited on it which will lower the disruptive
voltage and increase corona loss.

Heating of the Conductor by Load Current: The heating of the conductor by the load
current has an indirect reducing effect on the corona loss. Without such heating the conductor
would tend to have a slightly lower temperature than the surrounding air. In the absence of
heating, dew in the form of tiny water drops would form on the conductor in foggy weather or
at times of high humidity, which induces additional corona. The heating effect of the load
current is, however, large enough to prevent such condensation.

During rains, the heating of the conductor has no influence on the corona loss but, after
the rain it accelerates the drying of the conductor surface. The time during which the water
drops remain on the surface is reduced and the loss is also reduced.

For long transmission lines which pass through routes of varying altitudes, the average
value of corona loss is obtained by finding out the corona loss per km at a number of points and
then an average is taken out.

Methods of Reducing Corona Loss
These losses can be reduced by using
(i) large dia conductors,

(1) hollow conductors, and

(zir) bundled conductors.

It has already been discussed how large dia and bundled conductors reduce the corona
losses. The idea of using the hollow conductors is again the same i.e., to have a large diameter
without materially adding to its weight. In one of the designs one or more layers of copper
wires are stranded over a twisted I-beam core. Another design consists of tongued and grooved
copper segments spiralled together to form a self-supporting hollow tube. This conductor has a
smooth surface. Expanded steel cored aluminium conductors which incorporate plastic or fibrous
spacing material have also been proposed. Lines using the above types of conductors are more
expensive than those using the conventional type and the economic limit to the conductor
diameter appears to be somewhat between 3.75 and 5 cms. These special conductors are more
effective in reducing corona. Losses during fair weather conditions and there may not be the
same degree of improvement during bad weather conditions.

Example 6.5: Determine the corona characteristics of a 3-phase line 160 km long,
conductor diameter 1.036 cm, 2.44 m delta spacing, air temperature 26.67°, altitude 2440 m,
corresponding to an approximate barometric pressure of 73.15 cm, operating voltage 110 kV at
50 Hz.
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.036

Solution: Radius of conductor = —5 - 0.518 cm
The ratio % -_2% 100 =471

r 0.518

r 1

—=,/— =0.046075

and \/; 471 0.0
5 3.92b 3.92x73.15  0.957

273+t 273 +26.67
Assuming a surface irregularity factor 0.85, the critical disruptive voltage

V,=21.1x 0.854r In i
r

=21.1x0.85 x 0.957 x 0.518 In 471
= 54.72 kV line to neutral

The visual critical voltage V, = 21.1m dr (1 + ﬁ) In d

Jrs )

Assuming a value of m = 0.72,

0.3

4/0.518 x 0.957

The power loss = 241 x 1075 % \/g (V- V,_)? kW/phase/km

V,=21.1x0.72 x 0.957 x 0.518 {1+ J In 471 = 66 kV

=241 x 107 x 0.957 0.046075(63.5 — 54.72)
= 0.671 kW/phase/km

or = 107.36 kW/phase

or = 322 kW for three phases.

The corona loss under foul weather condition will be when the disruptive voltage is
taken as 0.8 x fair weather value, i.e.,

V,=0.8 x54.72 = 43.77 kV
Loss per phase/km will be

241 x 107° % 0.046075(63.5 — 43.77)2 = 3.3875 kW/km/phase

or 542 kW/phase
or Total loss = 1626 kW for all the three phases. Ans.

6.3 LINE DESIGN BASED ON CORONA

It is desirable to avoid corona loss on power lines under fair weather conditions. Bad weather
conditions such as rain sleet greatly increase the corona loss and also lower the critical voltage
of the line. On account of the latter effect, it is not practical to design high voltage lines which
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will be corona-free at all times. If the lines are designed without corona even during bad weather
conditions, the size of the towers and the conductors will be uneconomical. Since the bad weather
conditions in a particular region prevail only for a very short duration of the year, the average
corona loss throughout the year will be very small. A typical transmission line may have a fair
weather loss of 1 kW per 3-phase mile and foul weather loss of 20 kW per three phase mile.

6.3.1 Disadvantages of Corona

(i) There is a definite loss of power even though it is not much during fair weather condition.
(ii) When corona is present the effective capacitance of the conductors is increased because the
effective dia of the conductor is increased. This effect increases the flow of charging current.
Because of corona triple frequency currents flow through the ground in case of a grounded
system and they give rise to a voltage of triple frequency in an ungrounded system. These
triple frequency currents and voltages interfere with the communication circuits due to
electromagnetic and electrostatic induction effects.

6.3.2 Advantages of Corona

It reduces the magnitude of high voltage steep fronted waves due to lighting or switching by
partially dissipating as a corona loss. In this way it acts as a safety valve to some extent.

6.4 RADIO INTERFERENCE

Radio interference is the adverse effect introduced by corona on wireless broadcasting. The
corona discharges emit radiation which may introduce noise signals in the communication
lines, radio and television receivers. It is mainly due to the brush discharges on the surface
irregularities of the conductor during positive half cycles. This leads to corona loss at voltages
lower than the critical voltages. The negative discharges are less troublesome for radio reception.
Radio interference is considered as a field measured in microvolts per metre at any distance
from the transmission line and is significant only at voltages greater than 200 kV. There is
gradual increase in RI level till the voltage is such that measurable corona loss takes place.
Above this voltage there is rapid increase in RI level. The rate of increase is more for smooth
and large diameter conductors. The amplitude of RI level varies inversely as the frequency at
which the interference is measured. Thus the services in the higher frequency band e.g.,
television, frequency modulated broadcasting, microwave relay, radar etc. are less affected.
Radio interference is one of the very important factors while designing a transmission line.

6.5 INDUCTIVE INTERFERENCE BETWEEN POWER AND
COMMUNICATION LINES

.
It is a common practice to run communication lines along the same route as the power lines
since the user of electrical energy is also the user of electrical communication system. The
transmission lines transmit bulk power at relatively higher voltages. These lines give rise to
electromagnetic and electrostatic fields of sufficient magnitude which induce currents and
voltages respectively in the neighbouring communication lines. The effects of extraneous
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currents and voltages on communication systems include a
interference with communication service e.g., superposition of O
extraneous currents on the true speech currents in the

communication wires, hazard to person and damage to apparatus Cb> C‘:)

due to extraneous voltages. In extreme cases the effect of these
fields may make it impossible to transmit any message faithfully
and may raise the potential of the apparatus above the ground @) (e)
to such an extent as to render the handling of the telephone
receiver extremely dangerous.

Electromagnetic Effects: Consider Fig. 6.3. a, b and ¢ are

the power conductors of a 3-phase single circuit line on a @)
transmission tower and d and e are the conductors of a neigh- o e
bouring communication line running on the same transmission

towers as the power conductors or a neighbouring separate line. O O

Let the distances between power conductors and communication
conductorsbe D _,, D, D, ,, D, ,D,, and D  respectively and the
currents through power conductors be I, I, and I, respectively O

such that I + I, + I, = 0. The flux linkage to conductor d due to

current I in conductor @ willbe y_, =2 x 10~ In = Similarly, Fig. 6.3 :.S-phase singlg ci.rcuit
a a ) power line, communication

d
the flux linkage to conductor e due to current I, in conductor a line and their images.

=92 x 1071 In ——
Wae a Dae

Mutual flux linkage between conductor d and e due to current I, will be

Wy~ = 2 x 10771, In Dee
Dad

- D
or mutual inductance M, = Vaa ~ Vae _ 2 x 107 In D—“e H/metre

I a ad
Similarly M, and M, the mutual inductances between conductor b and the loop de and
between conductor ¢ and the loop de respectively are given as

D
M,=2x10"1n be. H/metre
Dy,

M,=2x10"1n Dee. H/metre
D cd

These mutual inductances are due to fluxes which have a phase displacement of 120°;

therefore, the net effect of the magnetic field will be
M=M,+M,+M,

where M is the net mutual inductance which is the phasor sum of the three inductances.

If I is the current in the power conductors and f is the supply frequency, the voltage
induced in the communication conductors d and e will be V = 2nf M1 volts per m.
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It is to be noted that larger the distance between the power conductors and the
communication conductors, smaller is the value of mutual inductance and since the current
through the power conductors is displaced by 120°, there is appreciable amount of cancellation
of the power frequency voltages. But the presence of harmonics and multiples of third harmonics
will not cancel as they are in phase in all the power conductors and, therefore, are dangerous
for the communication circuits. Also, since these harmonics come within audio frequency range,
they are dangerous for the communication circuits.

Electrostatic Effects: Consider again Fig. 6.3. Let g be the charge per unit length of the
power line. The voltage of conductor d due to charge on conductor can be obtained by considering
the charge on conductor a and its image on the ground. Let conductor a be at a height 4, from
the ground. Therefore, the voltage of conductor d will approximately be

q Dad ]_ ].
_ 1,1 g
Vad 2me -[ha Lc ! (2h, - x)} :

By _
— q |:1n 2ha - x:l — q |:1n 2ha Dad :|
2me, x lp, 2me D,

a

9 In
TESO r

Now from the geometry the voltage of conductor a is V,, = , where r is the

radius of conductor a.
Substituting for g in the expression for V_, above, we get
_ 2meV, 1 2h, — D,y

V = . In
“7 n2h e, D
r
In 2h, - D,,
v . Dua
@ 2h,
In

r
Similarly, we can obtain the potential of conductor d due to conductors b and ¢ and
hence the potential of conductor d due to conductors a, b and ¢ will be

Vo=Vt Vg + Vea
Similarly, the potential of conductor e due to conductors a, b and ¢ can be obtained.

PROBLEMS

6.1. Determine the corona characteristics of a 3-phase, 50 Hz, 132 kV transmission line 100 km long
running through terrain at an altitude of 600 metres, temp. of 30°C and barometric pressure
74 cm. The conductors are 1.5 cm diameter and spaced with equilateral spacing of 2.75 metres.
Assume surface irregularity factor of 0.9 and m, = 0.75.

6.2. A 3-phase, 50 Hz, 132 kV transmission line consists of conductors of 1.17 cm dia and spaced
equilaterally at a distance of 3 metres. The line conductors have smooth surface with value for
m = 0.96. The barometric pressure is 72 cm of Hg and temperature of 20°C. Determine the fair
and foul weather corona loss per km per phase.
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	20.1 Classification of Overvoltage Phenomena 
	20.2 Fundamental (Power) Frequency Overvoltages (Non-resonant Phenomena) 
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	21.4.1 Surge protection by metal–oxide surge arresters 
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	21.5.1 Definition and some principal matters of standards 
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