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Internal Architecture of Intel 8085A 

The functional block diagram of 8085A is shown in fig.4.1. 

 

Fig.4.1 Internal Architecture of 8085A Microprocessor 

It consists of five essential blocks. 

(1) Arithmetic Logic Section 

(2) Register Section 

(3) The Interrupt Control Section 

(4) Serial I/O Section 

(5) The Timing And Control Unit 
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There is an internal bi-directional data bus of 8-bit wide. This bus is 

used to transfer data and instructions among various internal 

registers. All the internal registers which transfer data to the internal 

bus are tri-state registers. Higher order address bus (A15-A8) and 

time-multiplexed lower order address data bus (AD7-AD0) are the 

external buses and used to interface peripherals and memory chips 

to CPU. Address buffer and address/data buffers isolate the internal 

data bus from the external address bus and address/data bus and 

drive the external address bus and address/data bus. The CPU can 

send the address of desired memory locations and I/O chip through 

these buffers. The 8-bit internal data bus is also connected to the 

address/data buffers. The bi-directional arrows indicate a tri-state 

connection that allows the address/data buffer to send or receive data 

from the 8-bit internal data bus. In the output mode the information on 

the data bus is loaded into the 8-bit data latch that drives the 

address/data bus output buffer. The output buffers are floated during 

input or non transfer operations. During the input mode, data from the 

external bus is transferred over the internal data bus to internal 

register. 

    The figure shown does not include the control signals driving 

internal registers. 

Arithmetic & Logic Section: This section consists of: 

(a) Accumulator (A) 

(b) Temporary Register (TR) 

(c) Flag Register (FR) 

(d) Arithmetic Logic Unit (ALU) 



Accumulator: 

  Arithmetic and/or logic operations on one or two operations 

are the basic data transformations implemented in a µρ one of these 

two operands is always in the accumulator. Accumulator is an 8-bit 

register accessible to the user is connected to the 8-bit internal data 

bus. The bi-directional arrow between the accumulator and the bus 

indicates a tri-state connection that allows the accumulator to send or 

receive data. In addition, it has a two state 8-bit output. The content 

of the accumulator is always available at this two state output as one 

of the operands for the ALU. The contents of the accumulator can be 

manipulated through instructions. Its content can be incremented and 

decremented. The content of the memory location can be transferred 

to the accumulator and vice-versa. The result of arithmetic/ logical 

operations carried out by ALU is also stored back in the accumulator. 

In other words, it accumulates the result of the operation, hence, the 

name accumulator. 

 

Temporary registrar (TR): 

This is an 8-bit register not accessible to the user. It is used by 

the processor for internal operations. The second operand as and 

when necessary is loaded in to this register by the microprocessor 

before the desisted operation takes placed in the ALU. The temporary 

register has 8-btis two state output. The second operand is always 

available at this output. 

 

 

 



Arithmetic Logical Unit (ALU): 

ALU is a combination logic block which performs the desired 

operation on the two operands. The contents of the accumulator and 

the temporary register are the inputs to the ALU. This is governed by 

the control signals generated by the timing and control unit. The 

various arithmetic and logical operations that can be performed by 

ALU are: 

 Binary addition, subtraction, increment and decrement,  

 Logical AND, OR and EX-OR, 

 Complement, 

 Rotate left of right. 

 

The result of the operation is, in general, stored back in accumulator. 

In subtraction operation, the content of the temporary register is 

subtracted from the content of the accumulator and is stored back in 

the accumulator. 

In many applications it is appropriate to represent data in binary 

coded decimal (BCD) form. The result on any operation on BCD 

should also be in BCD form. The ALU contains additional logic to 

adjust result of addition operations where the operands are 

interpreted as BCD data. 

 

Flags register: 

The ALU influences a number of flip flops called flags which 

store information related to the results of arithmetic and logical 

operations. Taken together this flags constitute a flag register. 



Flag register is an 8-bit register accessible to the user through 

instruction. Each bit in the flag register has a specific function. Only 5 

bits out of 8 bits are used as shown below: 

D7 D6 D5 D4 D3 D2 D1 D0 

S Z X AC X P X CY 

 

The three crossed bit are redundant bits and not used. They 

can be either ‘0’ or ‘1’ but normally they are forced to be zero. The 

other five bits are affected as a result of execution of an instruction. 

All instructions do not affect these flags e.g. data transfer operation 

do not affect these flags. The meaning and the effect of these flags 

are as follows. 

 

CY (Carry) Flag bit: 

This particular bit is SET (=1) if there is a carry from the MSB 

position during an addition operation or if there is a borrow during the 

subtraction operation otherwise the flag is reset (=0). The processor, 

by design, does the subtraction operation also by taking 2’s 

complement of one operand and adding it to another operand.  

 

P (Parity) Flag bit: 

The parity flag test for the number of ‘1’s in the accumulator. If 

the accumulator holds on an even number of 1’s, it is said that even 

parity exists and the parity flag is set to ‘1’. However, if the 

accumulator holds an odd number of ‘1’ it is called odd parity and the 

parity flag is reset to ‘0’. In other words, if the module-2 sum of the bit 

is ‘0’, this flag is set otherwise the flag is reset.  



AC (Auxiliary Carry) Flag bit:  

This bit is set if there is a carry from b3 bit to b4 bit of 

accumulator during addition operation otherwise it is reset. The AC 

flag is useful for BCD arithmetic and is used in a particular instruction 

known as DAA (Decimal Adjust Accumulator). 

 

Z (Zero) Flag bit:  

Zero flag bit is SET if the result of an operation is zero, 

otherwise it is RESET. 

 

Sign Flag bit: 

The sign flag is set to the condition of the most significant bit of 

the accumulator following the execution of arithmetic or logical 

operation. These instructions use the MSB of the data (result) to 

represent the sign of the number contained in the accumulator. A set 

sign flag represents a negative number, where as a reset flag means 

a positive number. 

 

Example 1: 

Let us consider the execution of the instruction ADD B.   

ADD is the mnemonic for addition. The first operand is known to exist 

in the accumulator (Reg. A). Register B contains the second operand. 

The meaning of the instruction is add the contents of the B register to 

the contents of A register and store the result back in the accumulator 

(A). Symbolically we can write,  

(A)           (A) + (B) 



Let as suppose the register contents are (A) = 9BH, (B) = A5H 

before the execution of the instruction. It means, 

(A) = 9BH     →  (1001  1011)2 

(B) = A5H     →  (1010  0101)2 

ADD  B  = (A+B)   →  (0100  0000)2 

As a result of addition, there is a carry from b3 to b4 position and 

therefore AC is set. Also there is a carry from the MSB out and, 

therefore, CY flag is also set. Soon after the execution of ADD B 

instruction the accumulator contains (A) = (0100 0000)2 = 40H and is 

non-zero. Therefore Z flag is reset to zero. Also, result contains only 

one ‘1’, an odd number. Therefore, parity bit is also be reset to zero. 

Since the MSB of the result is zero, therefore the sign (S) bit is also 

reset. Thus the flag register, soon after the execution of the 

instruction, contains (0001 0001)2 = 11H. 

 

Example 2: 

 Let us consider the execution of another instruction SUB  B.  

SUB is the mnemonic for subtraction. Accumulator consists of first 

operand. Register B contains the second operand. The meaning of 

the instruction is subtract the contents of the B register from the 

contents of A register and store the result back in the accumulator 

(A). Symbolically we can write,  

(A)           (A) - (B) 

Let as suppose the register contents are (A) = A5H, (B) = 9BH 

before the execution of the instruction. It means, 

Before execution A = A5H and B = 9BH 

 



(A) = 1010 0101    → (1010  0101)2 

(B) = 1001 1011    2’s complement → (0110  0101)2 

                                                Carry 1 (0000  1010)2          

Since result is non zero, therefore, Z bit is ‘0’. Sign bit is also ‘0’ 

because MSB of the result is ‘0’. AC is also ‘0’ because in addition 

(2’s complement), there is no carry from b3 to b4. Parity bit is ‘1’ (2 

ones). CY bit seems to be ‘1’. But it is complemented and then 

stored. Therefore, CY bit is stored as ‘0’. It also indicates that (A) is 

having larger number than register (B), otherwise smaller one.  Thus 

the flag register, after the execution of the instruction, contains (0000 

0100)2 = 04H. 

Let us consider (A) is having 9B H and (B) is A5 H before execution. 

(A) = 1001 1011    → (1001  1011)2 

(B) = 1010 0101    2’s complement → (0101  1011)2 

                                                Carry 0 (1110  0110)2          

Therefore, in this case, the flag bits will be S=1, Z=0, AC=1, P=1, 

CY=1 (complement of ‘1’ obtained in addition). Thus the flag register, 

after the execution of the instruction, contains (1001 0101)2 = 95H.   

 

Let use consider execution of another instruction DCR C. DCR is the 

mnemonic for decrement register. C register is the operand. This 

instruction means decrement the content of the C register by ‘1’ and 

store it back in the C register. The MACRO RTL implemented is  

 C)← C  - 1  

Let us suppose (C) contains D2H before the execution of the 

instruction. After the execution of instruction, (C) shall contains D1H 

and, therefore, is not zero. Therefore the flag register will contain 



(1000 0100)2 or 84H. On the other hand, if (C) contains 01H just 

before the execution of the instruction DCR C. Just after the 

execution of the instruction, (C) shall contain 00H. Since the result of 

the operation is ‘0’ the zero flag shall now be SET to ‘1’. Other flag 

will be affected in the normal way. 

 

These flag bit are utilized in many instructions for branching 

operations. During the execution of a program normally one of these 

bits are tested for TRUE & FALSE condition. Depending upon the 

condition the program branches to different paths. This is shown in 

fig.4.2 

            

 

Fig.4.2 Branching Operation Depending on Condition 
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REGISTER SECTION:  

There are six 8-bit general purpose registers designated as B, 

C, D, E, H and L. All these registers are accessible to the user. It 

means their contents can be read without destroying it or some new 

data can be written into it through instructions. These registers 

constitute a register array like a small on-chip RAM with addressable 

memory location. Internal control signals select the register for a read 

or write operation. This means that the CPU can either load a register 

from the 8-bit internal data bus or output the register content to the 

internal 8-bit data bus. Data can also be transferred or exchanged 

among registers. In an instruction, these six registers along with the 

accumulator (A) is identified by a 3-bit code designated either SSS or 

DDD. Whenever SSS is used, it corresponds to source register and 

whenever DDD is used, it corresponds to destination register. The 

address codes used for these internal registers are as follows. 

                         SSS or DDD 

                                000                         (B) 

                                001                         (C) 

                                010                       (D) 

                                011                          (E) 

                                100                       (H) 

                                101                       (L) 

       110   (M) 

                                111                        (A) 

Note: In the above codes (110) is assigned to memory pointer or M-

register. Whenever it is used for SSS or DDD it means a specific 



 

 

register pair (H,L) together forms a 16 bit register known as memory 

address register (MAR) or M- pointer. In other words, whenever M is 

used in an instruction, it is assumed the 16-bit address of memory 

location, being referred, is available in (H,L) register pair. 

 

As an example consider the instruction  

MOV  r1, r2 

This is an ALP statement. MOV is the mnemonic for move operation. 

r1 and r2 are the operand registers. In this statement r2 is the source 

register and r1 is the destination register. The meaning of the 

instruction is ‘move the contents of r2 register into r1 register. 

Symbolically this basic operation can be described by a macro RTL 

statement: 

(r1)          (r2) 

       This is a single byte instruction and this single byte is the 

operation code. The arrangement of the operation code (op-code) of 

is shown below: 

               

                                 

                                                  

                                r1 code         r2 code            

E.g., the op-code for MOV  A, H is (01 111 100)2 =7CH. When the 

instruction 7CH is executed the content of (H) register is transferred 

to (A) register. Note that the content of (H) register is not destroyed. 

However, the original content of register (A) is lost. 

0 1 D D D S S S 



 

 

Let us consider another instruction MOV  D, M. This is also a 

single byte instruction. Memory pointed by (H,L) register pair is the 

source operand and (D) is the destination register. 

The meaning of this instruction is move the content of the 

memory location whose address is available in (H,L) register pair into 

the (D) register. The opcode of this instruction is (01 010 110)2 = 56H. 

Whenever this instruction is executed, the content of the memory 

location pointed by (H,L) register pair is loaded into the (D) register. 

The content of the memory location is not destroyed. However, the 

content of the memory location Y1Y0 H whose address is X3X2X1X0 H 

available in (H,L) pair goes into the D register. The original content of 

D is lost. This is illustrated in fig.4.3. 

 

Fig.4.3 

 

The six general purpose registers B, C, D, E, H, L can also be 

combined together as register pairs for 16-bit operation only the 

following pairs are possible: 

H L

X3         X2 X1         X0

Y1         Y0

Y1         Y0

D

X3X2X1X0



 

 

i. (B,C) pair with (C) lower order 8-bits and (B) higher order 8-bits. 

ii. (D,E) pair with (E) lower order 8-bits and (D) higher order 8-bits. 

iii. (H,L) pair with (L) lower order 8-bits and (H) higher order 8-bits. 

 

There is another register called stack pointer (SP) which is 16-

bit register itself. Whenever an instruction refers to the register pair 

(B,C), (D,E), (H,L) or (SPH,SPL), an 8-bit code RP is used in the 

operation code to identify the register pairs.          

(RP)   

0 0  (B,C) 

0 1  (D,E) 

1 0  (H,L) 

1 1  (SPH,SPL) 

 

PROGRAM COUNTER:  

 This is a 16-bit register accessible to the user. It is a special 

purpose register and it always contains the address of the next 

instruction to be fetched from the program memory and executed by 

the CPU in a program sequence. Thus the program counter keeps 

the track of the program execution in which instructions are to be 

executed next.  

 Whenever necessary in the program execution, the address 

information available in PC is sent out to the address lines during T1 

timing slot of a machine cycle. The higher order 8-bits of program 

counter (PCH) are sent out through A15–A8 address lines & the lower 

order 8-bits of program counter (PCL) are sent out through AD7–AD0 

lines during T1 states. Since the BDB contains the lower order 8-bit 



 

 

address information during T1 state only, an ALE pulse is also issued 

by the processor. The above statement can be symbolically stated 

through macro RTL shown in the figure 22.    

 

T1:  A15-A8    (PCH), AD7-AD0   (PCL), ALE =  

T2: (PC)   (PC) +1 

Whenever the address information sent from the program counter to 

the address bus (external world) during T1 state, then the (PC) shall 

be incremented by 1 during the subsequent T2 state so that program 

counter points to the next sequential byte. If may be the data required 

if the previous instruction is of two bytes or three bytes long or it may 

be the next instruction to be fetched and executed. If instructions are 

sequentially arranged in memory, this will guarantee that they will 

also be executed sequentially. Sometimes, program execution 

requires that non-sequential instructions executed e.g. JMP or CALL 

type instructions. These instructions require the program counter to 

be loaded with an entirely new value. An 8-bit microprocessor with a 

16-bit program counter requires two data moves to completely modify 

the contents of the PC.  

Note: If the address information for PC has not been sent out during 

T state to the external world, them the PC will not be incremented 

using T2 state. 

 

When the microprocessor is RESET, the CPU initializes the PC 

to 0000 H. Therefore, the first instruction of the program should be at 

0000 H in the memory address space of the CPU. 



 

 

STACK POINTER REGISTER: 

The stack is a storage area of the processor. It consists of 

number of sequential and RWM locations in which microprocessor 

saves the internal register contents during subroutine calls and 

interrupts so that they will not be changed or destroyed by a 

subroutine. 

8085A µ𝑝 can address directly 64K memory locations. This is 

known as directly addressable memory space starting from the 

address 0000H to FFFFH. This entire memory area is usually divided 

by the user into program area, data area and stack area. It is for the 

user to see that program area and data area do not overlap with that 

of stack memory area. The size of the stack memory area depends 

upon the application. 

For example, the user for a particular process control operation 

may decide to reserve memory space starting from 2600H to 2700H 

as the stack memory space. This is shown in fig.4.4. 

 

Fig.4.4 

The stack pointer is a 16-bit register accessible to the user. It is 

required to refer any memory location of the stack. It contains the 
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address of the top of stack into which last data is put or written. 

Writing data into a stack is called a PUSH operation and reading data 

from a stack is called a POP operation. In the figure shown 2700H is 

known as the bottom of the stack.  

There is an instruction in the instruction set to initialize the stack 

pointer register to the bottom of the stack. This instruction is  

LXI  SP, BADR. 

LXI is the mnemonic for Load immediate. BADR is a symbolic 

name given to the 16-bit address which is to be loaded into the stack 

pointer. The meaning of the instruction is to load the 16-bit of data 

immediately available in the instruction itself into the stack pointer. In 

this example, BADR equals 2700 H. When this instruction is executed 

the situation is shown in figure. The stack pointer now points to the 

bottom of the stack. 

Now, let us suppose that while calling a subroutine it becomes 

necessary to save the contents of (B,C) register pair and (D,E) 

register pair as they are to be used in the subroutine. The process of 

saving the content of a register is known as push operation. The push 

operation is performed at the beginning of a subroutine to save 

register contents and the instruction for pushing the contents of the 

internal register is PUSH e.g. PUSH B. The meaning of the 

instruction is to push the contents of (B,C) register pair on to the 

stack so that it can be saved there till it is restored. PUSH B operation 

affects the stack and stack pointer as follows: 

Since the stack pointer always holds the address of the last 

byte of data pushed onto the stack, therefore, when PUSH B 

instruction is executed, the stack pointer is decremented by 1 and the 



 

 

contents of the (B) register are copied onto the stack at that address. 

The stack pointer is decremented again, and the contents of the (C) 

register are copied to that address. Just after the execution of the 

PUSH B instruction, the situation is shown in fig. 

 

Fig.4.5 

  Similarly, to store the contents of (D,E) register pair PUSH D 

instruction is used. The meaning of this instruction is push the 

contents of the (D,E) pair onto the stack to save them there as shown 

in figure just after the execution. 

 

Fig.4.6 

Since the contents of (B,C) & (D,E) register pairs are stored at 

the top of the stack, these registers are now available for further 
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computation in the subroutine. At a later stage of execution of the 

program after utilizing B, C, D, E registers, there may be a need to 

restore the original contents to the respective registers. E.g. at the 

end of the subroutine, the data is restored to the proper register. 

The restoration of the contents is a READ operation from the 

stack and is known as POP operation. A POP register instruction 

copies the stored data from the stack back into the indicated register 

pair. Just before the execution of POP instruction, let us say the 

situation is as shown below: 

 

Fig.4.7 

Note that registers (B), (C), (D) and (E) have some different 

contents because these registers are used in the subroutine. 

To restore the contents of (B,C) register pair, POP B instruction 

is used. Whenever this instruction is executed, the contents from the 

top of the stack are read and written into the (B,C) register pair. To 

restore the contents (D,E) register pair POP  D instruction is used. 

The question is in which sequence these instructions are to be 

executed so that the contents are restored properly. The obvious 

sequence in POP D first & then POP B i.e., the data must be popped 
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off in the reverse order from which it was pushed. This type of stack 

is called Last-in-First-out (LIFO) memory. 

Just after the execution of POP D & POP B instructions, the 

situation is as shown in figure: 

 

Fig.4.8 

 

When POP D instruction is executed, the data from the top of the 

stack is copied to register (E), data pointer is incremented by 1, then 

the next byte of the saved data is copied from the stack to the register 

(D), and SP is further incremented by 1. 

This is similar to earlier status (before PUSH operation) but now 

some data has been stored in the stack area but these are irrelevant 

anyway. They will be destroyed during the next PUSH operation on 

the stack. From the above discussion, following points emerge: 

1. The stack pointer always points to the top of the stack up to 

which it is full with relevant data. 

2. Storing or saving the data from the registers on stack is known 

as PUSH operation. 
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3. The restoring or reading data from the stack onto certain 

internal registers is known as POP operation. 

4. The stack operates on Last-in-first-out (LIFO) basis. 

5. The stack pointer can be initialized to the bottom of the stack 

but bottom of the stack cannot be utilized to store any useful 

data. 

6. It is for the user to see that the program area does not overlap 

with stack area. 
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W-Z: 

(W) and (Z) are two 8-bit temporary registers not accessible to 

the user. They are exclusively used for the internal operation by the 

microprocessor. These registers are used either to store 8-bit of 

information in each (W) and (Z) registers or a 16-bit data in (W,Z) 

register pair with lower order 8-bits in (Z) and higher-order 8-bits in 

(W) register. 

When a 3-byte instruction containing 2-byte address is to be 

executed by the µ𝑝, the first byte is the (op-code byte) which is 

fetched and then decoded by the decoder. Then two memories read 

machine cycles are executed one by one to read the two-byte 

address, one in each machine cycle and placed in (W,Z) register pair. 

During instruction execution, in next machine cycle, the address in 

(W,Z) register pair is transferred to the address latch to address 

memory or I/O for data transfer. 

 

Increment-Decrement Address Latch: 

It is another 16-bit internal register latch available in the register 

section for internal operations and is not accessible to the user. The 

address latch serves two functions. First, it selects an address to be 

sent out from the program counter, from the stack pointer, or from 

one of the 16-bit register pairs. Second, it latches this address onto 

the address lines for the required time. The 16-bit addresses from 

8085A allow the microprocessor up to 216 memory locations through 

A15-A8 and AD7-AD0 lines. An increment/decrement register allows 



the contents of any of the 16-bit registers to be incremented or 

decremented. 

 

Instruction Register & Instruction Decoder: 

The first word of an instruction is the operation code, i.e., binary 

code for that instruction. Therefore, in the first machine cycle of any 

instruction µ𝑝 fetches the instruction from the memory. The op-code 

representing the instruction to be executed is fetched from the 

(program) memory location pointed to by (PC) and loaded into the 

instruction register (IR). The IR passes this op-code to the instruction 

decoder which interprets this op-code appropriately in order to decide 

what operation needs to be done for executing this instruction. The 

instruction decoder tells the control unit the type of instruction to be 

executed; the number of machine cycles necessary to execute the 

instruction etc. In response, the control unit generates all the 

necessary control signals which go into the different internal block of 

the microprocessor. These different control signals are generated by 

what is known as Micro-programming technique. Micro-programming 

means the microprocessor instruction decoding operated like a small 

version of a µ𝑝 itself. As the µ𝑝 goes through the fetch and execute 

cycles, the microprogramming logic goes through a series of fetch 

and executes cycles. 

E.g. if the instruction is ADI 04H, then the first binary code read 

by the µ𝑝 is C6H into the (IR). After decoding this, the decoder will 

recognize that another memory read cycle is required to read 04H to 

be added to the number in the accumulator. The decoder will direct 

the control circuit to send out another memory read pulse and 



transfers the data coming on the data bus into the temporary register 

(Temp), so that it can be added to the accumulator. When the 

addition is completed the control circuit directs the result back to the 

accumulator. The program counter is then incremented to point the 

next memory address and send out another memory read pulse to 

read the µ𝑝 code of next instruction from memory. 

 

Interrupt Control Section: 

Sometimes it is necessary to interrupt the execution of the main 

program to answer a request from an I/O device. For instance, an I/O 

device may send an interrupt signal to interrupt control unit to indicate 

that data is ready for input. The µ𝑝 temporarily stops what it is doing, 

inputs the data and then returns to what it was doing. To enable the 

processor to service the device requesting service through interrupt, 

processor accepts and issues control signals through interrupt control 

section. 

 

Serial I/O Control: 

Sometimes, I/O devices work with serial data rather than 

parallel. In this case, the serial data stream from an input device must 

be converted to 8-bit parallel data before the computer can use it. 

Likewise the 8-bit data out of a processor must be converted to serial 

form before a serial output device can use it. 

The SID (Serial Input Data) input is where serial data enters the 

8085A. The SOD (Serial Output Data) output is where the serial data 

leaves the 8085A. Two instructions known as SIM & RIM allow the 



user to perform the serial parallel conversion needed for serial I/O 

device.   

      

Timing and Control section: 

The timing and control section supervise the complete 

operation of the 𝜇𝑝. The on-chip clock oscillator which produces the 

internal clock is a part of this section. The timing and control section 

also has a state generator circuit to generate 10 different states 

namely T1, T2, T3, T4, T5, T6, TRESET, THALT, TWAIT and THOLD. State 

generator is a multi-mode counter. The next state of the state 

generator from the present state is decided by many of the control 

signals input like READY, HOLD, Interrupt control signals - TRAP, 

RST7.5, RST6.5, RST5.5 and INTR. In each state this section 

generates many control signals for executing the instruction fetched. 

The operation of the 𝜇𝑝 is cyclic in natural. During the normal 

operation from the word GO, 𝜇𝑝 sequentially fetches and executes 

one instruction after another until a HALT instruction is executed. The 

fetching and execution of a single instruction constitutes an 

instruction cycle. The instruction cycle consists of one or more read 

or write operation to memory or an I/O device. Each memory and I/O 

reference requires a mechanic cycle. In other words every time a byte 

of data is move from CPU to I/O or memory or from memory or I/O to 

CPU, a machine cycle is required. 

 

There are seven different kinds of machine cycles in the 8085 A: 

1.  Opcode Fetch Machine Cycle (OFMC) 

2.  Memory Read Machine Cycle (MRMC) 



3. Memory Write Machine Cycle (MWRMC) 

4. I/O Read Machine Cycle (IORDMC) 

5. I/O Write Machine Cycle (IOWRMC) 

6. Interrupt Acknowledge Machine Cycle (INTAMC) 

7. Bus Idle Machine Cycle (BIMC) 

    Three status signals IO/M , S1 and S0 generated at the beginning 

of each machine cycle and RD     , WR      and INTA        generated during T2 

state of the machine cycle identify each type of the machine cycle. 

The status signals remain valid for the entire duration of the cycle. 

The instruction fetch portion of an instruction cycle requires a 

machine cycle for each byte of the instruction to be fetched. Since an 

instruction consists of 1 to 3 bytes (1, 2 or 3), the instruction fetch is 

one to three machine cycles in duration. 

   The first machine cycle of an instruction cycle is always an 

OPCODE FETCH machine cycle which is always single byte long 

and the 8-bits obtained during an OPCODE FETCH are always 

interpreted as an OPCODE of an instruction. Note that to fetch an 

instruction, i.e., to transfer an entire instruction from memory to the 𝜇𝑝 

necessitates an OPCODE FETCH machine cycle. However, one or 

two memory read machine cycles are also needed to complete the 

fetch for 2nd and 3rd bytes of the instruction respectively.  

     The number of machine cycles required to execute the 

instruction depends on the particular instruction. Some of the 

instructions require no addition machine cycles after the instruction 

fetch is complete, other requires additional machine cycles to write or 

read data to or from memory or I/O devices. The total number of 

machine cycles required varies from one to five. Around 50% of the 



instructions require only one machine cycle for fetching and executing 

the instruction. No instruction requires more than five machine cycles. 

Machine cycles like the memory read or memory write may occur 

more than once in a single instruction cycle. 

       

MC-1 MC-2 MC-3 MC-4 MC-5 

                                       Instruction cycle 

            The shaded area may be required for executing the 

instruction. The timing and control unit of  𝜇𝑝  automatically generates 

the proper machine cycles required for an instruction cycle from 

information provided by the op-code. 

            Each machine cycle contains a number of 320ns clock 

periods when cryptal used is 6.25 MHz. One clock period, i.e. the 

period between two negative going transitions of that clock is called T 

state. The various T-states are T1, T2, T3, T4, T5 and T6. Most of the 

machine cycles have three T-states each (T1, T2, T3). Only OPCODE 

FETCH machine cycle has either 4 or 6 states depending on the 

instruction. The first 3rd states of the machine cycle are identical to a 

MRMC, the additional T states in OFMC are the T-states required by 

the 8085A to decode the op-code and decide what actions are 

needed in succeeding machine cycles. 

    The combined MCS along with T-states are shown in fig. 

MC-1 MC-2 MC-3 MC-4 MC-5 

T1 T2 T3 T4 T5 T6 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 
 

                                            MC-i  (i=2, 3, 4, 5) 



          Thus one complete transition from state T1 through the state 

diagram and back to T1 constitutes a complete machine cycle. The 

partial state transition diagram is shown in fig.4.9 assuming 

READY=1 i.e., no wait state. 

 

Fig.4.9 Partial State Transition Diagram indicating T1-T6 States 

         The shaded portion shows that these states may be needed in 

some instructions. Instruction cycles for various 8085A instructions 

require from 4 to 18 states. The total number of states actually 

required to execute an instruction will depend on the READY & HOLD 

signal inputs. 

 For example, consider the 3 byte instruction  

STA  ADDR. 

STA stands for store accumulator direct. The meaning of the 

instruction is transfer the content of the accumulator to an external 
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memory location whose address is specified in the instruction i.e., 

ADDR. Since this location can be anywhere in the 64k memory space 

that the 8085A can directly address, 16-bits are required for the 

address. Thus the instruction contains 3 bytes- a 1 byte op-code and 

2-byte address. The instruction is stored in the memory as follows: 

 

 

 

Three machine cycles (MC) are required to fetch this instruction. In 

MC-1, i.e., Op-code fetch machine cycle, the op-code is transferred 

from memory to the instruction register during T1-T3 states and then 

during T4 state it is interpreted. At this point, the CPU knows that it 

must do more machine cycles - two MRMCs to fetch the complete 

instruction. In MC-2 the lower address is transferred from the memory 

to the temporary register (Z). In MC-3 the third byte, i.e. the higher 

byte address is transferred from the memory to the temporary register 

(W). When the entire instruction is in the 𝜇𝑝, it is executed. Execution 

means a data transfer from the 𝜇𝑝 to memory. The content of the 

accumulator is transferred to the memory location, whose address 

was previously transferred to the 𝜇𝑝 by the proceeding two memory 

read machine cycles. The address of the memory location to be 

written is generated as follows: 

The high order address byte in temp register (W) is transferred to the 

address latch and the low order address byte in temp register (Z) is 

transferred to address/data latch. The content of the (A) is then 

placed on the data bus. This data transfer is affected by a MWRMC. 

OP CODE Byte -1 

LOWER ADDR Byte - 2 

HIGHER ADDR Byte - 3 



Thus 3-byte STA instruction has four machine cycles in its instruction 

cycles. 

Mnemonic Instruction byte Machine Cycle 

STA OP code OFMC 

 Lower address                            MRMC 

 Higher address                             MRMC 

  MWRMC 

  The actions taken by the processor in different machine cycles are 

shown in fig.4.10. 

 

Fig.4.10 Instruction Cycle and Machine Cycles for STA Addr Instruction 

                                                       

Thus STA ADDR instruction has a total of 13 states. If the 8085A is 

operating at 325.5ns time, the STA instruction cycle is executed in 

4.23 μsec. This time period is the instruction execution time, although 

it actually includes both the instruction fetch and the execution time. 
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OPCODE FETCH Machine Cycle: 

           Figure shows the 8085A instruction fetch timing diagram. The 

instruction fetch cycle requires either four or six clock periods (T-

states). The other machine cycles that follow OFMC will need three 

clock cycles. 

The purpose of an OFMC is to read the contents of a memory 

location containing the opcode addressed by the program counter 

and to place it in the instruction register (IR). 

 In the beginning of state T1, the 8085A puts a low on the IO/M  

line of the system bus indicating a memory operation. The 8085A 

sets S1=1 and S0=1 on the system bus, indicating the memory fetch 

operation. This status information remains available for the duration 

of the machine cycle. During T1 state, the 16-bit address A15-A0 of the 

memory location containing the opcode is obtained from the program 

counter (PC) and placed on the address and address/data latches. 

The higher order 8-bits of the address appear on the address bus A8-

A15 remains constants until the end of the state T3. During T4 state the 

data on the address bus is unspecified. The low order 8-bits of the 

address are placed on the address/data bus, AD7-AD0 at the 

beginning of T1. This data however remains valid only until the 

beginning of state T2 at which time the address/data bus is floated 

(tri-stated) because this is time multiplexed bus and used as the data 

bus during T2 and T3 states. Therefore address latch enable (ALE) 

signal issued by the 𝜇𝑝 during T1 is used to latch this lower order 

address in some external latch 74LS373 on its falling edge. The 16-

bit address selects a particular memory location. 



             During state T2, at the beginning, the RD      signal goes low 

indicating read operation and the opcode to be fetched is placed on 

the data bus, AD7-AD0 by the addressed memory location. The 

contents of (PC) is incremented be 1 during this state as during T1 

state the (PC) has sent the address to address bus. The accessed 

memory should be fast enough to output its data before RD      goes 

high. Slower memories can gain more time by pulling the READY 

signal of 8085A LOW. This will introduce an integral number of TWAIT 

states between T2 and T3 as long as READY is low. On the rising 

edge of the RD      control signal in T3 state, the opcode obtained from 

the memory is transferred to the microprocessor instruction register. 

 During state T4, the 8085A decodes the instruction and 

determines whether to enter state T5 or to enter T1 state of the next 

machine cycle. From the operation code, the 𝜇𝑝 determines what 

other machine cycles, if any, must be executed to complete the 

instruction cycle. State T5 and T6 when entered, are used for internal 

𝜇𝑝 operations necessitated by the instruction. 

 The micro RTL flow for 4-states OFMC is shown below. 

OFMC:     Status signals  IO/M =0,  S1=1,  S0=1      

T1: A15-A8   (PCH), AD7-AD0  (PCL), ALE =  

T2: RD      = 0, (PC)    (PC) +1, AD7-AD0   M(AB) 

T3: RD      = 1,  , (IR)  BDB 

T4: 𝜇𝑝 decodes the opcode and decides whether T5 and T6  states 

are required or next machine cycle executed is T1 

During T2 state, after the RD       signal is made LOW, the external 

decoding circuit decodes the address put on the address bus duirng 



T1 state. One of the memory location is selected and it puts 8-bit 

information on the data bus during T2 and T3 states. Processor has 

no control on it. Processor has already issued the signals and now it 

is the job of the external decoding circuit to make use of the signals 

IO/M   and RD      and address lines to allow the external memory to put 

the data on the data bus. Therefore, this action is shown by shaded 

area. Whatever information is avaiable on BDB at LOW to HIGH 

transition of RD     , that will be read and processed. The timing 

waveform during 4-state OFMC is shown in fig.4.11. 

 

Fig.4.11 Timing Diagram During 4-state OpCode Fetch Machine Cycle 

During T4–T6 states, AD7-AD0 lines are tri-stated and A15-A8 lines are 

unspecified.  
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Fig.4.12 shows the timing diagram for a 6-state OFMC: 

 

Fig.4.12 Timing Diagram During 6-state OpCode Fetch Machine Cycle 

 

Note: Whenever the address information is sent from the program 

counter to the external world during T1 state, then the (PC) is 

incremented by 1 during the subsequent T2 state so that PC points to 

the next subsequent byte. However, if the address information from 

(PC) has not been sent out during the T1 state to the external world, 

then (PC) will not be incremented during T2 state. 

 

Memory READ Machine Cycle: 

           It requires 3 states T1 to T3. The purpose of the memory READ 

operation is to read the contents of a memory location addressed by 

a register pair and place the data in one of internal registers of the 
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𝜇𝑃. The source of address issued during T1 is not always the program 

counter but may be any one of the several other register pairs in the 

𝜇𝑃 depending on the particular instruction of which the machine cycle 

is a part. 

    The 8085A uses machine cycle MC-1 to fetch and decode the 

instruction. It then performs the memory read operation in MC-2. E.g. 

in LXI H,  Addr. 

           The IO/M  signal is made LOW to indicate the external world 

that a memory reference is required. Then 𝜇𝑃 made S0=0 and S1=1 

indicating that memory READ operation is to be performed. During 

T1, the 𝜇𝑃 places the contents of higher byte of the memory address 

register, such as that contents of the (PCH) or (H) register on  A15-A8 

and the contents of the  lower byte of the memory address register 

such as contents of the (PCL) or (L) register on AD7-AD0. The 𝜇𝑃 sets 

ALE signal HIGH indicating the beginning of MC-2. As soon as ALE 

goes to LOW in the middle of T1, the lower byte of the address is 

latched in an external latch. The same bus is now going to be used 

as data bus. 

           During T2 state, the RD      signal goes LOW indicating a READ 

operation. If the address sent out during T1 state is from (PC), then 

(PC) is incremented by 1 otherwise not. The external logic gets the 

data from the memory location addressed by the memory address 

register such as (H,L) pair and places the data on to bi-directional 

data bus AD7-AD0. 



           During T3 state, RD       signal goes HIGH. This LOW to HIGH 

transition of signal transfers the data from the data bus to internal 

register such as the accumulator. 

MRMC:     Status signals IO/M =0,  S1=1,  S0=0      

T1: A15-A8   (PCH), AD7-AD0  (PCL), ALE =  

T2: RD      = 0, (PC)    (PC) +1, AD7-AD0   M(AB) 

T3: RD      = 1,  , (Internal Reg.)  AD7-AD0 or BDB 

Or 

T1: A15-A8   (H),     AD7-AD0           (L),       ALE =  

T2: RD      = 0, AD7-AD0   M(AB) 

T3: RD      = 1,  , (Internal Reg.)  AD7-AD0 or BDB 

The timing diagram during memory ready machine cycle is shown in 

fig.4.13. 

 

Fig.4.13 Timing Diagram During Memory Read Machine Cycle 
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Memory WRITE Machine Cycle: 

    It also requires only T1 to T3 states. The purpose of memory 

write machine cycle is to store the contents of any of the 8085A 

register such as the accumulator into a memory location addressed 

by a register pair such as (H,L). 

The 8085A 𝜇𝑃 made IO/M  = 0 in the beginning of T1 state to 

indicate memory reference operation. Then it puts S0 = 1 and S1 = 0 

indicating a memory write operation. 

 During T1 state 8085A places the memory address register 

(MAR) higher byte such as the contents of the (H) register on lines 

A15-A8 and also places the MAR lower byte such as the contents of 

the (L) register on lines AD7-AD0. The 𝜇𝑝 sets ALE signal HIGH 

indicating the beginning of MWRMC. As soon as ALE goes to low, 

the lower byte of the address is latched in an external latch. During T2 

state, WR      goes LOW indicating memory write operation. It also 

places the contents of the internal register, say accumulator, on data 

lines AD7-AD0. 

           During T3 state, WR      goes HIGH. This LOW to HIGH transition 

is used to transfer the data from the data lines to the memory location 

address by MAR such as (H,L) register pair. 

MWRMC:   Status signals IO/M =0,  S1=0,  S0=1      

T1: A15-A8   (H),     AD7-AD0           (L),       ALE =  

T2: WR      = 0, AD7-AD0  (𝜇𝑝 Internal Reg.) 

T3: WR      = 1,  , M(AB)  AD7-AD0 or BDB  



Similar to MRMC, the processor simply puts the data on the data bus 

and makes required signals LOW or HIGH. It is the job of the external 

decoding circuit to make use of these signals to enable the external 

memory to accept the data from the data bus. Processor has no 

control over it. Therefore, this action during T3 state is shown shaded. 

The timing diagram during MWRMC is shown in fig.4.14: 

             

Fig.4.14 Timing Diagram During Memory Write Machine Cycle 

                                                                              

I/O READ and I/O WRITE M/C cycle: 

           The IORDMC and IOWRMC are identical to MRMC & 

MWRMC respectively except that appropriate status signals are 

issued at the beginning of T1 state. IO/M  signal goes HIGH at the 
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beginning to indicate I/O device reference is needed in case of I/O 

mapped input/output device. In these machine cycles higher & lower 

address bytes are identical and equal to the 8-bit address of the I/O 

port while in case of MRMC or MWRMC, the address bus output is 

the true 16-bits address. These machine cycles will be discussed in 

detail alongwith I/O techniques. 

 

HALT State: (THALT): 

            Whenever the HLT instruction is executed 𝜇𝑝 enters in to the 

HALT state. The opcode for HLT instruction is 76H. Assume that an 

opcode fetch machine cycle is initiated, and the opcode transferred to 

the instruction register during T3 state is 76H i.e, the opcode of HLT 

instruction. During state T4, the control unit decodes the instruction 

opcode and sets an internal HALT flip-flop of the processor. Upon 

exiting state T4, the 𝜇𝑝 enters state T1 of the next machine cycle. As 

indicated in the figure, the HALT flip-flop is checked in T1 state of the 

next machine cycle. If it is found set, instead of entering T2 state, the 

𝜇𝑝 enters in to the HALT state otherwise in T2 state. Thus five states 

are required to reach the HALT state. In the HALT state, the address 

and address/data buses along with RD     , WR      and IO/M  are placed in 

their high independence states (floated). 

         There are only three ways to exit from a HALT state as shown 

in fig.4.15. 

1. A LOW an RESET IN               input of the 8085A resets the entire system 

and loads the program counter with all 0’s. When RESET IN               

signal is active, 𝜇𝑝 comes out of HALT state and enters into 



RESET state and remains their as long as RESET IN               is active. 

After reset, 8085A immediately starts program execution from 

0000H. 

2. The second way to get out of the HALT state is to make the 

HOLD signal input high. The processor then enters the HOLD 

state, but when the HOLD input goes LOW again, the CPU 

returns to the HALT state. 

3. The third method of coming out of a HALT state is when and 

interrupt signal is active. This method works only if interrupts were 

enabled with an enable interrupt (EI) instruction in the program 

before HALT instruction is executed. Whenever interrupt comes 

𝜇𝑝 leaves the HALT state and start executing the interrupt service 

subroutine (ISR). 

        

Fig.4.15 Partial State Transition Diagram indicating HALT State 
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WAIT State TWAIT: 

According to timing specification for the 80854A, during a read 

operation (OFMC/ MRMC/ IORMC), the device providing data to the 

𝜇𝑝 must have valid data on the dater bus within [(5/2) T-225] ns after 

the 𝜇𝑝 provides a valid address at its address pins. For T=320ns, the 

memory or input device must have an access time of 575ns or less. 

Sometimes microprocessors are used with memories or I/O 

devices which have longer access time. In case of memories, the 

lower the cost, generally the longer the access time. To 

accommodate long access time, the longer the access time. To 

accommodate long access time, the 8085A has a state called the 

WAIT state, TWAIT as shown in fig.4.16 

 

 

Fig.4.16 Partial State Transition Diagram indicating WAIT State 
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When the 𝜇𝑝 places the address of the memory or I/O device 

on address bus in T1 state, external control logic monitoring this 

address can request that the microprocessor waits for a period of 

time equal to an integral number of clock periods. The external 

control logic does this by making the READY input signal to the 𝜇𝑝 

logic ‘0’ during T2 state. After making RD      signal LOW in T2 state, 

microprocessor monitors READY signal input. If this input is found 

LOW, then microprocessor enters in TWAIT state instead of T3. When 

the READY signal becomes logic ‘1’, the 𝜇𝑝 comes out of TWAIT state 

and enters into T3 state and machine cycle continues. Wait states 

continue to be inserted as long as READY is LOW. 

The effect of entering a wait states is to hold all external signals 

from the 𝜇𝑝 in the same state they were on at the end of state T2 i.e.,  

the content of address bus, data bus, and control bus are all held 

constant. This stretches the duration of address and RD      pulse, so 

devices with access time greaten than 575ns can be read. If N wait 

states are introduced into the machine cycle, the required access 

time is [(5/2 + N) T-225] ns. 

Fig.4.17a shows a circuit to insert single WAIT state in OFMC.  

 

 

Fig.4.17(a) Logic Circuit to Control READY Signal Input 
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The waveforms at different points of control circuit alongwith 

address bus, data bus and control signals are shown in fig.4.17b.  

 

Fig.4.17(b) Waveforms at Different Points to Insert Single WAIT State 
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output also clears 1st flip-flop and Q1 becomes LOW. The next 

CLK(OUT) signal sets the READY signal. Sampling of the READY 

line again in WAIT state allows processor to enter in T3 state. Thus  a 

single WAIT state is inserted in  OFMC and allows the 𝜇𝑝 to 

synchronize to memories or I/O devices with long access time. This, 

of course, is associated with increased instruction cycle time and 

additional logic to control the READY input. 

External logic controlling the READY line can be designed so 

that none, a fixed number or a variable number of WAIT states 

transitions occur during each cycle. This logic can also be designed 

so that these wait states occurs only for specific types of machine 

cycles eg. OFMC.   

A monostable can be triggered by 8085A RD      or WR      pulse as 

shown in fig.4.18, to make READY signal LOW each time the slower 

device is addressed. The monostable can be enabled by the same 

signal that is sent to select the addressed device. This prevents a 

WAIT state to be introduced during each read or write operation. 

 

Fig.4.17 Monoshot Used to Make READY Signal LOW for Fixed Duration  
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HOLD State THOLD: 

The 𝜇𝑝 enter in this state, if some external device wants direct 

memory access (DMA) so that a string of data can be transferred to 

or from the memory at a fast rate.  The device requesting for DMA 

makes the HOLD signal input high. 

There are two possibilities-(i) the 𝜇𝑝 may be in the HALT state 

and then the HOLD signal input becomes HIGH. In this situation, the 

𝜇𝑝 first sets the HLDA flip-flop (HOLD acknowledge F/F) & then 

enters the HOLD state (ii) the 𝜇𝑝 is executing some machine cycle. 

While execution 𝜇𝑝 checks the HOLD signal at unique points during a 

machine cycle. HOLD request signal to processor is asynchronous in 

nature.  The 𝜇𝑝 synchronizes this request and at proper time in a 

machine cycle provides the HLDA signal by setting HLDA F/F to the 

requesting device. The HOLD state is entered after a machine cycle 

is completed. 

The HOLD signal is checked during T2 state (after READY input 

has been checked) and also during T4 state (provided the concerned 

machine cycle requires T5 & T6 states also). If the HOLD signal is 

found high, HLDA F/F is set and the processor enters the HOLD state 

after the current machine cycle is over. 

Upon entering the HOLD state, the HLDA output signal from the 

𝜇𝑝 is set HIGH. During this state, the address & the data buses at the 

RD     , WR       & IO/M   control lines are floated (tri-stated). By floating its 

address, data and control buses, the 𝜇𝑝 effectively disconnects itself 



from the system. From this point on, it is up to the requesting device 

to provide address, data & control signals to memory & I/O port to 

implement the data transfer i.e., the requesting device then enables 

its tri-state buffers. When DMA process is over it floats its address 

data, and control buses and then bring the HOLD signal input LOW. 

 

Fig.4.19 Partial State Transition Diagram Indicating HOLD State 

The 𝜇𝑝 exits the HOLD state and then continue its previous 

operation from the point at which it was suspended by the HOLD 

request. If resets, the HLDF F/F first. If the HALT F/F is found to be 
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set, it enters the HALT state else enters T1 state. The partial state 

transition diagram showing HOLD state is shown in fig.4.19. 

 

STATE TRANSITION DIAGRAM 

 Figure shows the complete state transition diagram of 8085A. 

As discussed in previous lecture, the processor will be in one of the 

10 different states namely T1, T2, T3, T4, T5, T6, TRESET, THALT, TWAIT 

and THOLD. The next state of the state generator from the present 

state is decided by many of the control signals input like READY, 

HOLD, Interrupt control signals - TRAP, RST7.5, RST6.5, RST5.5 

and INTR. State transition diagram is a compact way of showing 

when during an instruction cycle the 8085A will enter a HALT state, 

insert a WAIT state, respond to HOLD input or respond to an interrupt 

input. 

 If RESET IN               is asserted, the 𝜇𝑝 stays in a reset state with the 

address bus floating. When RESET IN               is not asserted or the previous 

machine cycle is finished, the CPU enters T1 of a new machine cycle. 

If the previous instruction executed was a HLT instruction state, the 

CPU goes directly to a HALT state.  The three ways to exit the halt 

state are by a RESET, a valid interrupt and a HOLD request. Note 

that the exit from HALT state is only temporary. As soon as HOLD is 

not asserted, the CPU returns to the halt state. 

 If a halt state was not entered, then the CPU proceeds to T2 of 

the machine cycle. Here it checks the READY input. If the READY 

line is not asserted (LOW), the CPU inserts wait states until READY 

goes high. 

  



 

Fig. State transaction diagram of 8085 A  

The hold input is checked at several points. If a hold request is 

present on it, the hold-acknowledge flip-flop is set. However the CPU 

will not enter the HOLD state until the end of the current machine 

cycle. 
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 Note that the 𝜇𝑝 does not check whether a valid interrupt 

request is present until the end of the instruction cycle. This is 

necessary so that the address of the next instruction can be pushed 

onto the stack. The processor checks valid interrupt after the 

completion of instruction cycle because it has to execute the interrupt 

service subroutine and for that internal registers, PC, SP are 

required. However, it checks the HOLD signal after every machine 

cycle and enters into HOLD state at the end of current machine cycle 

if the signal is active. In HOLD state processor has nothing to do – 

neither memory read/write nor I/O operation. Therefore, if both HOLD 

and Interrupt becomes active together, processor first respond to 

HOLD signal and after DMA operation only it responds to interrupt. 

The complete state transition diagram is shown in fig.4.20. 

 To summarize, a halt state is entered during the T1, a wait state 

is entered after T2, a hold state is entered after a machine cycle is 

completed, and an interrupt is responded to after an instruction cycle 

is completed. 


