$y[n] = x[0]$ til + x[1] til -1] + x[2] til -2] theor delayed $\frac{1}{\sigma_c}$ $y[n] = x[0] h[n] + x[1] h[n] = 3$
 y_0 y_m $\frac{1}{2}$ y_m $\frac{1}{2}$ y_m $\frac{1}{2}$ $\frac{$ جبكم E Thet's like Original 9.R ϵ $[1, -2, 3]$ $\overline{\mathcal{F}}$ $p(\rho)$ h[n] $\begin{bmatrix} 1 & 1 & -2 & 3 \end{bmatrix}$ $\overline{\tau}$ F $\begin{array}{|c|c|c|c|}\n\hline 0 & 0 & 1 & -2 \\
\hline 1 & 0 & 1 & -2 \\
\hline\n\end{array}$ $\overline{3}$ G $-1, 1, 2, 1, 3]$ $\tilde{\sigma}$ $\bar{\sigma}$ $Ar-1$ $\mathbf{\hat{e}}$ $\hat{\sigma}$ G the rest pt $h[n-2]$ Ç Ç € Ç to mill techious; add up gillion copies of shylled
response everytime we've new 218 signal S P of dring P convolution P 1) Hip a stide one signal P S. $\sum_{n=1}^{\infty}$ x[k] $h[n-k]$ S Another way of looking at this work and the money of $x+k$ following ! $\frac{1}{2}$ $k[k]$ xLx^2 is a funon $y = k$ R $x[k]$ P R **COL** mirror image ACK A S. \bullet looks inke the signal $\frac{1}{2}$ $h[n-k]$ O) lets when used to be attended k 9 move it over to n

Scanned by CamScanner

AND 1 7 \rightarrow 1 esok at the S -2 $\overline{2}$ -2 -2 diagonals of **SEP** $\frac{1}{2}$ -110 table k 3 3 3 add up the J S. · How do 9
know what is $1 - 3$] -1 2 Ź, know where the the of the result mark the zero response of the 910 nark that zero response is where
and zero resp. of Im. R. 2 where and zero resp. " In the zero" lhe 2 order 1/2 010 $\ddot{\odot}$ \downarrow 1∇ α $(3^{\text{rd}}$ sum -rsee arrow) -1 \downarrow $\sqrt{1}$ \sim 1 $+1$ $\rightarrow \downarrow$ $[1 \space 0 \space 0 \space 1]$ when you've 2 finitely ⁹¹⁸ signal & impulse resp. then
this is reasonable way to use this
but cannot for any 918 signals particularly $\begin{array}{ccc}\n\text{min} & \text{in} & \text{real} & \text{real} & \text{all} \\
\text{11.4} & \text{12.5} & \text{13.6} & \text{14.7} & \text{15.7} \\
\text{16.7} & \text{17.7} & \text{18.7} & \text{18.7} & \text{18.7} \\
\text{17.7} & \text{18.7} & \text{18.7} & \text{18.7} & \text{18.7} \\
\text{17.7} & \text{18.7} & \text{18.7} & \text{18.7} & \text{18.7} \\
\text$ $ATnJ$ $log(3)$ x[n]

 $\overline{2}$ $\mathbf 1$ L $\overline{2}$ $\overline{2}$ $\rightarrow 1$ 1 $\overline{2}$ $3\quad1$ $3 - -1$ -7 \uparrow (4th elements $odd')$ offs true that a lot of times we dial gts true that a list of
with what are called F.I.R systems (one's for with what are caused no. of values) a often
which h[n] #0 for finite no. of values) a often which hirst for finale m. of recovery a bit
we're finite infrits also but a lot of times we're puts inputs associated to rege.
we're booking at 9/Ps that're as lerge. booking an ones till need to find out δ , in fo do convolution how δ $\alpha \in (0,1)$ eg' $x[n] = \alpha^n$ $u[n]$ $h[n] = u[n]$ htm] = utril
ist good to visualize what the signals look like x $hln]$ = Since its multiplied by step funes. $x[n]$ (<0) reffers This exp. decept goes me for a long time for any valde 2n a bitle

Scanned by CamScanner

(order) & shift you matter which flep 96 doemt \mathcal{S} $r(h)$ signal (either α to choose h on this case + cler be easier $RT-K$] n < 0 (digting at-2) to left) 9
mothing (no overlop)
J-1J2 0 see for can \cdot 9 having A liter o Right at zero $1 \times 1 = 1$ $g[0]$ = \overline{d} gift one to right = $1 \times 1 + \alpha$ J $yI1J$ = 4 $y[2] = 1 + \alpha + \alpha^{2}$ \mathcal{L} $\mathcal{L}_{\mathcal{P}}$ $y[n]$ = \overline{O} \circ n \overline{d} $(i\alpha - 2 + |+\alpha + \alpha^2)$ $\sum_{k=0}^{n} \alpha^{k}$ $n \geqslant 0$ \mathbf{d} \overline{a} $\overline{\mathbf{r}}$ $= \left(\sum_{k=0}^{N} \alpha^{k}\right)$. $\alpha[n]$ $\frac{1}{2}$ $n < 0 = 0$ **SALE** $\hbar r$ $9 - P$ **SS** $k'.0$ $\frac{1}{v}$ $n+1-(n+1)$ Remember $k = k \in (n+1)$ $0 < \alpha < 1$ $\ddot{\cdot}$ $\sum_{k=0}^{6} \alpha^{k} = \frac{1}{1-\alpha}$ \mathbf{d} \mathbf{d} $(1+\alpha+\alpha^{2}+-)(\pm-\alpha)^{1/2}$ $1 + x + x^2 + ...$ \overline{a} $=$ \perp $-\alpha - \alpha$ $\hat{\mathbf{c}}$ $\sum_{k=0}^{n} \alpha^{k} = \sum_{k=0}^{\infty} \alpha^{k} = \boxed{\sum_{k=n+1}^{k=\infty} \alpha^{k}}$ \vec{c} α^{k} κ $n+1$ $\ddot{ }$ ر۔_ $k = 0$ \mathbf{C} $\overline{n+1}$ $|- \alpha$ $=\frac{1}{1-\alpha}$ S φ D

$$
8^{\text{ln}1} \cdot \frac{1-\alpha^{n+1}}{1-\alpha}
$$
\n
$$
8^{\text{ln}1} \cdot \frac{1-\alpha^{n+1}}{1-\alpha}
$$
\n
$$
8^{\text{ln}1} \cdot \frac{1-\alpha^{n+1}}{1-\alpha}
$$
\n
$$
8^{\text{ln}1} \cdot \frac{1}{\alpha}
$$
\n
$$
8^{\text{ln}
$$

Ċ

ł.

eg ytn]= n xtn] (30 particuler not time invan) $\sin J \longrightarrow n \sin J = 0$ Importer reforme is gero Impulse response is gero
for LTI then 9'd never get non-zero OIP for any X or LTJ men
31p rignel but for non-LTJ vts not ro V (power 1 LTI sys.) V hower 1 LTI sys.)
don't have to figure what heppens to other **Cardinal Company** N signals
(But remem. I cen do this things also y I've other responses with SUP) Septembre Commutative **CONTRACTOR** ω $\overline{\mathbb{R}}$ $x[n] * h[n] = h[n] * x[n]$ interchange Hie T order of the signets Joseph Σ x[k] $h[n-k]$ $\overline{\mathbb{R}}$ 3key x as it is $\overline{\mathbb{R}}$ flip to e run h $\overline{\mathbb{R}}$ across pre signal B simple change of var. $m=n-k$ $\#$ $k=-\infty$ $\hbar \infty$ $m = -\infty$ $k \infty$ \rightarrow $5.$ x[n-m] $h[m]$ \implies $\overline{}$ $m = -\infty$ 3 Distributive Property **Command** $x[n] * (h_{1}[n] + h_{2}[n])$ go through 2 **Contract** systems in 11 \equiv $z \times \ln(1 * h_1 \ln(1 + x \ln(1) * h_2 \ln(1)))$ \Box falls out from LTI forof. I sys.
What this means is if I have a signal that goes through -1 $x[n]$ \Box $\frac{1}{\sqrt{h_1h_1}}$ $\overline{\mathbb{R}}$ -10 eq. Bys. to this \rightarrow an \rightarrow $x[n] \longrightarrow |h_1 + h_2| \longrightarrow \pi$ \mathbb{Z} \odot or spring address of signals. Combined I.R

Scanned by CamScanner

Scanned by CamScanner

déchical le méchanical systems are déscribed · Many by differential egns. Mass spring, RLC) odifarete versions of these are called Difference lequalions $\sum_{k=0}^{k} a_{k} y[n-k] = \sum_{k=0}^{k} b_{k} x[n-k]$ colled finlar commt. Coeff. Difference On $k = 0$ be of the form Soln will $y[n] = y_{k}[n] + y_{k}[n]$ Londog. particular. Pinle Simpler case $y[n] = \sum b_k x[n-k]$ $\rightarrow F \cdot F \cdot R$ Imp $3y$. there is nothing to follow tere, 9 use is noming to prove to $\frac{10}{9}$ (see doing) tres type 9 trisblems) tres of problems
a part of recursive eqn. 2 then go thru mathinery of tromog. polis e particular. onvolution & Responses of LTI, systems can be
greatly simplefied with bots of Freq. domain anelysis (Fourier & 2-transform) analysse (router à la transforme des the best nang to solve differential egos. Same Leve once Z trans. lyke is comp. $JeQ,$ Fourier series. (Figurier Analyn's -> decemposition of riguals into fines mechical system - swinging pind. I have such that others. A communication radiphones, vadis it built n corrér vares (hyt frag. din)

Scanned by CamScanner

₹

ť

· Power signals S. rice thing is that LTJ hystems respond \dot{m} α particular say to sinusoided 918? Principle. periodic c.T. rignal pean te written ∞ · Every a from of sinusoids. **Separate** (Aperiodic - T - 00) · tisure we have a periodic synd x(t) $\alpha(t+T) = \alpha(t)$ Time period eri, same period & T ? 1st Question, is! st question is ignals have a period is α that has most notural signal sinusoid 3 3 Fundamental $\omega_0 = 2\pi$ $(\tau_{\epsilon} \omega_{\rm o} \tau)$ 2 π eg B That's not the Ø only freq. that
say period T. freq. that Ą € 9 can also kink about from that $\cos(3\omega_0 T)$ or $\cos(8.27 +)$ ۹b wiggle faster ð e
J has this period integer cos kw.t in ker and Ą \mathcal{A} fin kast Also, juvot. = cos kce + j sin kcest also periodic \overline{u} (Real 2 Inj.) with fering

combination of such signals with fervole of **CENT** $\sim \frac{\rho}{d}$ \mathcal{F} ikasot
jegyt Le de l'arte de la monder #) is also feriodic $\sqrt{2}$ is also period T E Compas #)
(Secaise "it word change its feriod")
(only amplitude & frase) E \mathbb{R} Ç Philosophy protok we're gonna da...
we're gonna lake our signel relt) & meke it ϵ dook like a brunch qu'on sinusvicts with \mathcal{L} ϵ uncreasing freq.. $($ ton to know there a_{k}) $\overline{\sigma}$ ϵ $for k = 0$ T'' bc" \mathbb{G} a_{\circ} $\hat{\sigma}$ $\hat{\nabla}$ $+$ α_1 . $(\cos \omega_0 t + j \sin \omega_0 t)$ $\frac{\alpha}{2}$. \rightarrow G a_{12} . $\bigcup_{\begin{array}{c} \begin{array}{c} \text{fugur} \end{array}}$ $\hat{\mathbf{P}}$ $+\alpha_{-1}$ ($cos(-\omega_{0}t)+j sin(-\omega_{0}t)$) $\hat{\mathbf{z}}$ $\frac{1}{4}a_{1}$ (coscost -) sm wst) a_{13} . Which $\frac{1}{2}$ Ontrepretation is that as 9
1 k 9 get the coeff. of Hungs four goal is to represent P $a_k e^{j k \omega_s t}$ \mathbb{P} Series (Synthesise x (t) 7 $k=-\infty$ 4Y Ą y_{env} to comfoute $\{a_k\}$ for a given $x(t)$? then to compare the reason that for misst signals that
are care about the annument of wiggling that I've
do face who account as k get briggling that I've
at smy fit there coeff get probably meller is
snally because a real Ą Ç ¢ $\hat{\mathcal{L}}$

ÊÀ

that this initially nle're gonna e jnwot holds v_{σ} mulliply $2|d$ $=\sum_{k=-\infty}^{\infty}\alpha_{k}e^{jk\omega_{0}t}$ $-jn\omega_{0}\epsilon$ $x(t)$, $e^{jn\omega_{s}t}$ nis a fixed integer) $k=-\omega$
= $\sum_{k=-\infty}^{\infty} \alpha_k e^{\frac{i}{\omega}(k-n)\omega_0 t}$ Ccollect these 2 terms hogether) 0 to T
 7 a $3(k-n) \omega_0 k$
 $\int_{0}^{n} \sum_{k=-\infty}^{\infty} \alpha_k e^{3(k-n) \omega_0 k}$ b/s from Integrate $\int \pi x(t) e^{-j n \omega_s t} dt$ dt $=$ $\sum_{k=-\infty}^{\infty} \frac{n}{e^{x}} e^{j(k-n)\omega_{0}t} dt$ Courtier the order integral) well behaved T_{\int} $e^{j(k-n)\omega_{0}t}dt = \int_{0}^{T} \cos(k-n)\omega_{0}t dt + j\int_{0}^{k} \sin(k-n)\omega_{0}t dt$ Diff. to writelize $cosh = cosh$ now, k and n are integers J° at just to meter $=$ \int and $1 dt = T$ \cdot say. : For K=n, The integral is T \cdot $\begin{cases} \text{say} & k \neq n \\ \tau & \end{cases}$ J cos (integer) cost de + j sin (integer) T Rem. bichine oscillates ar eq. no. of times inside $[0, T] \Rightarrow$ onliged is 0 Thus, $\int x(t) e^{-jn\omega_0 t} = a_n T$ an and $a_k = \frac{1}{T} \int \chi(t) e^{j k \omega_0 t} dt$ analysis How do get a $8b$ $a_{0}=\frac{1}{T}\int q x(t) dt \rightarrow 0e \text{ or } \text{avg}.$ $n^{1/2}$ coeff. **INTIALE**

Scanned by CamScanner

East avec the fourier encouragement \triangleleft $x(t)$ (spectral coeff.) (3 gen. x(t) aan se a complex valued rignal) to ax are complex \rightarrow what if $x(t)$ is real? what if $x(t)$ is real?
Ear? are res complex, but there're patterns $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j k \omega_0 t}$ complex conjugate, $x^*(t) = \sum_{k=0}^{\infty} a_k^* e^{j k \omega_0 t}$ 96×10^{10} and $z = 2^8$ $= \sum_{\rho=-\infty}^{\infty} \alpha_{-\rho}^{*} e^{j \ell \omega_{s} t}$ Rearder numbers chery the me of variables $(a_k = a_{-k}^*)$: $\chi(t) = \chi^*(t)$ $=\sum_{k=-\infty}^{\infty}a_{k}^{*}e^{jkw_{0}t}$ ∞ , $\alpha_1 = 1 + 2j$ $a_{1} = 1 - 2j$ 9 can immed- check what i keep track of the ax \mathbf{k} ve an ave for x(t) real, we can also write $x(t) = a_0 + \sum_{k=1}^{n} 2 A_k cos(\theta_k + k\omega_0 t)$ (. the inheriton is that of should be able to make that signal out of a bunch of real cosines or
sinusoids) eg. to get a sine way a need to shift the syned (for no these ghift) Salternatively $x(t) = a_0 + 2 \sum_{k=1}^{\infty} \frac{B_k}{k}$ cos jegot = e_k^2 sin kw.t creleted $SO(4k)$ a brinch of mon stripted sines & comes cony for reel

Scanned by CamScanner

 \propto (t) = 5 + 2 cos (ω_{0} t) zform $a_k = \frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_0 t}$ Ccomplex exponentiels) <u>It</u> . note when w've something i.e strictly visity figure 9 corries, on can immediately a fun out what the Fourier series is since S $\chi(t) = 5 + 2\left(\frac{1}{2}(\epsilon^{\dot{\theta}^{\dot{\omega}_{0}t}} + \epsilon^{\dot{\theta}^{\dot{\omega}_{0}t}})\right)$ € $= 5 + e^{\mathrm{j} \omega_{\mathrm{a}} t} + e^{-\mathrm{j} \omega_{\mathrm{a}} t}$ $a_0 e^{i\omega_0 t} + a_1 e^{i\omega_0 t} + a_1 e^{-i\omega_0 t}$ $a_{\circ} = 5$ $\alpha_1 = 1$ (signal is real; obey complex prof.) $a_{-1} = -1$ $= 0$ a_k other ${\cal H}$ consider, **Jets** $\chi(t)$ 2π -2π Fundamental $T = 8\pi$ $,\qquad\omega_{0}=\frac{2\pi}{\pi}=1$ a_{o} = $\frac{1}{T}$ $\int \chi(t)$, $e^{-j0.\omega_{o}t}$ de = $\frac{1}{T}$ $\int \chi(t) dt$ DC Ferm e.
G ē s Average value of the signal over \bm{m} ą period $a_{0} = \frac{1}{2\pi} \int_{0}^{\pi} x(t) dt = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} 1 dt = \frac{\pi}{2\pi} = \frac{1}{2}$ Э Э (come striff inside) $=\frac{1}{2\pi}\int \chi(t) dt$ Ð ð

Scanned by CamScanner

$$
a_{k} = \frac{1}{\pi} \int_{-\pi/2}^{\pi} x(t) e^{jkt} dt
$$

\n
$$
= \frac{1}{2\pi} \int_{-\pi/2}^{\pi} x(t) e^{-jkt} dt
$$

\n
$$
= \frac{1}{2\pi} \int_{-\pi/2}^{\pi} x(t) e^{-jkt} dt
$$

\n
$$
= \frac{1}{2\pi} \int_{-\pi/2}^{\pi} x(t) e^{-jkt} dt
$$

\n
$$
= \frac{1}{2\pi} \int_{-\pi/2}^{\pi} e^{-
$$

 \mathcal{L} and \mathcal{L}

 ϵ

 \mathbf{f}

 \mathbf{f}

AA

AP

P

PA

AP

AA

A

A

 $\mathcal{L}_{\mathcal{A}}$

A

E

PA

W

Ç

 \mathbb{Q}_p

 122

discontinuity? heppens at α what t à accommond (a) F.S converges (b) F.S converges to the ang-value at ever discontinuity (say square wave phenomenon
get in overshoot below ≈ 95 of frenomenon G_1BBS deight of discontinuity never He $H-L \geq 1$ $k_0 + 12k_1 + 16k_1$ Properties :with period T vx(t) periodic Me 've $\kappa(t) \longleftrightarrow a_{\kappa}$ $J.S \quad \{a_{\kappa}\}$ P.J. September 1 Linearity $\alpha_{\mathcal{R}}(t) \leftarrow \{a_{k}\}$ $Lrrod(T_{1111})$ have Jame $y(t) \leftarrow \{b_{k}\}$ α κ (t) + β y(t) \longleftrightarrow { $\alpha a_k + \beta b_k$ } 1 Time Shiftings. (1) Э Ą \sim 1 $h_{\rm B}$ Ą L, hu new 13th jobs ard William al \mathbf{c} $\lim_{n\to\infty} s$ $\chi(t), \leqslant \rightarrow \{a_k\}$ $\ddot{}$ mag. in \rightarrow $y(t) = x(t-t_0)$ always. **Jet** $y(t) \leftarrow a_k e^{i j k \omega_o t_o}$
 $y(t) \leftarrow a_k e^{i j k \omega_o t_o}$ Cor same $\tilde{\mathcal{A}}$ \mathcal{D} ie a phase shyt 9 F.s creff. 2 the \circ magnitude doint change A $|b_k| = |a_k|$ (4)

Scanned by CamScanner

3
$$
\mathcal{F}^{(t)}
$$
 written that
\n $x(t) \leftrightarrow \int_{k-\infty}^{k} a_{k} \, d_{k-1}$
\n $x(t) \leftrightarrow \int_{k-\infty}^{k} a_{k} e^{j t \omega_{0} t}$
\n $x(t) = \sum_{k=-\infty}^{n} (a_{k-1} k \omega_{0}) e^{j t \omega_{0} t}$
\n $x(t) = \sum_{k=-\infty}^{n} (a_{k-1} k \omega_{0}) e^{j t \omega_{0} t}$
\n $x(t) = \sum_{k=-\infty}^{n} (a_{k-1} k \omega_{0}) e^{j t \omega_{0} t}$
\n $\frac{1}{\pi} \int_{0}^{1} [x(t)]^{2} dt = \sum_{k=-\infty}^{\infty} (a_{k} I^{2} \text{ for any right of the interval } \mathbb{R})$
\n $\frac{1}{\pi} \int_{0}^{1} [x(t)]^{2} dt = \sum_{k=-\infty}^{\infty} (a_{k} I^{2} \text{ for any right of the interval } \mathbb{R})$
\n $\frac{1}{\pi} \int_{0}^{1} [x(t)]^{2} dt = \int_{0}^{1} [x - x^{2}]^{2} dx$
\n $\frac{1}{\pi} \int_{0}^{1} [x(t)]^{2} dt = \int_{0}^{1} [x - x^{2}]^{2} dx$
\n $\frac{1}{\pi} \int_{0}^{1} [x(t)]^{2} dt = \int_{0}^{1} [x - x^{2}]^{2} dx$
\n $\frac{1}{\pi} \int_{0}^{1} x(t) dx \Leftrightarrow \int_{0}^{1} a_{k} I^{2} = \int_{0}^{1} a_{k} B_{k}$
\n $\frac{1}{\pi} \int_{0}^{1} x(t) dx \Leftrightarrow \int_{0}^{1} a_{k} B_{k}$
\n $\frac{1}{\pi} \int_{0}^{1} x(t) dx \Leftrightarrow \int_{0}^{1} a_{k} B_{k}$
\n $\frac{1}{\pi} \int_{0}^{1} x(t) dx \Leftrightarrow \int_{0}^{1} a_{k} B_{k}$
\n $\frac{1}{\pi} \int_{0}^{1} x(t) dx$

Department of Electrical Engineering National Institute of Technology Srinagar

Tutorial I

Course Title: Digital Signal processing Date: 23.04.2020 Course Code: ELE-605

Semester: Sixth (6^{th})

I. Discrete-Time Fourier Transform

Q.1) Find the even and odd parts of the following signals:

- 1. $x[n] = (6, 4\uparrow, 2, 2)$ 2. $x[n] = (-4, 5, 1, -2)$, $-3, 0, 2)$ 3. $x[n] = a^{|n|}$
- 4. $x[n] = na^n u[n]$

 $Q.2)$ Consider a signal $x[n]$ as shown in the figure below

1. If $x[n]$ is transformed into $y[n] = \frac{2}{3}x[-n-2] - 2$, $y[n]$ is 2. What is $y[n]=x[-n/3]$

Q.3) Determine whether or not each of the following sequences is periodic. If your answer is yes, determine the period.

1. $x[n] = A \cos \left(\frac{3\pi}{7} \right)$ $\frac{3\pi}{7}n-\frac{\pi}{8}$ 8 \setminus 2. $x[n] = e^{j\left(\frac{n}{8}\right)}$ $\frac{n}{8} - \pi$

 $Q.4$) For each of the following systems, $y(n)$ denotes the output and $x(n)$ the input. Determine for each whether the specified input-output relationship is linear, shift-invariant and causal.

1.
$$
y[n] = 2x[n] + 3
$$

2. $y[n] = x[n] \sin\left(\frac{2\pi}{7}n + 6\right)$

3.
$$
y[n] = (x[n])^2
$$

4. $y[n] = \sum_{m=-\infty}^{n} x[m]$

 $Q.5$) For each of the following pairs of sequences, $x(n)$ represents the input to an LTI system with unit-sample response $h(n)$. Determine each output y(n). Sketch your results.

 $Q.6$) The system shown below contains two LTI subsystems with unit sample responses h_1 (n) and h_2 (n), in cascade. Consider $x[n]$ as a unit step.

