
Lecture-13

Internal Architecture of Intel 8085A

The functional block diagram of 8085A is shown in fig.4.1.

Fig.4.1 Internal Architecture of 8085A Microprocessor

It consists of five essential blocks.

(1) Arithmetic Logic Section

(2) Register Section

(3) The Interrupt Control Section

(4) Serial I/O Section

(5) The Timing And Control Unit

Timing and control

 Unit

CLK

CKT

STATUS

SIGNALS
CONTROL

ADDER BUFFER ADDERR/DATA BUFFER

B(8) C(8)

D(8) E(8)

H(8) L(8)

PC(16)

SP(16)

W(8) Z(8)

INR/DCR ADDR LATCH(16)

SERIAL I/O
INTERRUPT

A(S) TR(S)

 FR(S) IR(8)

ALU

INTERRUPTION

DECODER&

M/C ENCODER

SOD SID

(Internal Bus)

8

8

CONTROL SIGNALS

OUTPUT SIGNALS

CLK (OUT)

IO/M

S1

S0

ALE

RD

WR

READY

HLDA

HOLD

RESET IN

RESET (OUT)

X1

X2

8
A15-A8

8

AD7-AD0

8
8

8

8

16 (AB)

8

8

8

8
8 8 8

8

8

8

8

8

8

A15-A8 A7-A0

D7-D0

INTA

INTR

RST7.5

RST6.5

RST5.5

TRAP

There is an internal bi-directional data bus of 8-bit wide. This bus is

used to transfer data and instructions among various internal

registers. All the internal registers which transfer data to the internal

bus are tri-state registers. Higher order address bus (A15-A8) and

time-multiplexed lower order address data bus (AD7-AD0) are the

external buses and used to interface peripherals and memory chips

to CPU. Address buffer and address/data buffers isolate the internal

data bus from the external address bus and address/data bus and

drive the external address bus and address/data bus. The CPU can

send the address of desired memory locations and I/O chip through

these buffers. The 8-bit internal data bus is also connected to the

address/data buffers. The bi-directional arrows indicate a tri-state

connection that allows the address/data buffer to send or receive data

from the 8-bit internal data bus. In the output mode the information on

the data bus is loaded into the 8-bit data latch that drives the

address/data bus output buffer. The output buffers are floated during

input or non transfer operations. During the input mode, data from the

external bus is transferred over the internal data bus to internal

register.

 The figure shown does not include the control signals driving

internal registers.

Arithmetic & Logic Section: This section consists of:

(a) Accumulator (A)

(b) Temporary Register (TR)

(c) Flag Register (FR)

(d) Arithmetic Logic Unit (ALU)

Accumulator:

 Arithmetic and/or logic operations on one or two operations

are the basic data transformations implemented in a µρ one of these

two operands is always in the accumulator. Accumulator is an 8-bit

register accessible to the user is connected to the 8-bit internal data

bus. The bi-directional arrow between the accumulator and the bus

indicates a tri-state connection that allows the accumulator to send or

receive data. In addition, it has a two state 8-bit output. The content

of the accumulator is always available at this two state output as one

of the operands for the ALU. The contents of the accumulator can be

manipulated through instructions. Its content can be incremented and

decremented. The content of the memory location can be transferred

to the accumulator and vice-versa. The result of arithmetic/ logical

operations carried out by ALU is also stored back in the accumulator.

In other words, it accumulates the result of the operation, hence, the

name accumulator.

Temporary registrar (TR):

This is an 8-bit register not accessible to the user. It is used by

the processor for internal operations. The second operand as and

when necessary is loaded in to this register by the microprocessor

before the desisted operation takes placed in the ALU. The temporary

register has 8-btis two state output. The second operand is always

available at this output.

Arithmetic Logical Unit (ALU):

ALU is a combination logic block which performs the desired

operation on the two operands. The contents of the accumulator and

the temporary register are the inputs to the ALU. This is governed by

the control signals generated by the timing and control unit. The

various arithmetic and logical operations that can be performed by

ALU are:

 Binary addition, subtraction, increment and decrement,

 Logical AND, OR and EX-OR,

 Complement,

 Rotate left of right.

The result of the operation is, in general, stored back in accumulator.

In subtraction operation, the content of the temporary register is

subtracted from the content of the accumulator and is stored back in

the accumulator.

In many applications it is appropriate to represent data in binary

coded decimal (BCD) form. The result on any operation on BCD

should also be in BCD form. The ALU contains additional logic to

adjust result of addition operations where the operands are

interpreted as BCD data.

Flags register:

The ALU influences a number of flip flops called flags which

store information related to the results of arithmetic and logical

operations. Taken together this flags constitute a flag register.

Flag register is an 8-bit register accessible to the user through

instruction. Each bit in the flag register has a specific function. Only 5

bits out of 8 bits are used as shown below:

D7 D6 D5 D4 D3 D2 D1 D0

S Z X AC X P X CY

The three crossed bit are redundant bits and not used. They

can be either ‘0’ or ‘1’ but normally they are forced to be zero. The

other five bits are affected as a result of execution of an instruction.

All instructions do not affect these flags e.g. data transfer operation

do not affect these flags. The meaning and the effect of these flags

are as follows.

CY (Carry) Flag bit:

This particular bit is SET (=1) if there is a carry from the MSB

position during an addition operation or if there is a borrow during the

subtraction operation otherwise the flag is reset (=0). The processor,

by design, does the subtraction operation also by taking 2’s

complement of one operand and adding it to another operand.

P (Parity) Flag bit:

The parity flag test for the number of ‘1’s in the accumulator. If

the accumulator holds on an even number of 1’s, it is said that even

parity exists and the parity flag is set to ‘1’. However, if the

accumulator holds an odd number of ‘1’ it is called odd parity and the

parity flag is reset to ‘0’. In other words, if the module-2 sum of the bit

is ‘0’, this flag is set otherwise the flag is reset.

AC (Auxiliary Carry) Flag bit:

This bit is set if there is a carry from b3 bit to b4 bit of

accumulator during addition operation otherwise it is reset. The AC

flag is useful for BCD arithmetic and is used in a particular instruction

known as DAA (Decimal Adjust Accumulator).

Z (Zero) Flag bit:

Zero flag bit is SET if the result of an operation is zero,

otherwise it is RESET.

Sign Flag bit:

The sign flag is set to the condition of the most significant bit of

the accumulator following the execution of arithmetic or logical

operation. These instructions use the MSB of the data (result) to

represent the sign of the number contained in the accumulator. A set

sign flag represents a negative number, where as a reset flag means

a positive number.

Example 1:

Let us consider the execution of the instruction ADD B.

ADD is the mnemonic for addition. The first operand is known to exist

in the accumulator (Reg. A). Register B contains the second operand.

The meaning of the instruction is add the contents of the B register to

the contents of A register and store the result back in the accumulator

(A). Symbolically we can write,

(A) (A) + (B)

Let as suppose the register contents are (A) = 9BH, (B) = A5H

before the execution of the instruction. It means,

(A) = 9BH → (1001 1011)2

(B) = A5H → (1010 0101)2

ADD B = (A+B) → (0100 0000)2

As a result of addition, there is a carry from b3 to b4 position and

therefore AC is set. Also there is a carry from the MSB out and,

therefore, CY flag is also set. Soon after the execution of ADD B

instruction the accumulator contains (A) = (0100 0000)2 = 40H and is

non-zero. Therefore Z flag is reset to zero. Also, result contains only

one ‘1’, an odd number. Therefore, parity bit is also be reset to zero.

Since the MSB of the result is zero, therefore the sign (S) bit is also

reset. Thus the flag register, soon after the execution of the

instruction, contains (0001 0001)2 = 11H.

Example 2:

 Let us consider the execution of another instruction SUB B.

SUB is the mnemonic for subtraction. Accumulator consists of first

operand. Register B contains the second operand. The meaning of

the instruction is subtract the contents of the B register from the

contents of A register and store the result back in the accumulator

(A). Symbolically we can write,

(A) (A) - (B)

Let as suppose the register contents are (A) = A5H, (B) = 9BH

before the execution of the instruction. It means,

Before execution A = A5H and B = 9BH

(A) = 1010 0101 → (1010 0101)2

(B) = 1001 1011 2’s complement → (0110 0101)2

 Carry 1 (0000 1010)2

Since result is non zero, therefore, Z bit is ‘0’. Sign bit is also ‘0’

because MSB of the result is ‘0’. AC is also ‘0’ because in addition

(2’s complement), there is no carry from b3 to b4. Parity bit is ‘1’ (2

ones). CY bit seems to be ‘1’. But it is complemented and then

stored. Therefore, CY bit is stored as ‘0’. It also indicates that (A) is

having larger number than register (B), otherwise smaller one. Thus

the flag register, after the execution of the instruction, contains (0000

0100)2 = 04H.

Let us consider (A) is having 9B H and (B) is A5 H before execution.

(A) = 1001 1011 → (1001 1011)2

(B) = 1010 0101 2’s complement → (0101 1011)2

 Carry 0 (1110 0110)2

Therefore, in this case, the flag bits will be S=1, Z=0, AC=1, P=1,

CY=1 (complement of ‘1’ obtained in addition). Thus the flag register,

after the execution of the instruction, contains (1001 0101)2 = 95H.

Let use consider execution of another instruction DCR C. DCR is the

mnemonic for decrement register. C register is the operand. This

instruction means decrement the content of the C register by ‘1’ and

store it back in the C register. The MACRO RTL implemented is

 C)← C - 1

Let us suppose (C) contains D2H before the execution of the

instruction. After the execution of instruction, (C) shall contains D1H

and, therefore, is not zero. Therefore the flag register will contain

(1000 0100)2 or 84H. On the other hand, if (C) contains 01H just

before the execution of the instruction DCR C. Just after the

execution of the instruction, (C) shall contain 00H. Since the result of

the operation is ‘0’ the zero flag shall now be SET to ‘1’. Other flag

will be affected in the normal way.

These flag bit are utilized in many instructions for branching

operations. During the execution of a program normally one of these

bits are tested for TRUE & FALSE condition. Depending upon the

condition the program branches to different paths. This is shown in

fig.4.2

Fig.4.2 Branching Operation Depending on Condition

Lecture-14

REGISTER SECTION:

There are six 8-bit general purpose registers designated as B,

C, D, E, H and L. All these registers are accessible to the user. It

means their contents can be read without destroying it or some new

data can be written into it through instructions. These registers

constitute a register array like a small on-chip RAM with addressable

memory location. Internal control signals select the register for a read

or write operation. This means that the CPU can either load a register

from the 8-bit internal data bus or output the register content to the

internal 8-bit data bus. Data can also be transferred or exchanged

among registers. In an instruction, these six registers along with the

accumulator (A) is identified by a 3-bit code designated either SSS or

DDD. Whenever SSS is used, it corresponds to source register and

whenever DDD is used, it corresponds to destination register. The

address codes used for these internal registers are as follows.

 SSS or DDD

 000 (B)

 001 (C)

 010 (D)

 011 (E)

 100 (H)

 101 (L)

 110 (M)

 111 (A)

Note: In the above codes (110) is assigned to memory pointer or M-

register. Whenever it is used for SSS or DDD it means a specific

register pair (H,L) together forms a 16 bit register known as memory

address register (MAR) or M- pointer. In other words, whenever M is

used in an instruction, it is assumed the 16-bit address of memory

location, being referred, is available in (H,L) register pair.

As an example consider the instruction

MOV r1, r2

This is an ALP statement. MOV is the mnemonic for move operation.

r1 and r2 are the operand registers. In this statement r2 is the source

register and r1 is the destination register. The meaning of the

instruction is ‘move the contents of r2 register into r1 register.

Symbolically this basic operation can be described by a macro RTL

statement:

(r1) (r2)

 This is a single byte instruction and this single byte is the

operation code. The arrangement of the operation code (op-code) of

is shown below:

 r1 code r2 code

E.g., the op-code for MOV A, H is (01 111 100)2 =7CH. When the

instruction 7CH is executed the content of (H) register is transferred

to (A) register. Note that the content of (H) register is not destroyed.

However, the original content of register (A) is lost.

0 1 D D D S S S

Let us consider another instruction MOV D, M. This is also a

single byte instruction. Memory pointed by (H,L) register pair is the

source operand and (D) is the destination register.

The meaning of this instruction is move the content of the

memory location whose address is available in (H,L) register pair into

the (D) register. The opcode of this instruction is (01 010 110)2 = 56H.

Whenever this instruction is executed, the content of the memory

location pointed by (H,L) register pair is loaded into the (D) register.

The content of the memory location is not destroyed. However, the

content of the memory location Y1Y0 H whose address is X3X2X1X0 H

available in (H,L) pair goes into the D register. The original content of

D is lost. This is illustrated in fig.4.3.

Fig.4.3

The six general purpose registers B, C, D, E, H, L can also be

combined together as register pairs for 16-bit operation only the

following pairs are possible:

H L

X3 X2 X1 X0

Y1 Y0

Y1 Y0

D

X3X2X1X0

i. (B,C) pair with (C) lower order 8-bits and (B) higher order 8-bits.

ii. (D,E) pair with (E) lower order 8-bits and (D) higher order 8-bits.

iii. (H,L) pair with (L) lower order 8-bits and (H) higher order 8-bits.

There is another register called stack pointer (SP) which is 16-

bit register itself. Whenever an instruction refers to the register pair

(B,C), (D,E), (H,L) or (SPH,SPL), an 8-bit code RP is used in the

operation code to identify the register pairs.

(RP)

0 0 (B,C)

0 1 (D,E)

1 0 (H,L)

1 1 (SPH,SPL)

PROGRAM COUNTER:

 This is a 16-bit register accessible to the user. It is a special

purpose register and it always contains the address of the next

instruction to be fetched from the program memory and executed by

the CPU in a program sequence. Thus the program counter keeps

the track of the program execution in which instructions are to be

executed next.

 Whenever necessary in the program execution, the address

information available in PC is sent out to the address lines during T1

timing slot of a machine cycle. The higher order 8-bits of program

counter (PCH) are sent out through A15–A8 address lines & the lower

order 8-bits of program counter (PCL) are sent out through AD7–AD0

lines during T1 states. Since the BDB contains the lower order 8-bit

address information during T1 state only, an ALE pulse is also issued

by the processor. The above statement can be symbolically stated

through macro RTL shown in the figure 22.

T1: A15-A8 (PCH), AD7-AD0 (PCL), ALE =

T2: (PC) (PC) +1

Whenever the address information sent from the program counter to

the address bus (external world) during T1 state, then the (PC) shall

be incremented by 1 during the subsequent T2 state so that program

counter points to the next sequential byte. If may be the data required

if the previous instruction is of two bytes or three bytes long or it may

be the next instruction to be fetched and executed. If instructions are

sequentially arranged in memory, this will guarantee that they will

also be executed sequentially. Sometimes, program execution

requires that non-sequential instructions executed e.g. JMP or CALL

type instructions. These instructions require the program counter to

be loaded with an entirely new value. An 8-bit microprocessor with a

16-bit program counter requires two data moves to completely modify

the contents of the PC.

Note: If the address information for PC has not been sent out during

T state to the external world, them the PC will not be incremented

using T2 state.

When the microprocessor is RESET, the CPU initializes the PC

to 0000 H. Therefore, the first instruction of the program should be at

0000 H in the memory address space of the CPU.

STACK POINTER REGISTER:

The stack is a storage area of the processor. It consists of

number of sequential and RWM locations in which microprocessor

saves the internal register contents during subroutine calls and

interrupts so that they will not be changed or destroyed by a

subroutine.

8085A µ𝑝 can address directly 64K memory locations. This is

known as directly addressable memory space starting from the

address 0000H to FFFFH. This entire memory area is usually divided

by the user into program area, data area and stack area. It is for the

user to see that program area and data area do not overlap with that

of stack memory area. The size of the stack memory area depends

upon the application.

For example, the user for a particular process control operation

may decide to reserve memory space starting from 2600H to 2700H

as the stack memory space. This is shown in fig.4.4.

Fig.4.4

The stack pointer is a 16-bit register accessible to the user. It is

required to refer any memory location of the stack. It contains the

2700

SP

 26FE

 26FF

2700

 26FD

26FC

2600

address of the top of stack into which last data is put or written.

Writing data into a stack is called a PUSH operation and reading data

from a stack is called a POP operation. In the figure shown 2700H is

known as the bottom of the stack.

There is an instruction in the instruction set to initialize the stack

pointer register to the bottom of the stack. This instruction is

LXI SP, BADR.

LXI is the mnemonic for Load immediate. BADR is a symbolic

name given to the 16-bit address which is to be loaded into the stack

pointer. The meaning of the instruction is to load the 16-bit of data

immediately available in the instruction itself into the stack pointer. In

this example, BADR equals 2700 H. When this instruction is executed

the situation is shown in figure. The stack pointer now points to the

bottom of the stack.

Now, let us suppose that while calling a subroutine it becomes

necessary to save the contents of (B,C) register pair and (D,E)

register pair as they are to be used in the subroutine. The process of

saving the content of a register is known as push operation. The push

operation is performed at the beginning of a subroutine to save

register contents and the instruction for pushing the contents of the

internal register is PUSH e.g. PUSH B. The meaning of the

instruction is to push the contents of (B,C) register pair on to the

stack so that it can be saved there till it is restored. PUSH B operation

affects the stack and stack pointer as follows:

Since the stack pointer always holds the address of the last

byte of data pushed onto the stack, therefore, when PUSH B

instruction is executed, the stack pointer is decremented by 1 and the

contents of the (B) register are copied onto the stack at that address.

The stack pointer is decremented again, and the contents of the (C)

register are copied to that address. Just after the execution of the

PUSH B instruction, the situation is shown in fig.

Fig.4.5

 Similarly, to store the contents of (D,E) register pair PUSH D

instruction is used. The meaning of this instruction is push the

contents of the (D,E) pair onto the stack to save them there as shown

in figure just after the execution.

Fig.4.6

Since the contents of (B,C) & (D,E) register pairs are stored at

the top of the stack, these registers are now available for further

26FE

SP

X3 X2

X1 X0

X3 X2 X1 X0

B C

 26FE

 26FF

2700

 26FD

26FC

26FC

SP

Y3 Y2 Y1 Y0
X3 X2

X1 X0

X3 X2 X1 X0

Y3 Y2

Y1 Y0

B C

D E

 26FE

 26FF

2700

 26FD

26FC

computation in the subroutine. At a later stage of execution of the

program after utilizing B, C, D, E registers, there may be a need to

restore the original contents to the respective registers. E.g. at the

end of the subroutine, the data is restored to the proper register.

The restoration of the contents is a READ operation from the

stack and is known as POP operation. A POP register instruction

copies the stored data from the stack back into the indicated register

pair. Just before the execution of POP instruction, let us say the

situation is as shown below:

Fig.4.7

Note that registers (B), (C), (D) and (E) have some different

contents because these registers are used in the subroutine.

To restore the contents of (B,C) register pair, POP B instruction

is used. Whenever this instruction is executed, the contents from the

top of the stack are read and written into the (B,C) register pair. To

restore the contents (D,E) register pair POP D instruction is used.

The question is in which sequence these instructions are to be

executed so that the contents are restored properly. The obvious

sequence in POP D first & then POP B i.e., the data must be popped

26FC

SP

Q3 Q2 Q1 Q0
X3 X2

X1 X0

P3 P2 P1 P0

Y3 Y2

Y1 Y0

B C

D E

off in the reverse order from which it was pushed. This type of stack

is called Last-in-First-out (LIFO) memory.

Just after the execution of POP D & POP B instructions, the

situation is as shown in figure:

Fig.4.8

When POP D instruction is executed, the data from the top of the

stack is copied to register (E), data pointer is incremented by 1, then

the next byte of the saved data is copied from the stack to the register

(D), and SP is further incremented by 1.

This is similar to earlier status (before PUSH operation) but now

some data has been stored in the stack area but these are irrelevant

anyway. They will be destroyed during the next PUSH operation on

the stack. From the above discussion, following points emerge:

1. The stack pointer always points to the top of the stack up to

which it is full with relevant data.

2. Storing or saving the data from the registers on stack is known

as PUSH operation.

2700

SP

Y3 Y2 Y1 Y0
X3 X2

X1 X0

X3 X2 X1 X0

Y3 Y2

Y1 Y0

B C

D E

 26FE

 26FF

2700

 26FD

26FC

3. The restoring or reading data from the stack onto certain

internal registers is known as POP operation.

4. The stack operates on Last-in-first-out (LIFO) basis.

5. The stack pointer can be initialized to the bottom of the stack

but bottom of the stack cannot be utilized to store any useful

data.

6. It is for the user to see that the program area does not overlap

with stack area.

Lecture-15

W-Z:

(W) and (Z) are two 8-bit temporary registers not accessible to

the user. They are exclusively used for the internal operation by the

microprocessor. These registers are used either to store 8-bit of

information in each (W) and (Z) registers or a 16-bit data in (W,Z)

register pair with lower order 8-bits in (Z) and higher-order 8-bits in

(W) register.

When a 3-byte instruction containing 2-byte address is to be

executed by the µ𝑝, the first byte is the (op-code byte) which is

fetched and then decoded by the decoder. Then two memories read

machine cycles are executed one by one to read the two-byte

address, one in each machine cycle and placed in (W,Z) register pair.

During instruction execution, in next machine cycle, the address in

(W,Z) register pair is transferred to the address latch to address

memory or I/O for data transfer.

Increment-Decrement Address Latch:

It is another 16-bit internal register latch available in the register

section for internal operations and is not accessible to the user. The

address latch serves two functions. First, it selects an address to be

sent out from the program counter, from the stack pointer, or from

one of the 16-bit register pairs. Second, it latches this address onto

the address lines for the required time. The 16-bit addresses from

8085A allow the microprocessor up to 216 memory locations through

A15-A8 and AD7-AD0 lines. An increment/decrement register allows

the contents of any of the 16-bit registers to be incremented or

decremented.

Instruction Register & Instruction Decoder:

The first word of an instruction is the operation code, i.e., binary

code for that instruction. Therefore, in the first machine cycle of any

instruction µ𝑝 fetches the instruction from the memory. The op-code

representing the instruction to be executed is fetched from the

(program) memory location pointed to by (PC) and loaded into the

instruction register (IR). The IR passes this op-code to the instruction

decoder which interprets this op-code appropriately in order to decide

what operation needs to be done for executing this instruction. The

instruction decoder tells the control unit the type of instruction to be

executed; the number of machine cycles necessary to execute the

instruction etc. In response, the control unit generates all the

necessary control signals which go into the different internal block of

the microprocessor. These different control signals are generated by

what is known as Micro-programming technique. Micro-programming

means the microprocessor instruction decoding operated like a small

version of a µ𝑝 itself. As the µ𝑝 goes through the fetch and execute

cycles, the microprogramming logic goes through a series of fetch

and executes cycles.

E.g. if the instruction is ADI 04H, then the first binary code read

by the µ𝑝 is C6H into the (IR). After decoding this, the decoder will

recognize that another memory read cycle is required to read 04H to

be added to the number in the accumulator. The decoder will direct

the control circuit to send out another memory read pulse and

transfers the data coming on the data bus into the temporary register

(Temp), so that it can be added to the accumulator. When the

addition is completed the control circuit directs the result back to the

accumulator. The program counter is then incremented to point the

next memory address and send out another memory read pulse to

read the µ𝑝 code of next instruction from memory.

Interrupt Control Section:

Sometimes it is necessary to interrupt the execution of the main

program to answer a request from an I/O device. For instance, an I/O

device may send an interrupt signal to interrupt control unit to indicate

that data is ready for input. The µ𝑝 temporarily stops what it is doing,

inputs the data and then returns to what it was doing. To enable the

processor to service the device requesting service through interrupt,

processor accepts and issues control signals through interrupt control

section.

Serial I/O Control:

Sometimes, I/O devices work with serial data rather than

parallel. In this case, the serial data stream from an input device must

be converted to 8-bit parallel data before the computer can use it.

Likewise the 8-bit data out of a processor must be converted to serial

form before a serial output device can use it.

The SID (Serial Input Data) input is where serial data enters the

8085A. The SOD (Serial Output Data) output is where the serial data

leaves the 8085A. Two instructions known as SIM & RIM allow the

user to perform the serial parallel conversion needed for serial I/O

device.

Timing and Control section:

The timing and control section supervise the complete

operation of the 𝜇𝑝. The on-chip clock oscillator which produces the

internal clock is a part of this section. The timing and control section

also has a state generator circuit to generate 10 different states

namely T1, T2, T3, T4, T5, T6, TRESET, THALT, TWAIT and THOLD. State

generator is a multi-mode counter. The next state of the state

generator from the present state is decided by many of the control

signals input like READY, HOLD, Interrupt control signals - TRAP,

RST7.5, RST6.5, RST5.5 and INTR. In each state this section

generates many control signals for executing the instruction fetched.

The operation of the 𝜇𝑝 is cyclic in natural. During the normal

operation from the word GO, 𝜇𝑝 sequentially fetches and executes

one instruction after another until a HALT instruction is executed. The

fetching and execution of a single instruction constitutes an

instruction cycle. The instruction cycle consists of one or more read

or write operation to memory or an I/O device. Each memory and I/O

reference requires a mechanic cycle. In other words every time a byte

of data is move from CPU to I/O or memory or from memory or I/O to

CPU, a machine cycle is required.

There are seven different kinds of machine cycles in the 8085 A:

1. Opcode Fetch Machine Cycle (OFMC)

2. Memory Read Machine Cycle (MRMC)

3. Memory Write Machine Cycle (MWRMC)

4. I/O Read Machine Cycle (IORDMC)

5. I/O Write Machine Cycle (IOWRMC)

6. Interrupt Acknowledge Machine Cycle (INTAMC)

7. Bus Idle Machine Cycle (BIMC)

 Three status signals IO/M , S1 and S0 generated at the beginning

of each machine cycle and RD , WR and INTA generated during T2

state of the machine cycle identify each type of the machine cycle.

The status signals remain valid for the entire duration of the cycle.

The instruction fetch portion of an instruction cycle requires a

machine cycle for each byte of the instruction to be fetched. Since an

instruction consists of 1 to 3 bytes (1, 2 or 3), the instruction fetch is

one to three machine cycles in duration.

 The first machine cycle of an instruction cycle is always an

OPCODE FETCH machine cycle which is always single byte long

and the 8-bits obtained during an OPCODE FETCH are always

interpreted as an OPCODE of an instruction. Note that to fetch an

instruction, i.e., to transfer an entire instruction from memory to the 𝜇𝑝

necessitates an OPCODE FETCH machine cycle. However, one or

two memory read machine cycles are also needed to complete the

fetch for 2nd and 3rd bytes of the instruction respectively.

 The number of machine cycles required to execute the

instruction depends on the particular instruction. Some of the

instructions require no addition machine cycles after the instruction

fetch is complete, other requires additional machine cycles to write or

read data to or from memory or I/O devices. The total number of

machine cycles required varies from one to five. Around 50% of the

instructions require only one machine cycle for fetching and executing

the instruction. No instruction requires more than five machine cycles.

Machine cycles like the memory read or memory write may occur

more than once in a single instruction cycle.

MC-1 MC-2 MC-3 MC-4 MC-5

 Instruction cycle

 The shaded area may be required for executing the

instruction. The timing and control unit of 𝜇𝑝 automatically generates

the proper machine cycles required for an instruction cycle from

information provided by the op-code.

 Each machine cycle contains a number of 320ns clock

periods when cryptal used is 6.25 MHz. One clock period, i.e. the

period between two negative going transitions of that clock is called T

state. The various T-states are T1, T2, T3, T4, T5 and T6. Most of the

machine cycles have three T-states each (T1, T2, T3). Only OPCODE

FETCH machine cycle has either 4 or 6 states depending on the

instruction. The first 3rd states of the machine cycle are identical to a

MRMC, the additional T states in OFMC are the T-states required by

the 8085A to decode the op-code and decide what actions are

needed in succeeding machine cycles.

 The combined MCS along with T-states are shown in fig.

MC-1 MC-2 MC-3 MC-4 MC-5

T1 T2 T3 T4 T5 T6 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

 MC-i (i=2, 3, 4, 5)

 Thus one complete transition from state T1 through the state

diagram and back to T1 constitutes a complete machine cycle. The

partial state transition diagram is shown in fig.4.9 assuming

READY=1 i.e., no wait state.

Fig.4.9 Partial State Transition Diagram indicating T1-T6 States

 The shaded portion shows that these states may be needed in

some instructions. Instruction cycles for various 8085A instructions

require from 4 to 18 states. The total number of states actually

required to execute an instruction will depend on the READY & HOLD

signal inputs.

 For example, consider the 3 byte instruction

STA ADDR.

STA stands for store accumulator direct. The meaning of the

instruction is transfer the content of the accumulator to an external

TRESET

T1
HALT(HLTA F/F=1)

HALT

MC =1 CC=6

CC=4MC =1

THALT

RESET IN=0
RESET IN=0

RESET IN=1

(HLTA F/F=0)

T2

T3 T4 T5 T6

memory location whose address is specified in the instruction i.e.,

ADDR. Since this location can be anywhere in the 64k memory space

that the 8085A can directly address, 16-bits are required for the

address. Thus the instruction contains 3 bytes- a 1 byte op-code and

2-byte address. The instruction is stored in the memory as follows:

Three machine cycles (MC) are required to fetch this instruction. In

MC-1, i.e., Op-code fetch machine cycle, the op-code is transferred

from memory to the instruction register during T1-T3 states and then

during T4 state it is interpreted. At this point, the CPU knows that it

must do more machine cycles - two MRMCs to fetch the complete

instruction. In MC-2 the lower address is transferred from the memory

to the temporary register (Z). In MC-3 the third byte, i.e. the higher

byte address is transferred from the memory to the temporary register

(W). When the entire instruction is in the 𝜇𝑝, it is executed. Execution

means a data transfer from the 𝜇𝑝 to memory. The content of the

accumulator is transferred to the memory location, whose address

was previously transferred to the 𝜇𝑝 by the proceeding two memory

read machine cycles. The address of the memory location to be

written is generated as follows:

The high order address byte in temp register (W) is transferred to the

address latch and the low order address byte in temp register (Z) is

transferred to address/data latch. The content of the (A) is then

placed on the data bus. This data transfer is affected by a MWRMC.

OP CODE Byte -1

LOWER ADDR Byte - 2

HIGHER ADDR Byte - 3

Thus 3-byte STA instruction has four machine cycles in its instruction

cycles.

Mnemonic Instruction byte Machine Cycle

STA OP code OFMC

 Lower address MRMC

 Higher address MRMC

 MWRMC

 The actions taken by the processor in different machine cycles are

shown in fig.4.10.

Fig.4.10 Instruction Cycle and Machine Cycles for STA Addr Instruction

Thus STA ADDR instruction has a total of 13 states. If the 8085A is

operating at 325.5ns time, the STA instruction cycle is executed in

4.23 μsec. This time period is the instruction execution time, although

it actually includes both the instruction fetch and the execution time.

T1 T2 T3 T4 T1 T1
T1T2 T2 T3 T3T2 T2

MC-1 MC-2 MC-3 MC-4

Insruction cycle

OFMC MRMC MRMC MWRMC

Address

 bus

The address(contents of the

PC) points to the first byte

(opcode) of the instruction.

The address (PC+1)

points to the 2nd byte

 of instruction

The address (PC+2)

points to 3rd byte

of instruction

The address read

during MC-2 and

MC-3

Data bus Instruction op code low order byte of

the direct addr

High order byte of

the direct addr

Contents of the

accumulator

Lecture-16

OPCODE FETCH Machine Cycle:

 Figure shows the 8085A instruction fetch timing diagram. The

instruction fetch cycle requires either four or six clock periods (T-

states). The other machine cycles that follow OFMC will need three

clock cycles.

The purpose of an OFMC is to read the contents of a memory

location containing the opcode addressed by the program counter

and to place it in the instruction register (IR).

 In the beginning of state T1, the 8085A puts a low on the IO/M

line of the system bus indicating a memory operation. The 8085A

sets S1=1 and S0=1 on the system bus, indicating the memory fetch

operation. This status information remains available for the duration

of the machine cycle. During T1 state, the 16-bit address A15-A0 of the

memory location containing the opcode is obtained from the program

counter (PC) and placed on the address and address/data latches.

The higher order 8-bits of the address appear on the address bus A8-

A15 remains constants until the end of the state T3. During T4 state the

data on the address bus is unspecified. The low order 8-bits of the

address are placed on the address/data bus, AD7-AD0 at the

beginning of T1. This data however remains valid only until the

beginning of state T2 at which time the address/data bus is floated

(tri-stated) because this is time multiplexed bus and used as the data

bus during T2 and T3 states. Therefore address latch enable (ALE)

signal issued by the 𝜇𝑝 during T1 is used to latch this lower order

address in some external latch 74LS373 on its falling edge. The 16-

bit address selects a particular memory location.

 During state T2, at the beginning, the RD signal goes low

indicating read operation and the opcode to be fetched is placed on

the data bus, AD7-AD0 by the addressed memory location. The

contents of (PC) is incremented be 1 during this state as during T1

state the (PC) has sent the address to address bus. The accessed

memory should be fast enough to output its data before RD goes

high. Slower memories can gain more time by pulling the READY

signal of 8085A LOW. This will introduce an integral number of TWAIT

states between T2 and T3 as long as READY is low. On the rising

edge of the RD control signal in T3 state, the opcode obtained from

the memory is transferred to the microprocessor instruction register.

 During state T4, the 8085A decodes the instruction and

determines whether to enter state T5 or to enter T1 state of the next

machine cycle. From the operation code, the 𝜇𝑝 determines what

other machine cycles, if any, must be executed to complete the

instruction cycle. State T5 and T6 when entered, are used for internal

𝜇𝑝 operations necessitated by the instruction.

 The micro RTL flow for 4-states OFMC is shown below.

OFMC: Status signals IO/M =0, S1=1, S0=1

T1: A15-A8 (PCH), AD7-AD0 (PCL), ALE =

T2: RD = 0, (PC) (PC) +1, AD7-AD0 M(AB)

T3: RD = 1, , (IR) BDB

T4: 𝜇𝑝 decodes the opcode and decides whether T5 and T6 states

are required or next machine cycle executed is T1

During T2 state, after the RD signal is made LOW, the external

decoding circuit decodes the address put on the address bus duirng

T1 state. One of the memory location is selected and it puts 8-bit

information on the data bus during T2 and T3 states. Processor has

no control on it. Processor has already issued the signals and now it

is the job of the external decoding circuit to make use of the signals

IO/M and RD and address lines to allow the external memory to put

the data on the data bus. Therefore, this action is shown by shaded

area. Whatever information is avaiable on BDB at LOW to HIGH

transition of RD , that will be read and processed. The timing

waveform during 4-state OFMC is shown in fig.4.11.

Fig.4.11 Timing Diagram During 4-state OpCode Fetch Machine Cycle

During T4–T6 states, AD7-AD0 lines are tri-stated and A15-A8 lines are

unspecified.

T1 T2 T3 T4 T1
CLK

IO/M

S0

S1

A15-A8

AD7-AD0

ALE

RD

PC high order byte Unspecified

PC low

order byte
OP CODE

T.S

High-Z

latch low

order addr

decode
middle

Fig.4.12 shows the timing diagram for a 6-state OFMC:

Fig.4.12 Timing Diagram During 6-state OpCode Fetch Machine Cycle

Note: Whenever the address information is sent from the program

counter to the external world during T1 state, then the (PC) is

incremented by 1 during the subsequent T2 state so that PC points to

the next subsequent byte. However, if the address information from

(PC) has not been sent out during the T1 state to the external world,

then (PC) will not be incremented during T2 state.

Memory READ Machine Cycle:

 It requires 3 states T1 to T3. The purpose of the memory READ

operation is to read the contents of a memory location addressed by

a register pair and place the data in one of internal registers of the

T1 T2 T3 T4 T5
CLK

IO/M

S0

S1

A15-A8

AD7-AD0

ALE

RD

PC high order byte Unspecified

PC low

order byte
OP CODE

T.S

High-Z

latch low

order addr

decode
middle

T6

𝜇𝑃. The source of address issued during T1 is not always the program

counter but may be any one of the several other register pairs in the

𝜇𝑃 depending on the particular instruction of which the machine cycle

is a part.

 The 8085A uses machine cycle MC-1 to fetch and decode the

instruction. It then performs the memory read operation in MC-2. E.g.

in LXI H, Addr.

 The IO/M signal is made LOW to indicate the external world

that a memory reference is required. Then 𝜇𝑃 made S0=0 and S1=1

indicating that memory READ operation is to be performed. During

T1, the 𝜇𝑃 places the contents of higher byte of the memory address

register, such as that contents of the (PCH) or (H) register on A15-A8

and the contents of the lower byte of the memory address register

such as contents of the (PCL) or (L) register on AD7-AD0. The 𝜇𝑃 sets

ALE signal HIGH indicating the beginning of MC-2. As soon as ALE

goes to LOW in the middle of T1, the lower byte of the address is

latched in an external latch. The same bus is now going to be used

as data bus.

 During T2 state, the RD signal goes LOW indicating a READ

operation. If the address sent out during T1 state is from (PC), then

(PC) is incremented by 1 otherwise not. The external logic gets the

data from the memory location addressed by the memory address

register such as (H,L) pair and places the data on to bi-directional

data bus AD7-AD0.

 During T3 state, RD signal goes HIGH. This LOW to HIGH

transition of signal transfers the data from the data bus to internal

register such as the accumulator.

MRMC: Status signals IO/M =0, S1=1, S0=0

T1: A15-A8 (PCH), AD7-AD0 (PCL), ALE =

T2: RD = 0, (PC) (PC) +1, AD7-AD0 M(AB)

T3: RD = 1, , (Internal Reg.) AD7-AD0 or BDB

Or

T1: A15-A8 (H), AD7-AD0 (L), ALE =

T2: RD = 0, AD7-AD0 M(AB)

T3: RD = 1, , (Internal Reg.) AD7-AD0 or BDB

The timing diagram during memory ready machine cycle is shown in

fig.4.13.

Fig.4.13 Timing Diagram During Memory Read Machine Cycle

T1 T2 T3
CLK

IO/M

S0

S1

A15-A8

AD7-AD0

ALE

RD

Higher order address byte

 Low order

addr byte
Data from memory

T.S

Lecture-17

Memory WRITE Machine Cycle:

 It also requires only T1 to T3 states. The purpose of memory

write machine cycle is to store the contents of any of the 8085A

register such as the accumulator into a memory location addressed

by a register pair such as (H,L).

The 8085A 𝜇𝑃 made IO/M = 0 in the beginning of T1 state to

indicate memory reference operation. Then it puts S0 = 1 and S1 = 0

indicating a memory write operation.

 During T1 state 8085A places the memory address register

(MAR) higher byte such as the contents of the (H) register on lines

A15-A8 and also places the MAR lower byte such as the contents of

the (L) register on lines AD7-AD0. The 𝜇𝑝 sets ALE signal HIGH

indicating the beginning of MWRMC. As soon as ALE goes to low,

the lower byte of the address is latched in an external latch. During T2

state, WR goes LOW indicating memory write operation. It also

places the contents of the internal register, say accumulator, on data

lines AD7-AD0.

 During T3 state, WR goes HIGH. This LOW to HIGH transition

is used to transfer the data from the data lines to the memory location

address by MAR such as (H,L) register pair.

MWRMC: Status signals IO/M =0, S1=0, S0=1

T1: A15-A8 (H), AD7-AD0 (L), ALE =

T2: WR = 0, AD7-AD0 (𝜇𝑝 Internal Reg.)

T3: WR = 1, , M(AB) AD7-AD0 or BDB

Similar to MRMC, the processor simply puts the data on the data bus

and makes required signals LOW or HIGH. It is the job of the external

decoding circuit to make use of these signals to enable the external

memory to accept the data from the data bus. Processor has no

control over it. Therefore, this action during T3 state is shown shaded.

The timing diagram during MWRMC is shown in fig.4.14:

Fig.4.14 Timing Diagram During Memory Write Machine Cycle

I/O READ and I/O WRITE M/C cycle:

 The IORDMC and IOWRMC are identical to MRMC &

MWRMC respectively except that appropriate status signals are

issued at the beginning of T1 state. IO/M signal goes HIGH at the

T1 T2 T3
CLK

IO/M

S0

S1

A15-A8

AD7-AD0

ALE

WR

(H)

 (L) (A) data
T.S

beginning to indicate I/O device reference is needed in case of I/O

mapped input/output device. In these machine cycles higher & lower

address bytes are identical and equal to the 8-bit address of the I/O

port while in case of MRMC or MWRMC, the address bus output is

the true 16-bits address. These machine cycles will be discussed in

detail alongwith I/O techniques.

HALT State: (THALT):

 Whenever the HLT instruction is executed 𝜇𝑝 enters in to the

HALT state. The opcode for HLT instruction is 76H. Assume that an

opcode fetch machine cycle is initiated, and the opcode transferred to

the instruction register during T3 state is 76H i.e, the opcode of HLT

instruction. During state T4, the control unit decodes the instruction

opcode and sets an internal HALT flip-flop of the processor. Upon

exiting state T4, the 𝜇𝑝 enters state T1 of the next machine cycle. As

indicated in the figure, the HALT flip-flop is checked in T1 state of the

next machine cycle. If it is found set, instead of entering T2 state, the

𝜇𝑝 enters in to the HALT state otherwise in T2 state. Thus five states

are required to reach the HALT state. In the HALT state, the address

and address/data buses along with RD , WR and IO/M are placed in

their high independence states (floated).

 There are only three ways to exit from a HALT state as shown

in fig.4.15.

1. A LOW an RESET IN input of the 8085A resets the entire system

and loads the program counter with all 0’s. When RESET IN

signal is active, 𝜇𝑝 comes out of HALT state and enters into

RESET state and remains their as long as RESET IN is active.

After reset, 8085A immediately starts program execution from

0000H.

2. The second way to get out of the HALT state is to make the

HOLD signal input high. The processor then enters the HOLD

state, but when the HOLD input goes LOW again, the CPU

returns to the HALT state.

3. The third method of coming out of a HALT state is when and

interrupt signal is active. This method works only if interrupts were

enabled with an enable interrupt (EI) instruction in the program

before HALT instruction is executed. Whenever interrupt comes

𝜇𝑝 leaves the HALT state and start executing the interrupt service

subroutine (ISR).

Fig.4.15 Partial State Transition Diagram indicating HALT State

TRESET

T1
HALT(HLTA F/F=1)

HALT

READY=1

OFMC CC=6

CC=4OFMC

THALT

HOLD=1 VALID INT=1

HOLD or VALID INT=1

RESET IN=0

RESET IN=0

RESET IN=1

(HLTA F/F=0)

T2

T3 T4 T5 T6

WAIT State TWAIT:

According to timing specification for the 80854A, during a read

operation (OFMC/ MRMC/ IORMC), the device providing data to the

𝜇𝑝 must have valid data on the dater bus within [(5/2) T-225] ns after

the 𝜇𝑝 provides a valid address at its address pins. For T=320ns, the

memory or input device must have an access time of 575ns or less.

Sometimes microprocessors are used with memories or I/O

devices which have longer access time. In case of memories, the

lower the cost, generally the longer the access time. To

accommodate long access time, the longer the access time. To

accommodate long access time, the 8085A has a state called the

WAIT state, TWAIT as shown in fig.4.16

Fig.4.16 Partial State Transition Diagram indicating WAIT State

TRESET

T1
HALT(HLTA F/F=1)

HALT

READY=1

OFMC CC=6

CC=4OFMC

THALT

RESET IN=0
RESET IN=0

RESET IN=1

(HLTA F/F=0)

T2

T3 T4 T5 T6

TWAIT

READY=0

READY=1

READY=0

When the 𝜇𝑝 places the address of the memory or I/O device

on address bus in T1 state, external control logic monitoring this

address can request that the microprocessor waits for a period of

time equal to an integral number of clock periods. The external

control logic does this by making the READY input signal to the 𝜇𝑝

logic ‘0’ during T2 state. After making RD signal LOW in T2 state,

microprocessor monitors READY signal input. If this input is found

LOW, then microprocessor enters in TWAIT state instead of T3. When

the READY signal becomes logic ‘1’, the 𝜇𝑝 comes out of TWAIT state

and enters into T3 state and machine cycle continues. Wait states

continue to be inserted as long as READY is LOW.

The effect of entering a wait states is to hold all external signals

from the 𝜇𝑝 in the same state they were on at the end of state T2 i.e.,

the content of address bus, data bus, and control bus are all held

constant. This stretches the duration of address and RD pulse, so

devices with access time greaten than 575ns can be read. If N wait

states are introduced into the machine cycle, the required access

time is [(5/2 + N) T-225] ns.

Fig.4.17a shows a circuit to insert single WAIT state in OFMC.

Fig.4.17(a) Logic Circuit to Control READY Signal Input

READYQ2

CLK(OUT)

+5V D D

CLK CLK
Q2

Q1

CR

The waveforms at different points of control circuit alongwith

address bus, data bus and control signals are shown in fig.4.17b.

Fig.4.17(b) Waveforms at Different Points to Insert Single WAIT State

The CLK(OUT) signal is 180° out of phase with CLK signal. The

rising edge of CLK signal sets Q1 and therefore, D input of 2nd flip-

flop. Before the processor checks the READY signal during T2 state,

rising edge of CLK(OUT) signal makes the READY signal LOW.

Sampling of the READY line in state T2 inserts WAIT state The Q 2

T1 T2 Twait T3 T4CLK

IO/M

S0

S1

A15-A8

AD7-AD0

ALE

RD

CLK(OUT)

READY

(PCH)

(PCL) Op code

Q1=1 Q2=1

Q2=0

output also clears 1st flip-flop and Q1 becomes LOW. The next

CLK(OUT) signal sets the READY signal. Sampling of the READY

line again in WAIT state allows processor to enter in T3 state. Thus a

single WAIT state is inserted in OFMC and allows the 𝜇𝑝 to

synchronize to memories or I/O devices with long access time. This,

of course, is associated with increased instruction cycle time and

additional logic to control the READY input.

External logic controlling the READY line can be designed so

that none, a fixed number or a variable number of WAIT states

transitions occur during each cycle. This logic can also be designed

so that these wait states occurs only for specific types of machine

cycles eg. OFMC.

A monostable can be triggered by 8085A RD or WR pulse as

shown in fig.4.18, to make READY signal LOW each time the slower

device is addressed. The monostable can be enabled by the same

signal that is sent to select the addressed device. This prevents a

WAIT state to be introduced during each read or write operation.

Fig.4.17 Monoshot Used to Make READY Signal LOW for Fixed Duration

READY
Q

RD

WR

74121

Monoshot

R C

Lecture-18

HOLD State THOLD:

The 𝜇𝑝 enter in this state, if some external device wants direct

memory access (DMA) so that a string of data can be transferred to

or from the memory at a fast rate. The device requesting for DMA

makes the HOLD signal input high.

There are two possibilities-(i) the 𝜇𝑝 may be in the HALT state

and then the HOLD signal input becomes HIGH. In this situation, the

𝜇𝑝 first sets the HLDA flip-flop (HOLD acknowledge F/F) & then

enters the HOLD state (ii) the 𝜇𝑝 is executing some machine cycle.

While execution 𝜇𝑝 checks the HOLD signal at unique points during a

machine cycle. HOLD request signal to processor is asynchronous in

nature. The 𝜇𝑝 synchronizes this request and at proper time in a

machine cycle provides the HLDA signal by setting HLDA F/F to the

requesting device. The HOLD state is entered after a machine cycle

is completed.

The HOLD signal is checked during T2 state (after READY input

has been checked) and also during T4 state (provided the concerned

machine cycle requires T5 & T6 states also). If the HOLD signal is

found high, HLDA F/F is set and the processor enters the HOLD state

after the current machine cycle is over.

Upon entering the HOLD state, the HLDA output signal from the

𝜇𝑝 is set HIGH. During this state, the address & the data buses at the

RD , WR & IO/M control lines are floated (tri-stated). By floating its

address, data and control buses, the 𝜇𝑝 effectively disconnects itself

from the system. From this point on, it is up to the requesting device

to provide address, data & control signals to memory & I/O port to

implement the data transfer i.e., the requesting device then enables

its tri-state buffers. When DMA process is over it floats its address

data, and control buses and then bring the HOLD signal input LOW.

Fig.4.19 Partial State Transition Diagram Indicating HOLD State

The 𝜇𝑝 exits the HOLD state and then continue its previous

operation from the point at which it was suspended by the HOLD

request. If resets, the HLDF F/F first. If the HALT F/F is found to be

T1
HALT(HLTA F/F=1)

HALT

READY=1

OFMC CC=6

CC=4OFMC

THALT

HOLD=1 VALID INT=1

HOLD or VALID INT=1

(HLTA F/F=0)

T2

T3 T4

T5T6

Is

HOLD=1
SET

HLDA F/F

Yes

No

Is

HOLD=1
SET

HLDA F/F

Yes

No

Is

HLDA F/F

SET

Yes

No

THOLD

RESET

HLDA F/F

Is

HALT=1

Yes

NoGo To T1 state

SET

HLDA F/F

HOLD=1

set, it enters the HALT state else enters T1 state. The partial state

transition diagram showing HOLD state is shown in fig.4.19.

STATE TRANSITION DIAGRAM

 Figure shows the complete state transition diagram of 8085A.

As discussed in previous lecture, the processor will be in one of the

10 different states namely T1, T2, T3, T4, T5, T6, TRESET, THALT, TWAIT

and THOLD. The next state of the state generator from the present

state is decided by many of the control signals input like READY,

HOLD, Interrupt control signals - TRAP, RST7.5, RST6.5, RST5.5

and INTR. State transition diagram is a compact way of showing

when during an instruction cycle the 8085A will enter a HALT state,

insert a WAIT state, respond to HOLD input or respond to an interrupt

input.

 If RESET IN is asserted, the 𝜇𝑝 stays in a reset state with the

address bus floating. When RESET IN is not asserted or the previous

machine cycle is finished, the CPU enters T1 of a new machine cycle.

If the previous instruction executed was a HLT instruction state, the

CPU goes directly to a HALT state. The three ways to exit the halt

state are by a RESET, a valid interrupt and a HOLD request. Note

that the exit from HALT state is only temporary. As soon as HOLD is

not asserted, the CPU returns to the halt state.

 If a halt state was not entered, then the CPU proceeds to T2 of

the machine cycle. Here it checks the READY input. If the READY

line is not asserted (LOW), the CPU inserts wait states until READY

goes high.

Fig. State transaction diagram of 8085 A

The hold input is checked at several points. If a hold request is

present on it, the hold-acknowledge flip-flop is set. However the CPU

will not enter the HOLD state until the end of the current machine

cycle.

T1
HALT(HLTA F/F=1)

HALT

READY=1

OFMC CC=6

CC=4OFMC

THALT

HOLD=1
VALID INT=1

HOLD or VALID INT=1

(HLTA F/F=0)

T2

T3 T4

T5T6

Is

HOLD=1
SET

HLDA F/F

Yes

No

Is

HOLD=1
SET

HLDA F/F

Yes

No

Is

HLDA F/F

SET

Yes

No

THOLD

RESET

HLDA F/F

Is

HALT=1

Yes

No

SET

HLDA F/F

TRESET RESET IN=0

RESET IN=0

RESET IN=1

TWAIT

READY=0

READY=1

READY=0

HOLD =1

Is the

current machine cycle

ended the last MC of instrctuion

being exececuted

Is

VALID INT=1
Yes

No

Yes RESET INTE F/F

SET INTA F/F

No

RESET INTE F/F

SET INTA F/F

RESET

HLDA F/F

 Note that the 𝜇𝑝 does not check whether a valid interrupt

request is present until the end of the instruction cycle. This is

necessary so that the address of the next instruction can be pushed

onto the stack. The processor checks valid interrupt after the

completion of instruction cycle because it has to execute the interrupt

service subroutine and for that internal registers, PC, SP are

required. However, it checks the HOLD signal after every machine

cycle and enters into HOLD state at the end of current machine cycle

if the signal is active. In HOLD state processor has nothing to do –

neither memory read/write nor I/O operation. Therefore, if both HOLD

and Interrupt becomes active together, processor first respond to

HOLD signal and after DMA operation only it responds to interrupt.

The complete state transition diagram is shown in fig.4.20.

 To summarize, a halt state is entered during the T1, a wait state

is entered after T2, a hold state is entered after a machine cycle is

completed, and an interrupt is responded to after an instruction cycle

is completed.

