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In contrast to a resistor, which spends or dis-
sipates energy irreversibly, an inductor or ca-
pacitor stores or releases energy (ie., has a
memory).

Dielectric with permittivity e
] Meta plates,
< each with area A

S

i

d

Figure 6.1 A typical capacitor.

©

Figure 6.2 A capacitor
with applied voltage v.

Alternatively, capacitance s the amount of charge
stored per plate for a unit voltage difference in a
capacitor.
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6.1 INTRODUCTION

So far we have limited our study to resistive circuits. In this chapter, we
shall introduce two new and important passive linear circuit elements:
the capacitor and the inductor. Unlike resistors, which dissipate energy,
capacitors and inductors do not dissipate but store energy, which can be
retrieved at a later time. For this reason, capacitors and inductors are
calledstorage elements.

The application of resistive circuits is quite limited. With the in-
troduction of capacitors and inductors in this chapter, we will be able to
analyze more important and practical circuits. Be assured that the circuit
analysis techniques covered in Chapters 3 and 4 are equally applicable to
circuits with capacitors and inductors.

We begin by introducing capacitors and describing how to combine
them in series or in parallel. Later, we do the same for inductors. As
typical applications, we explore how capacitors are combined with op
amps to form integrators, differentiators, and analog computers.

6.2 CAPACITORS

A capacitor is a passive element designed to store energy in its electric
field. Besides resistors, capacitors are the most common electrical com-
ponents. Capacitors are used extensively in electronics, communications,
computers, and power systems. For example, they are used in the tuning
circuits of radio receivers and as dynamic memory elements in computer
systems.

A capacitor is typically constructed as depicted in Fig. 6.1.

A capacitor consists of two conducting plates separated
by an insulator (or dielectric).

In many practical applications, the plates may be aluminum foil whilethe
dielectric may be air, ceramic, paper, or mica.

When a voltage source v is connected to the capacitor, asin Fig.
6.2, the source deposits a positive charge g on one plate and a negative
charge —g on the other. The capacitor is said to store the electric charge.
The amount of charge stored, represented by ¢, is directly proportional
to the applied voltage v so that

qg=Cv (6.1)

where C, the constant of proportionality, is known as the capacitance
of the capacitor. The unit of capacitance is the farad (F), in honor of
the English physicist Michael Faraday (1791-1867). From Eqg. (6.1), we
may derive the following definition.

Capacitance is the ratio of the charge on one plate of a capacitor to the voltage
difference between the two plates, measured in farads (F).

Note from Eq. (6.1) that 1 farad = 1 coulomb/volt.
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Although the capacitance C of acapacitor istheratio of the charge

q per plate to the applied voltage v, it does not depend on ¢ or v. It

depends on the physical dimensions of the capacitor. For example, for

the parallel-plate capacitor shown in Fig. 6.1, the capacitance is given by
€A

C = 7 (6.2)

where A is the surface area of each plate, d is the distance between the
plates, and ¢ is the permittivity of the dielectric material between the
plates. Although Eq. (6.2) applies to only parallel-plate capacitors, we
may infer from it that, in general, three factors determine the value of the
capacitance:

1. The surface area of the plates—the larger the area, the greater
the capacitance.

2. The spacing between the plates—the smaller the spacing, the
greater the capacitance.

3. The permittivity of the material—the higher the permittivity,
the greater the capacitance.

Capacitorsarecommercially availablein different valuesand types.
Typically, capacitors have valuesin the picofarad (pF) to microfarad (uF)
range. They are described by the diel ectric material they are made of and
by whether they are of fixed or variabletype. Figure 6.3 showsthecircuit
symbols for fixed and variable capacitors. Note that according to the
passive sign convention, current is considered to flow into the positive
terminal of the capacitor when the capacitor is being charged, and out of
the positive terminal when the capacitor is discharging.

Figure6.4 showscommontypesof fixed-valuecapacitors. Polyester
capacitorsarelight in weight, stable, and their change with temperatureis
predictable. Instead of polyester, other dielectric materials such as mica
and polystyrene may be used. Film capacitors are rolled and housed in
metal or plastic films. Electrolytic capacitors produce very high capaci-
tance. Figure 6.5 shows the most common types of variable capacitors.
The capacitance of atrimmer (or padder) capacitor or aglass piston capac-
itor isvaried by turning the screw. The trimmer capacitor is often placed
in parallel with another capacitor so that the equivalent capacitance can
be varied dlightly. The capacitance of the variable air capacitor (meshed
plates) isvaried by turning the shaft. Variable capacitorsareusedin radio
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Capacitor voltage rating and capacitance are typ-
ically inversely rated due to the relationships in
Egs. (6.1) and (6.2). Arcing occurs if d is small

and V is high.
i C i Cc
o— ¢ o o— ¥ o
+V - +v -

Figure 63 Circuit symbols for capacitors:
(a) fixed capacitor, (b) variable capacitor.

@ (b)

©

Figu re64  Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.

(Courtesy of Tech America.)
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(b)

Figure 6.5  Variable capacitors:
(a) trimmer capacitor, (b) filmtrim
capacitor.

(Courtesy of Johanson.)

According to Eq. (6.4), for a capacitor to carry
current, its voltage must vary with time. Hence,
for constant voltage, i =0

~— Slope=C

0 dv/dt

Figure 6.6 Current-voltage
relationship of a capacitor.
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receivers allowing one to tune to various stations. In addition, capacitors
are used to block dc, pass ac, shift phase, store energy, start motors, and
SUppPress noise.

To obtain the current-voltage relationship of the capacitor, we take
the derivative of both sides of Eq. (6.1). Since

dq

i = (6.3
dt
differentiating both sides of Eq. (6.1) gives
= 64
i = o (6.4)

Thisisthe current-voltage rel ationship for a capacitor, assuming the pos-
itive sign convention. The relationship is illustrated in Fig. 6.6 for a
capacitor whose capacitance is independent of voltage. Capacitors that
satisfy Eq. (6.4) are said to be linear. For a nonlinear capacitor, the
plot of the current-voltage relationship is not a straight line. Although
some capacitors are nonlinear, most are linear. We will assume linear
capacitorsin this book.

The voltage-current relation of the capacitor can be obtained by
integrating both sides of Eq. (6.4). We get

1 t
v:E/_ooidt (6.5)
or
1 t
v = E/m i dt + v(to) (6.6)

where v(tg) = ¢(f9)/C is the voltage across the capacitor at time .
Equation (6.6) shows that capacitor voltage depends on the past history
of the capacitor current. Hence, the capacitor has memory—a property
that is often exploited.

The instantaneous power delivered to the capacitor is

— o ® 6.7
=Vl = V— .
p i (6.7)
The energy stored in the capacitor is therefore
t t d t 1 t
w:/ pdt:C/ v—vdt:Cf vdv= =Cv? (6.8)
—00 —00 dt —00 2 t=—00

We note that v(—o0) = 0, because the capacitor was uncharged at ¢ =
—o00. Thus,

~ Lo 6.9
w = E v (6.9)
Using Eq. (6.1), we may rewrite Eq. (6.9) as
2
q (6.10)

U):%
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Equation (6.9) or (6.10) represents the energy stored in the electric field
that exists between the plates of the capacitor. This energy can be re-
trieved, since an ideal capacitor cannot dissipate energy. Infact, theword
capacitor is derived from this element’s capacity to store energy in an
electric field.
We should note the following important properties of a capacitor:
1. Note from Eq. (6.4) that when the voltage across a capacitor is

not changing with time (i.e., dc voltage), the current through
the capacitor is zero. Thus,

t A capacitor is an open circuit to dc.

However, if abattery (dc voltage) is connected across a
capacitor, the capacitor charges.

2. The voltage on the capacitor must be continuous.

{ The voltage on a capacitor cannot change abruptly. J

The capacitor resists an abrupt change in the voltage acrossit.
According to Eq. (6.4), a discontinuous change in voltage
requires an infinite current, which is physically impossible.
For example, the voltage across a capacitor may take the form
shown in Fig. 6.7(a), whereas it is not physically possible for
the capacitor voltage to take the form shown in Fig. 6.7(b)
because of the abrupt change. Conversely, the current through
a capacitor can change instantaneously.

3. Theideal capacitor does not dissipate energy. It takes power
from the circuit when storing energy in itsfield and returns
previously stored energy when delivering power to the circuit.

4. A real, nonideal capacitor has a parallel-model leakage
resistance, as shown in Fig. 6.8. The leakage resistance may be
as high as 100 M2 and can be neglected for most practical
applications. For this reason, we will assume ideal capacitors
in this book.
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(€Y (b)

Figure 6.7 Voltage across a capacitor:
(a) alowed, (b) not allowable; an abrupt
change is not possible.

An alternative way of looking at this is using Eq.
(6.9), which indicates that energy is proportional
to voltage squared. Since injecting or extracting
energy can only be done over some finite time,
voltage cannot change instantaneously across a
capacitor.

J Leakage resistance
AW

° |

£ o
\

Capacitance

Figure 6.8 Circuit model of a
nonideal capacitor.

M6.I

(a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
(b) Find the energy stored in the capacitor.

Solution:
(@) Sinceg = Cv,
g =3x10"12 x 20=60pC
(b) The energy stored is
1

1
w=§Cv2=§x3x10_12x400=600pJ
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Solution:

Wefirst find the equivalent capacitance Ceg, Shownin Fig. 6.19. Thetwo
parallel capacitorsin Fig. 6.18 can be combined to get 40+ 20 = 60 mF.
This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors.
Thus,

Ceq= T MF=10mF

1

1 1

otoTH

Thetotal chargeis
g=Cqv=10x10°%x30=03C

Thisisthe charge on the 20-mF and 30-mF capacitors, because they are
in serieswith the 30-V source. (A crude way to seethisistoimaginethat
charge actslike current, sincei = dq/dt.) Therefore,

q 0.3 q 0.3

C; 20x 103 27, T 30x 100

Having determined v, and vy, we now use KVL to determine v by

v = =10V

v3=30—v1—v2=5V

Alternatively, sincethe 40-mF and 20-mF capacitorsarein parallel,
they have the same voltage v3 and their combined capacitance is 40 +
20 = 60 mF. This combined capacitanceisin series with the 20-mF and
30-mF capacitors and consequently has the same charge on it. Hence,

q 0.3
~ 60mF  60x 103

PRACTICE PROBLEMKNN

U3 5V

20 mF 30 mF

+ Vp — + Vo —

30V 40mF = V3 =

Figure 6.18  For Example 6.7.

30V q— Ceq

Figure 6.19  Equivalent
circuit for Fig. 6.18.
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— 20mF

Find the voltage across each of the capacitorsin Fig. 6.20.
Answer: v =30V,v2=30V,v3 =10V, v, =20 V.

40 uF 60 uF
|| ||

Il Il
+ Vp — + Vg —

60V Vo == 20uF V4 =

= 30 uF

Figure 6.20  For Practice Prob. 6.7.

6.4 INDUCTORS

Aninductor is a passive element designed to store energy in its magnetic
field. Inductors find numerous applicationsin electronic and power sys-
tems. They are used in power supplies, transformers, radios, TVs, radars,
and electric motors.

Any conductor of electric current hasinductive properties and may
be regarded as an inductor. But in order to enhance the inductive effect,
a practical inductor is usually formed into a cylindrical coil with many
turns of conducting wire, as shown in Fig. 6.21.
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I—— Length, | —>|
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Cross-sectional area, A t An inductor consists of a coil of conducting wire.

Core material
Number of turns, N

Figure 6.2|  Typical form of an inductor.

In view of Eq. (6.18), for an inductor to have
voltage across its terminals, its current must vary
with time. Hence, v = 0 for constant current
through the inductor.

(b)

©

Figu re62)  Various types of inductors:
(a) solenoidal wound inductor, (b) toroidal
inductor, (c) chip inductor.

(Courtesy of Tech America.)

If currentisallowed to passthrough aninductor, itisfound that the voltage
across the inductor is directly proportional to the time rate of change of
the current. Using the passive sign convention,

=L— 6.18
v ar (6.18)

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is the henry (H), named in honor of the
Americaninventor Joseph Henry (1797-1878). Itisclear from Eq. (6.18)
that 1 henry equals 1 volt-second per ampere.

Inductance is the property whereby an inductor exhibits opposition to the change
of current flowing through it, measured in henrys (H).

The inductance of an inductor depends on its physical dimension
and construction. Formulas for calculating the inductance of inductors
of different shapes are derived from electromagnetic theory and can be
found in standard electrical engineering handbooks. For example, for the
inductor (solenoid) shown in Fig. 6.21,

N2 A
e
where N isthe number of turns, ¢ isthe length, A is the cross-sectional
area, and u is the permeability of the core. We can see from Eq. (6.19)
that inductance can be increased by increasing the number of turns of
coil, using material with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.

Likecapacitors, commercially availableinductorscomein different
values and types. Typical practical inductors have inductance values
ranging from a few microhenrys («H), as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors. Common inductors are shown
in Fig. 6.22. The circuit symbols for inductors are shown in Fig. 6.23,
following the passive sign convention.

Equation (6.18) is the voltage-current relationship for an inductor.
Figure 6.24 shows this relationship graphicaly for an inductor whose
inductance is independent of current. Such an inductor is known as a
linear inductor. For anonlinear inductor, the plot of Eq. (6.18) will not
be a straight line because its inductance varies with current. We will
assume linear inductors in this textbook unless stated otherwise.

The current-voltage relationship is obtained from Eq. (6.18) as

L

(6.19)

1
di = —vdt
L
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Integrating gives 10 10 | o
L 1
i = Z/ v(t) dt (6.20) + + i
or ik CRRE | T
o1 .
i = Z/ v(t) dt +i(tp) (6.21) 1) I Ie)
0]
@ (b) ©

where i (tg) isthe total current for —oco <t < fgandi(—oo0) = 0. The _
idea of making i(—oo0) = O is practical and reasonable, because there ~ Figure 623 Circuit symbols for inductors:
must be atime in the past when there was no current in the inductor. (8) air-core, (b) iron-core, (¢) variable

The inductor is designed to store energy in its magnetic field. The ron-eore
energy stored can be obtained from Egs. (6.18) and (6.20). The power
delivered to the inductor is v
p=vi= (Ld—l> i (6.22)
dt

The energy stored is = Slope=L

t 1 dl
w:/ pdt:/ (L—)idt .
—o0 oo\ dt 0 di/dt

(6.23)
o1, 1, .
=L idi = ELI () — ELI (—00) Figure 6.24  Voltage-current
—00 relationship of an inductor.
Sincei(—o0) =0,
= 1L‘2 6.24
w = 5 1 (6.24)

We should note the following important properties of an inductor.

1. Note from Eq. (6.18) that the voltage across an inductor is zero
when the current is constant. Thus,

t An inductor acts like a short circuit to dc. ‘

2. Animportant property of the inductor isits opposition to the
changein current flowing through it.

{ The current through an inductor cannot change instantaneously. J _ _
| |

According to Eq. (6.18), a discontinuous change in the current
through an inductor requires an infinite voltage, which is not
physically possible. Thus, an inductor opposes an abrupt
change in the current through it. For example, the current
through an inductor may take the form shown in Fig. 6.25(a), @ (0)
whereas the inductor current cannot take the form shown in Figure 625 Current through an inductor:
Fig. 6.25(b) in real-life situations due to the discontinuities. (@ allowed, (b) not allowable; an abrupt
However, the voltage across an inductor can change abruptly. change is not possible.
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Since an inductor is often made of a highly con-
ducting wire, it has a very small resistance.

Figure 6.26  Circuit model
for a practical inductor.
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3. Liketheideal capacitor, theideal inductor does not dissipate
energy. The energy stored in it can beretrieved at alater time.
The inductor takes power from the circuit when storing energy
and delivers power to the circuit when returning previously
stored energy.

4. A practical, nonideal inductor has a significant resistive
component, as shown in Fig. 6.26. Thisis due to the fact that
the inductor is made of a conducting material such as copper,
which has some resistance. Thisresistance is called the
winding resistance R,,, and it appears in series with the
inductance of the inductor. The presence of R,, makesit both
an energy storage device and an energy dissipation device.
Since R, isusualy very small, it isignored in most cases. The
nonideal inductor also has awinding capacitance C,, dueto
the capacitive coupling between the conducting coils. C,, is
very small and can beignored in most cases, except at high
frequencies. We will assume ideal inductors in this book.

e L I

PRACTICE PROBLEMKIN

Thecurrent througha0.1-H inductor isi (r) = 10re~> A. Findthevoltage
across the inductor and the energy stored init.

Solution:
Sincev = Ldi/dtand L = 0.1H,

d
v = O.la(lOte_SI) =e M 4 1(-5e = 1-5)V
The energy stored is

1 1
w= 5Li2 = E(O.l)lOOtze’lO’ = 5127101

If the current through a1-mH inductor isi(t) = 20 cos100¢t mA, find the
terminal voltage and the energy stored.

Answer: —2sin100r mV, 0.2 cos? 100z jJ.

e L I

Find the current through a 5-H inductor if the voltage acrossit is

) = 302, +t>0
=10, t<0
Also find the energy stored within0 < ¢ < 5s.

Solution:
i 1/
Sincei = Zf v(t) dt +i(tg) and L = 5H,
o

1 t l3
i=§/0 30t2dt+0=6x§=2t3A
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We can also think of the instantaneous power
as the power absorbed by the element at a spe-
cific instant of time. Instantaneous quantities are
denoted by lowercase letters.

Sinusoidal
source

Figure [1.|

i(t)

+

v(t)

Sinusoidal source and passive
linear circuit.

PART 2 AC Circuits

I1.I  INTRODUCTION

Our effort in ac circuit analysis so far has been focused mainly on cal-
culating voltage and current. Our major concern in this chapter is power
analysis.

Power analysis is of paramount importance. Power is the most
important quantity in electric utilities, electronic, and communication
systems, because such systems involve transmission of power from one
point to another. Also, every industrial and household electrical device—
every fan, motor, lamp, pressing iron, TV, personal computer—has a
power rating that indicates how much power the equipment requires;
exceeding the power rating can do permanent damage to an appliance.
The most common form of electric power is 50- or 60-Hz ac power. The
choice of ac over dc allowed high-voltage power transmission from the
power generating plant to the consumer.

We will begin by defining and derivinghstantaneous power and
average power. We will then introduce other power concepts. As practi-
cal applications of these concepts, we will discuss how power is measured
and reconsider how electric utility companies charge their customers.

[1.2 INSTANTANEOUS AND AVERAGE POWER

As mentioned in Chapter 2, thestantaneous power p(¢) absorbed by an
elementisthe product of the instantaneous volidgeacross the element
and the instantaneous curréft) through it. Assuming the passive sign
convention,

p(t) = v(@)i) (11.1)

The instantaneous power is the power at any instant of time. Itis the rate
at which an element absorbs energy.

Consider the general case of instantaneous power absorbed by an
arbitrary combination of circuit elements under sinusoidal excitation, as
shown in Fig. 11.1. Let the voltage and current at the terminals of the
circuit be

v(t) =V, cos(wt + 6,) (11.2a)
i(t) = I, cos(wt + 6;) (11.2b)

where V,, and I, arethe amplitudes (or peak values), and 6, and 6; arethe
phase angles of the voltage and current, respectively. The instantaneous
power absorbed by the circuit is

p(t) = v(0)i(t) = V1, cos(wt + 6,) cos(wt + 6;) (11.3)
We apply the trigonometric identity

COSA COSB = % [cos(A — B) + cos(A + B)] (11.4)
and express Eq. (11.3) as

1 1
p) = EV'"I'" cos(0, — ;) + > Vi I, COSQwt 4 0, + 6;)  (11.5)
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This shows usthat the instantaneous power hastwo parts. Thefirst partis
constant or time independent. Its value depends on the phase difference
between the voltage and the current. The second part is a sinusoidal
function whose frequency is 2w, which is twice the angular frequency of
the voltage or current.

A sketch of p(¢) in Eq. (11.5) is shown in Fig. 11.2, where T =
27 /w isthe period of voltage or current. We observethat p(¢) isperiodic,
p() = p(t + To), and has a period of Tp = T /2, since its frequency
istwice that of voltage or current. We also observe that p(¢) is positive
for some part of each cycle and negative for the rest of the cycle. When
p(¢t) ispositive, power is absorbed by the circuit. When p(¢) is negative,
power is absorbed by the source; that is, power is transferred from the
circuit to the source. This is possible because of the storage elements
(capacitors and inductors) in the circuit.

p(t)

N LN

1
2

Vinlm cos(6, — 6;)

| >

T t

Figure |12 The instantaneous power p(r) entering a circuiit.

Theinstantaneouspower changeswithtimeandisthereforedifficult
to measure. The average power is more convenient to measure. In fact,
the wattmeter, the instrument for measuring power, responds to average
power.

t The average power is the average of the instantaneous power over one period.

Thus, the average power is given by

1 T
P=— .
Tfo p(t)dt (11.6)
Although Eq. (11.6) shows the averaging done over T', we would get the
sameresult if we performed the integration over the actual period of p(¢)

whichisTy = T/2.
Substituting p(¢) in Eq. (11.5) into Eq. (11.6) gives

P—1/T1VI cos(0, — 6;) dt
—T02mm v 1

171
+ = _VmIm COS(ZCUI + ev + ei)dt
T Jo 2
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—1VI cos(0 9)1/Tdt
_2 mtm v lT O

1 1,7
+ =V, = / cos(2wt + 6, + 6;) dt (11.7)
2 T Jo

The first integrand is constant, and the average of a constant is the same
constant. Thesecond integrand isasinusoid. Weknow that the average of
asinusoid over itsperiodiszero becausetheareaunder the sinusoid during
apositive half-cycleis canceled by the areaunder it during the following

negative half-cycle. Thus, the second termin Eq. (11.7) vanishes and the
average power becomes

1
P = EV'” I,, cos(6, — 6;) (11.8)

Since cos(8, — 6;) = cos(6; — 6,), what isimportant is the difference in
the phases of the voltage and current.

Note that p(¢) is time-varying while P does not depend on time.
To find the instantaneous power, we must necessarily have v(¢) and i ()
in the time domain. But we can find the average power when voltage
and current are expressed in the time domain, asin Eq. (11.2), or when
they are expressed in the frequency domain. The phasor forms of v(¢)
andi(t) inEq. (11.2) areV = V,, /6, and | = I,, /6;, respectively. P is
calculated using Eq. (11.8) or using phasorsV and |. To use phasors, we
notice that

1 1

EVI* == EVmImi 91} _01'

1 .
= Evmlm [COS(QU - 91) + ] Sn(ev - 91)]

(11.9)

We recognize the real part of this expression as the average power P
according to Eq. (11.8). Thus,

1 1
P= > Re[VI*] = EV’"I’" cos(8, — 6;) (11.10)

Consider two special cases of Eg. (11.10). When 6, = 6;, the
voltage and current are in phase. Thisimplies a purely resistive circuit
or resistive load R, and

P= 1V I, = 112R = 1|I|2R 11.11

_2I11111_2m _2 ()

where [11> = | x I*. Equation (11.11) shows that a purely resistive

circuit absorbs power at al times. When 0, — 6, = 4+90°, we have a
purely reactive circuit, and

1
P = > Viul,, €0S90° = 0 (11.12)
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showing that apurely reactive circuit absorbs no average power. In sum-
mary,

A resistive load (R) absorbs power at all times, while a reactive load (L or C)
absorbs zero average power.
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Given that
v(t) = 120cos(377t +45°) V and i(t) = 10cos(377t —10°) A

find the instantaneous power and the average power absorbed by the
passive linear network of Fig. 11.1.

Solution:
The instantaneous power is given by

p = vi = 1200 cos(377t + 45°) cos(377t — 10°)
Applying the trigonometric identity
COSA COSB = % [cos(A + B) + cos(A — B)]
gives
p = 600[cos(754t + 35°) + c0s55°]
or
p(t) = 344.2 + 600 cos(754¢ + 35°) W

The average power is

1 1
P = EV’” I, cos(0, — 6;) = 5120(10) cog[45° — (—10%)]

= 600c0s55° = 344.2 W

which isthe constant part of p(r) above.

PRACTICE PROBLEMMNNNN

Calculate the instantaneous power and average power absorbed by the
passive linear network of Fig. 11.1 if

v(r) = 80cos(10r + 20°) V and i(t) = 15sin(10r + 60°) A
Answer: 385.7 + 600 cos(20r — 10°) W, 385.7 W.

MII.Z

Calculate the average power absorbed by animpedanceZ = 30— j70 @
when avoltage V = 120 /0° is applied acrossit.
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PRACTICE PROBLEMENE
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Solution:
The current through the impedance is

\% 120,/0° 120 /0°
=== = = 1.576,/66.8° A

Z 30-j70 7616/ 66.8°

The average power is

1 1
P = 5Vl COS(0, — ) = 5(120)(1.576) cos(0 — 66.8) = 37.24 W

2

A current | = 10,/30° flows through an impedance Z = 20/ — 22° Q.
Find the average power delivered to the impedance.

Answer: 927.2W.

MII.3

I 40

—_—

5/30°V = -j2Q

Figure [1.3 For Example 11.3.

PRACTICE PROBLEMENE

For the circuit shownin Fig. 11.3, find the average power supplied by the
source and the average power absorbed by the resistor.

Solution:

The current | is given by

50 5,/30°
4—j2 4472/ 2657

The average power supplied by the voltage sourceis

= 1.118 /56.57° A

1
P = 5(5)(1.118) c0S(30° — 56.57°) = 25 W

The current through the resistor is
| =1z =1.118 /56.57° A
and the voltage acrossit is
Vi =4l =4.472 /56.57° V
The average power absorbed by the resistor is

1
P = S(4472)(1118) = 25W

which is the same as the average power supplied. Zero average power is
absorbed by the capacitor.

3

3Q

8/45°V i1Q

Figure |14 For Practice Prob. 11.3.

In the circuit of Fig. 11.4, calculate the average power absorbed by the
resistor and inductor. Find the average power supplied by the voltage
source.

Answer: 9.6 W,0W, 9.6 W.
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BEXE

Determinethe power generated by each source and the average power ab-
sorbed by each passive element in the circuit of Fig. 11.5(a).

200 -5 Q 200 -j5Q

+
2 4 Vs,

4/0° A Dl j10033 5(‘:)60@v 4&’A<>+Vl ﬁ) j100 @ 60,/30° V
- 1 2

@ (b)

Figure 1.5 For Example 11.4.

Solution:
We apply mesh analysis as shown in Fig. 11.5(b). For mesh 1,
l1=4A
For mesh 2,
(j10— j5)l, — j10l; +60,/30° = 0, I, =4A
or

jblo=—60/30° + j40 = l,=-12/-60°+8
— 10,58 /79.1° A

For the voltage source, the current flowing fromitisl, = 10.58 /79.1° A
and the voltage across it is 60 /30° V, so that the average power is

1
Ps = 5(60)(10.58) cos(30° — 79.1°) = 207.8W

Following the passive sign convention (see Fig. 1.8), this average power
is absorbed by the source, in view of the direction of 1, and the polarity
of the voltage source. That is, the circuit is delivering average power to
the voltage source.

For the current source, the current through itisl; = 4 ﬁ and the
voltage acrossitis

Vi, =20l; + j10(I; — 1,) =80+ j10(4 — 2 — j10.39)
= 183.9+ j20 = 184.984 /6.21° V
The average power supplied by the current sourceis

1
Pl = —5(184984)(4) COS(G.Z:I.O — O) = —-367.8W

It is negative according to the passive sign convention, meaning that the
current source is supplying power to the circuit.

For theresistor, the current throughiitisl; = 4 ﬁ and the voltage
acrossitis20l; = 80 ﬁ so that the power absorbed by the resistor is

5:%@mmy:mmN
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For the capacitor, the current through it isl, = 10.58 /79.1° and the
voltage across it is —j5l, =(5/—90°)(10.58 /79.1°) =
52.9,/79.1° — 90°. The average power absorbed by the capacitor is
1
Py = 5(52.9)(10.58) cos(—90°) =0
For the inductor, the current through it is I; —1,=2— j10.39 =
1058/ — 79.1°. The voltage across it is j10(l; — 1) =

105.8/ — 79.1° 4 90°. Hence, the average power absorbed by the in-
ductor is

1
Py = 5(105.8)(10.58) cos90° =0

Notice that the inductor and the capacitor absorb zero average power
and that the total power supplied by the current source equals the power
absorbed by the resistor and the voltage source, or

Pi+P,+ P33+ Py+ Ps=-367.84+160+0+0+207.8=0

indicating that power is conserved.

4

Calculate the average power absorbed by each of the five elementsin the
circuit of Fig. 11.6.

8Q j4aQ
o
40/0°V L 20 20/90°V

Figure 1.6 For Practice Prob. 11.4.

Answer: 40-V Voltage source: —100 W; resistor: 100 W; others: 0 W.

1.3 MAXIMUM AVERAGE POWER TRANSFER

In Section 4.8 we solved the problem of maximizing the power deliv-
ered by a power-supplying resistive network to aload R;. Represent-
ing the circuit by its Thevenin equivalent, we proved that the maximum
power would be delivered to the load if the load resistanceis equal to the
Theveninresistance R; = Rth. We now extend that result to ac circuits.

Consider the circuit in Fig. 11.7, where an ac circuit is connected
toaload Z; and is represented by its Thevenin equivalent. The load
is usually represented by an impedance, which may model an electric
motor, an antenna, a TV, and so forth. In rectangular form, the Thevenin
impedance Zt, and the load impedance Z, are

Z1th = Rth + j X1 (11139
Z, =R+ jX, (11.13b)
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The current through the load is
Vh Vh Linear
I = = 11.14 S z
Zhn+Zy  (Rmm+jXmn)+ (R +jX1) (1119 cireuit -
From Eg. (11.11), the average power delivered to theload is
1 V1hl?R./2 @
P=Z|l°R, = V" Ry/ (11.15)
2 (Rth+ Rp)? + (Xh + X1)? Zo |
Our objective is to adjust the load parameters R; and X; so that P is —~
maximum. To do thisweset 9 P/d0R; and d P/d X, equal to zero. From
Eq. (11.15), we obtain Vin %
ap IVrnl? R (Xth 4 X 1)
= 11.16
90X, ~  [(Rm+ R.? + (Xmn+ X )72 (169 (®)
2 2 2
oP _ |Vl [(Rtn+ Rp)* + (XZTh +X1) 21§L2(RTh + Ry)] (11.16b) Figure |17 Finding the
R, 2[(Rn + RL)? + (Xn + X1)F] maximum average power transfer:
. . circuit with a load, (b) the
Setting 0 P /90X, to zero gives gl'?a/enin equivalent. ®
Xy = —Xmn (11.17)
and setting d P /9 R, to zero resultsin
R, = \/R$h + (X1h+ X1)? (11.18)
Combining Egs. (11.17) and (11.18) leadsto the conclusion that for max-
imum average power transfer, Z; must be selected so that X; = — X1y,
and R, = R, i.e,
Zp =Ry + jXp = Rmh— jX7h =27, (11.19)

For maximum average power transfer, the load impedance Z; must be equal to the
complex conjugate of the Thevenin impedance Z.

When Z, = ZTh we say that the load is matched
to the source.

Thisresult isknown as the maximum average power transfer theoremfor
the sinusoidal steady state. Setting R, = Ryh and X = — X+, in Eq.
(11.15) gives us the maximum average power as

In a situation in which the load is purely real, the condition for
maximum power transfer isobtained from Eq. (11.18) by setting X; = 0

that is,
Ry = /R34 + X3 = |Zml (11.21)

Thismeansthat for maximum average power transfer to apurely resistive
load, the load impedance (or resistance) is equal to the magnitude of the
Thevenin impedance.
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8Q
10,/0°V Z,

-6Q
T

For Example 11.5.

Figure 11.8

PRACTICE PROBLEMHENE

Determine the load impedance Z; that maximizes the average power
drawnfromthecircuit of Fig. 11.8. What isthe maximum average power?

Solution:

First we obtain the Thevenin equivalent at theload terminals. To get Z,
consider the circuit shown in Fig. 11.9(a). We find

. , - 4@B8—/6 :
Zth=j5+4| (8- j6) = j5+ ——"— = 2933+ j4.467 Q
Th=Jjo+4] (8- j6) J+4+8_j6 +J

To find V1, consider the circuit in Fig. 11.8(b). By voltage division,
8—j6
Vih=——"""—(10) =7.454/ — 10.3° V
™= 38— 6

The load impedance draws the maximum power from the circuit when
Z;, =7%, =2933— j4.467 Q
According to Eqg. (11.20), the maximum average power is

VP (7.454?

Prax = = = 2.368 W
T B8R | 8(2.933)
40 i5Q 4Q i5Q
Z
80 il 10V
-i6Q
1 0
@
Figure [1.9 Finding the Thevenin equivalent of the circuit in Fig. 11.8.
5

—1'4‘ Q j10Q
| 212
8Q @ 2A 50 z,
Figure [1.10° For Practice Prob. 11.5.

For the circuit shown in Fig. 11.10, find the load impedance Z; that ab-
sorbs the maximum average power. Calculate that maximum average
power.

Answer: 3.415— j0.7317 2, 1.429 W.

M||.e

InthecircuitinFig. 11.11, find the value of R, that will absorb the max-
imum average power. Calculate that power.
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Solution:
We first find the Thevenin equivalent at the terminals of R; .

j20(40 — j30)

Zh=(40—j30) || j20= ~—————~ = 9412+ j22.35Q
Th = (40— j30) || j 120+ 40— j30 +J
By voltage division,
j20
Vih= ———— (150 /30°) = 72.76 /134° V
™ j20+40—j30( /30) /134

Thevalue of R, that will absorb the maximum average power is

R = |Zth| = v/9.4122 + 22.352 = 24.25 Q

The current through the load is

Vin 72.76 /134°

| = =
Zm+ R, 3339+ j22.35

The maximum average power absorbed by R is

=18,/100.2° A

1 1
P = 5 I’R, = E(1.8)2(24.25) =39.29W

PRACTICE PROBLEMEEEN

150,30° V

Figure | .11

400 30Q

j20Q

For Example 11.6.
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In Fig. 11.12, the resistor R, is adjusted until it absorbs the maximum
average power. Calculate R; and the maximum average power absorbed
by it.

80Q  j60Q
— A — T
120,/60° V (’:} 900 —= -j30Q R

Figure 112 For Practice Prob. 11.6.

Answer: 30 €2, 9.883W.

I1.4 EFFECTIVE OR RMS VALUE

The idea of effective value arises from the need to measure the effec-
tiveness of a voltage or current source in delivering power to aresistive
load.

The effective value of a periodic current is the dc current that delivers the same
average power to a resistor as the periodic current.
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i(t)

v(®)

@

lest

(b)

Figure .13 Finding the
effective current: (a) ac circuit,
(b) dc circuit.

PART 2 AC Circuits

InFig. 11.13, the circuit in (8) is ac while that of (b) isdc. Our objective
istofind I that will transfer the same power to resistor R asthe sinusoid
i. The average power absorbed by the resistor in the ac circuit is

1 /7 R [T
P= —/ i’Rdt = —/ i%dt (11.22)
T Jo T Jo

while the power absorbed by the resistor in the dc circuit is
P =I%R (11.23)

Equating the expressionsin Egs. (11.22) and (11.23) and solving for I,

we obtain
1 T
Ift = [ = / i2dt (11.24)
T Jo

The effective value of the voltage is found in the same way as current;

that is,
1 T
Vst :‘/?/ v2dt (11.25)
0

Thisindicates that the effective value is the (square) root of the mean (or
average) of the square of the periodic signal. Thus, the effective valueis
often known as the root-mean-square value, or rms value for short; and
wewrite

Ieff = Irms» Veff = Vrms (11.26)

For any periodic function x(z) in general, the rms value is given by

1 T
Xims =/ = f x2dt (11.27)
T Jo

t The effective value of a periodic signal is its root mean square (rms) value.

Equation 11.27 statesthat to find thermsvalue of x (¢), wefirst find
its square x2 and then find the mean of that, or

1 T
—/ x2dt
T Jo

and then the square root (,/— ) of that mean. The rms value of a
constant is the constant itself. For the sinusoid i(r) = I, coswt, the
effective or rmsvaueis

1 T
Ims = | = / 12 cos? wt dt
T Jo

2 (71 I
= | Z(1+ cos2wt)dt = —=
\/Tfo 2" ) V2

(11.29)
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Similarly, for v(z) = V,, coswt,
Vi
Vrms = 72

Keep in mind that Egs. (11.28) and (11.29) are only valid for sinusoidal
signals.

The average power in Eq. (11.8) can be written in terms of the rms
values.

(11.29)

1 ‘/m Im
P = -V,lI, cos(9, — ;) = ——~=cos(6, — 6;)
2 ! V22 ' (11.30)

= VimsIims COS(6, — 0;)

Similarly, the average power absorbed by aresistor R in Eq. (11.11) can
be written as
2
P=I2R= Vims (11.31)
R
When asinusoidal voltage or current isspecified, itisofteninterms
of its maximum (or peak) value or its rms value, since its average value
iszero. The power industries specify phasor magnitudesin terms of their
rms values rather than peak values. For instance, the 110 V available at
every household isthe rmsvalue of the voltage from the power company.
It is convenient in power analysis to express voltage and current in their
rms values. Also, analog voltmeters and ammeters are designed to read
directly the rms value of voltage and current, respectively.

445

M||.7

Determine the rms value of the current waveform in Fig. 11.14. If the
current is passed through a 2-2 resistor, find the average power absorbed
by the resistor.

Solution:

The period of the waveform is T = 4. Over a period, we can write the
current waveform as

(1) = 5, O<t<?2
=1_10, 2<r<4

Thermsvaueis

1 T 1 2 4
— - 12 — - 2 _ 2
Irms = T A icdt = 2 |:/0 (51)4dt —I—/Z. (—10) dti|

1 13 4 1 /200
=J£_1|:25§ :|: 21<—+200):8.165A

5 3
The power absorbed by a2-Q2 resistor is

2

+ 100¢
0

P =I2 R = (8.165)%(2) = 133.3W

i®

10 -

0 >
4 |6 |8 |10 t

_10_

Figure [1.14 " For Example 11.7.
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PRACTICE PROBLEM

i(t)

PART 2 AC Circuits

1

Figure 1115

For Practice Prob. 11.7.

Find the rms value of the current waveform of Fig. 11.15. If the current
flowsthrough a 9-2 resistor, calcul ate the average power absorbed by the
resistor.

Answer: 2.309 A, 48 W.

| 1.8

v(t)
0 T

Figure 11.16

PRACTICE PROBLEM

v(t)

8

For Example 11.8.

21 3

t

The waveform shown in Fig. 11.16 is a half-wave rectified sine wave.
Find the rms value and the amount of average power dissipated in a10-2
resistor.

Solution:
The period of the voltage waveformis T = 2z, and

) = 10sint, O<t<m
vy = 0, T <t<271

Thermsvalueis obtained as

, 17, L™ 2
VrmSZT/O v(t)dt:z /0(105mt) dt+/ 0% dt

But sin®t = 3(1 — cos2r). Hence

1 (7100 50 sin2t
Vr?ns:Z/(; 7(1—C052t)dt:z ([_T)

T

0

50 1
2n 2

The average power absorbed is

Vr?ns _ 5

P = = — =
R 10

25W

.8

>

0

Figure [1.17

T 2 37

For Practice Prob. 11.8.

t

Find thermsvalue of the full-waverectified sinewavein Fig. 11.17. Cal-
culate the average power dissipated in a 6-2 resistor.

Answer: 5.657V, 5.334 W.
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1.5 APPARENT POWER AND POWER FACTOR
In Section 11.2 we see that if the voltage and current at the terminals of
acircuit are

v(t) =V, cos(wt + 6,) and i(t) = I, cos(wt +6;) (11.32)
or, in phasor form, V = V,, /9, and | = I, /6;, the average power is

1
P = > VoI, cOS(0, — 6;) (11.33)
In Section 11.4, we saw that

P = VimsIims COS(8, — 6;) = S cos(6, — 6;) (11.34)
We have added a new term to the equation:

S = Vimslims (11.35)

The average power is a product of two terms. The product Vimslims iS
known as the apparent power S. The factor cos(6, — 6;) is called the
power factor (pf).

{The apparent power (in VA) is the product of the rms values of voltage and current.

The apparent power is so called because it seems apparent that the power
should be the voltage-current product, by analogy with dc resistive cir-
cuits. It is measured in volt-amperes or VA to distinguish it from the
average or real power, which is measured in watts. The power factor is
dimensionless, since it is the ratio of the average power to the apparent
power,

P
pf = ri cos(9, — 6;) (11.36)

The angle 6, — 6; is called the power factor angle, sinceit is the
angle whose cosine is the power factor. The power factor angle is equal
to the angle of the load impedanceif V isthe voltage across the load and
| isthe current through it. Thisis evident from the fact that

V. Vb,

Z=—= =—/0,—6 (11.37)
| Imﬁ Im
Alternatively, since
Y
Vims = 5 Vims/ 0y (11.383)
and
I
lrms = 72 = Irmsﬁ (11.38b)
the impedanceis
vV Vv V
Z=—=-—""="T/ _y, (11.39)

447
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From Eq. (11.36), the power factor may also be
regarded as the ratio of the real power dissipated
in the load to the apparent power of the load.

PART 2 AC Circuits

The power factor is the cosine of the phase difference between voltage and current.
It is also the cosine of the angle of the load impedance.

From Eqg. (11.36), the power factor may be seen asthat factor by whichthe
apparent power must be multiplied to obtain the real or average power.
The value of pf ranges between zero and unity. For a purely resistive
load, the voltage and current are in phase, so that 6, — 6; = 0 and pf
= 1. Thisimpliesthat the apparent power is equal to the average power.
For a purely reactive load, 6, — 6; = £90° and pf = 0. In this case the
average power is zero. In between these two extreme cases, pf is said
to be leading or lagging. Leading power factor means that current leads
voltage, which implies a capacitive load. Lagging power factor means
that current lagsvoltage, implying aninductiveload. Power factor affects
the electric bills consumers pay the electric utility companies, as we will
seein Section 11.9.2.

PRACTICE PROBLEMHENE

A series-connected load draws a current i (r) = 4c0s(100x¢ + 10°) A
when the applied voltage is v(r) = 120cos(100z¢ — 20°) V. Find the
apparent power and the power factor of the load. Determine the element
values that form the series-connected load.

Solution:

The apparent power is

120 4
S = Vimslims = — = 240VA

V22
The power factor is
pf = cos(6, — 6;) = cos(—20° — 10°) = 0.866 (leading)
The pf isleading because the current leads the voltage. The pf may also
be obtained from the load impedance.

v 120/ - 20°
Z=—=———"=30/-300=2598— 15 Q

! 4/10°
pf = cos(—30°) = 0.866 (leading)
The load impedance Z can be modeled by a 25.98-Q2 resistor in series
with a capacitor with

1
Xe=-15=——
¢ oC
or
1 1
C =155 = Bx100r ~ 2122KF
9

Obtain the power factor and the apparent power of aload whose imped-
ance is Z = 60 + j40 Q when the applied voltage is v(r) =
150 cos(377t + 10°) V.

Answer: 0.832lagging, 156 VA.
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MII.IO

|
Determine the power factor of the entire circuit of Fig. 11.18 as seen by
the source. Calculate the average power delivered by the source.
Solution:
The total impedanceis
—j2x4

Z=6+4](-j) =6+ =68-jL6=7/-13240Q
—J

The power factor is
pf = cos(—13.24) = 0.9734 (leading)
since the impedance is capacitive. The rms value of the current is

V rms 30@

lrms = = =4.286/13.24° A
Z  7/-1324
The average power supplied by the source is

or
P =13

rms

R = (4.286)%(6.8) = 125 W

where R istheresistive part of Z.

PRACTICE PROBLEMMNEEEN

6Q

30/0°V rms

Figure [1.18  For Example 11.10.

Calculate the power factor of the entire circuit of Fig. 11.19 as seen by
the source. What is the average power supplied by the source?

Answer: 0.936 lagging, 118 W.

10Q 8Q

40,/0°V rms j4Q -6Q

1

Figure I1.19 " For Practice Prob. 11.10.

1.6 COMPLEX POWER

Considerable effort has been expended over the years to express power
relations as simply as possible. Power engineers have coined the term
complex power, which they use to find the total effect of parallel loads.
Complex power isimportant in power analysisbecauseit containsall the
information pertaining to the power absorbed by a given load.

Consider the ac load in Fig. 11.20. Given the phasor form V =
V./8, and | = 1, /6, of voltage v(r) and current i(r), the complex
power S absorbed by the ac load is the product of the voltage and the
complex conjugate of the current, or

1
S==VI* 11.40
> (11.40)
assuming the passive sign convention (see Fig. 11.20). In terms of the

rms val ues,
S=Vimsl s (11.42)

i

Load
Zz

S

Figure 1120 The
voltage and current
phasors associated
with a load.

\%
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When working with the rms values of currents
or voltages, we may drop the subscript rms if no
confusion will be caused by doing so.

PART 2 AC Circuits

where
Vims = = = Vi /. (1142
rms — ﬁ - rms, v .
and
|
lrms = 72 =1 rmsﬁ (11.43)
Thus we may write Eq. (11.41) as
S= Vrms[rms{ 0, — 0
(11.44)

= Vrms]rms COS(QU - 91‘) + ermsIrmsSin(Qv - 91‘)

This equation can also be obtained from Eq. (11.9). We notice from Eq.
(11.44) that the magnitude of the complex power is the apparent power;
hence, the complex power is measured in volt-amperes (VA). Also, we
notice that the angle of the complex power isthe power factor angle.

Thecomplex power may beexpressedintermsof thel oad impedance
Z. From Eq. (11.37), the load impedance Z may be written as

V Vv Vi
== /% - (11.45)

Z=— =
Thus, Vims = ZIlms. Substituting thisinto Eq. (11.41) gives

I I rms Irms

2

V.
S=13Z= Z”:S (11.46)

SinceZ = R + j X, Eq. (11.46) becomes
S=I12(R+jX)=P+j0 (11.47)

where P and Q are the real and imaginary parts of the complex power;
that is,

P =ReS = I2R (11.48)
0 =Im(S) = 13X (11.49)

ms

P is the average or real power and it depends on the load's resistance
R. Q depends on the load’s reactance X and is called the reactive (or
quadrature) power.

Comparing Eq. (11.44) with Eqg. (11.47), we notice that

P = Vimslms COS(Q,, —6;), Q = VrmsIrmsSin(Qv —6;) (1150)

The rea power P is the average power in watts delivered to a load; it
is the only useful power. It is the actual power dissipated by the load.
The reactive power Q is ameasure of the energy exchange between the
source and the reactive part of theload. The unit of Q isthe volt-ampere
reactive (VAR) todistinguishitfromthereal power, whoseunitisthewatt.
We know from Chapter 6 that energy storage elements neither dissipate
nor supply power, but exchange power back and forth with the rest of
the network. In the same way, the reactive power is being transferred
back and forth between the load and the source. It represents a lossless
interchange between the load and the source. Notice that:
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1. Q = Ofor resistive loads (unity pf).

2. O < Ofor capacitive loads (leading pf).

3. Q > Ofor inductive loads (lagging pf).
Thus,

Complex power (in VA) is the product of the rms voltage phasor and the
complex conjugate of the rms current phasor. As a complex quantity, its
real part is real power P and its imaginary part is reactive power Q.

Introducing the complex power enables usto obtain thereal and reactive
powers directly from voltage and current phasors.

1
Complex Power =S=P + jQ = EVI*

= Vrmslrms{ 0, — 0;
Apparent Power = S = |S| = Vimslims = m
Real Power = P = Re(S) = S cos(9, — 6;)
Reactive Power = Q = Im(S) = Ssin(¥, — 6;)

(11.51)

P
Power Factor = 3 = cos(6, — 6;)

This shows how the complex power contains all the relevant power in-
formation in a given load.

It is a standard practice to represent S, P, and Q in the form of
a triangle, known as the power triangle, shown in Fig. 11.21(a). This
is similar to the impedance triangle showing the relationship between
Z, R, and X, illustrated in Fig. 11.21(b). The power triangle has four
items—the apparent/complex power, real power, reactive power, and the
power factor angle. Given two of these items, the other two can easily
be obtained from the triangle. AsshowninFig. 11.22, when Sliesin the
first quadrant, we have an inductive load and alagging pf. When Slies
in the fourth quadrant, the load is capacitive and the pf is leading. It is
also possiblefor the complex power to liein the second or third quadrant.
This requires that the load impedance have a negative resistance, which
is possible with active circuits.

P R
@ (b)

Figure 1121 (2) Power triangle,
(b) impedance triangle.

Im 4
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S contains all power information of a load. The
real part of S is the real power P; its imaginary
part is the reactive power (; its magnitude is the
apparent power §; and the cosine of its phase
angle is the power factor pf.

s +Q (lagging pf)

6, — 6;

Jo,-0, P Re

~Q (leading pf)

Figure [1.22 Power triangle.



PART 2 AC Circuits

PRACTICE PROBLEMHENE

The voltage across a load is v(r) = 60cos(wt — 10°) V and the cur-
rent through the element in the direction of the voltage drop isi(r) =
1.5cos(wt + 50°) A. Find: (a) the complex and apparent powers, (b) the
real and reactive powers, and (c) the power factor and theload impedance.

Solution:
(a) For the rms values of the voltage and current, we write
60 15

Vrms=72£ _100, Irms=72£ +500

The complex power is
60 15

S=Vimslims = (72 / = 10") (72 / = 50°> =45/ —60° VA
The apparent power is
S =S| =45VA
(b) We can express the complex power in rectangular form as
S=45,/— 60" = 45[cos(—60") + j sin(—60")] = 22.5 — j38.97
SinceS= P + jQ, thereal power is
P=225W
while the reactive power is
Q = —38.97 VAR
(c) The power factor is
pf = cos(—60°) = 0.5 (leading)
Itisleading, because the reactive power is negative. Theload impedance
is
5 _ v _ 60/ — 100
I 15/4 50
which is a capacitive impedance.

=40/ —60° @

For aload, Vims = 110,/85° V, I;ms = 0.4,/15° A. Determine: (a) the
complex and apparent powers, (b) the real and reactive powers, and (c)
the power factor and the load impedance.

Answer: (a) 44/70° VA, 44 VA, (b) 15.05W, 41.35 VAR,
(c) 0.342 lagging, 94.06 + j258.4 .

MII.IZ

A load Z draws 12 kVA at a power factor of 0.856 lagging from a 120-V
rms sinusoidal source. Calculate: (a) the average and reactive powers
delivered to the load, (b) the peak current, and (c) the load impedance.
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Solution:

(a) Given that pf = cosé = 0.856, we obtain the power angle as 6 =
cos10.856 = 31.13°. If the apparent power is S = 12,000 VA, then the
average or real power is

P = §cosf = 12,000 x 0.856 = 10.272 kW
while the reactive power is
0 = Ssind = 12,000 x 0.517 = 6.204 kVA
(b) Since the pf islagging, the complex power is
S=P+ ;0 =10272+ j6.204 KVA
From S = Vsl |, We obtain
o S _ 10,272+ j6204
Vims 120,/0°
Thus | ;ms = 100/ — 31.13° and the peak current is

=85.6+ j51.7A =100/31.13° A

Ly = V2Iims = V/2(100) = 141.4 A
(c) The load impedance
Vims 120 /0°

Z= = =12/3113° Q
lrms 100/ — 31.13°
which is an inductive impedance.
PRACTICE PROBLEMENEEY
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A sinusoidal source supplies 10 kVA reactive power to load Z =
250/ — 75° Q. Determine: (@) the power factor, (b) the apparent power
delivered to the load, and (c) the peak voltage.

Answer: (@) 0.2588 leading, (b) —10.35 kVAR, (c) 2.275 kV.

fI1.T  CONSERVATION OF AC POWER

The principle of conservation of power appliesto ac circuitsaswell asto
dc circuits (see Section 1.5).

To see this, consider the circuit in Fig. 11.23(a), where two load
impedances Z; and Z, are connected in parallel across an ac source V.
KCL gives

Il =114+1> (11.52)

The complex power supplied by the sourceis

where S; and S, denote the complex powers delivered to loads Z; and
Z,, respectively.

In fact, we already saw in Examples I1.3and | 1.4
that average power is conserved in ac circuits.
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In fact, all forms of ac power are conserved: in-
stantaneous, real, reactive, and complex.

PART 2 AC Circuits

e b
v<t> z, Z,

@ (b)
Figure 123 An ac voltage source supplied loads connected in:
(a) paralel, (b) series.
If theloadsare connected in serieswith thevoltage source, asshown
inFig. 11.23(b), KVL yields
V=V;+V, (11.54)

The complex power supplied by the source is

1 1 1 1
==VI*==(V1+ V)" = =ViI*+ =V,l* = 11.
S 5 2( 1+ V2) 5V1 +2 2 S +S (1155
where S; and S, denote the complex powers delivered to loads Z; and
Z,, respectively.

We conclude from Egs. (11.53) and (11.55) that whether the loads
are connected in series or in parallel (or in general), the total power
supplied by the source equalsthetotal power delivered totheload. Thus,
in general, for a source connected to N oads,

S=S5+S+---+Sy (11.56)

This means that the total complex power in a network is the sum of the
complex powers of the individual components. (Thisis also true of real
power and reactive power, but not true of apparent power.) Thisexpresses
the principle of conservation of ac power:

The complex, real, and reactive powers of the sources equal the respective sums
of the complex, real, and reactive powers of the individual loads.

From thisweimply that the real (or reactive) power flow from sourcesin
anetwork equalsthereal (or reactive) power flow into the other el ements
in the network.

Figure 11.24 shows aload being fed by a voltage source through atrans-
mission line. Theimpedance of thelineisrepresented by the (4+ j2)
impedance and a return path. Find the real power and reactive power
absorbed by: (a) the source, (b) the line, and (c) the load.
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i2Q

15Q
220/0°V rms

-j10Q
o]

Source Line »> |_oad

Figure |1.24  For Example 11.13.

Solution:
The total impedanceis

Z=({4+;2)+ (15— 100 =19— j8=20.62/—22.83° Q
The current through the circuit is
2 220,/0°
z " 20.62/ — 22.83°

(a) For the source, the complex power is

S, = V,I* = (220,/0°)(10.67 / — 22.83)

= 23474/ — 22.83° = (2163.5 — j910.8) VA

= 10.67/22.83° A rms

From this, we obtain the real power as 2163.5 W and the reactive power
as 910.8 VAR (leading).
(b) For theline, the voltageis

Viine = (4+ j2)| = (4.472 /26.57°)(10.67 /22.83°)
=47.72 /49.4° V rms

The complex power absorbed by thelineis
Siine = Viinel * = (47.72 /49.4°)(10.67 /' — 22.83°)
=509.2,/26.57° = 455.4 + j227.7 VA

or
Sine = |11%Ziine = (10.67)2(4 + j2) = 455.4 + j227.7 VA

That is, the real power is455.4 W and the reactive power is 227.76 VAR

(lagging).
(c) For the load, the voltage is

V; = (15— j10)l = (18.03/ — 33.7°)(10.67 /22.83°)
=192.38/ — 10.87° V rms

The complex power absorbed by the load is

S, =V, I* = (192.38/ — 10.87°)(10.67 / — 22.83")

= 2053 / — 33.7° = (1708 — j1139) VA

455
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We may cross check the result by finding the complex power S; supplied
by the source.

l, =11+ 15 = (1.532 + j1.286) + (2.457 — j1.721)
=4 j0.435=4.024/ — 6.21° A rms
S, = VI = (120/10°)(4.024 /6.21°)
= 482.88,/16.21° = 463 + j135 VA

which is the same as before.

PRACTICE PROBLEMENNEK

Two loads connected in parallel arerespectively 2 kW at apf of 0.75 lead-
ing and 4 kW at a pf of 0.95 lagging. Calculate the pf of the two loads.
Find the complex power supplied by the source.

Answer: 0.9972 (leading), 6 — j0.4495 kVA.

1.8 POWER FACTOR CORRECTION

Most domestic loads (such as washing machines, air conditioners, and
refrigerators) and industrial loads (such asinduction motors) areinductive
and operate at alow lagging power factor. Although the inductive nature
of the load cannot be changed, we can increase its power factor.

Alternatively, power factor correction may be
viewed as the addition of a reactive element (usu-

The process of increasing the power factor without altering the voltage or current ally a capacitor) in parallel with the load in order
to the original load is known as power factor correction. to make the power factor closer to unity,
Since most loads are inductive, as shown in Fig. 11.27(a), aload’'s An inductive load is modeled as a series combi-
power factor isimproved or corrected by deliberately installing acapacitor nation of an inductor and a resistor.

in parallel with the load, as shownin Fig. 11.27(b). The effect of adding
the capacitor can be illustrated using either the power triangle or the
phasor diagram of the currents involved. Figure 11.28 shows the latter,
whereit is assumed that the circuit in Fig. 11.27(a) has a power factor of
cos6y, while the one in Fig. 11.27(b) has a power factor of cosd,. Itis

Ic &~

—_—
o
i + an Lie
3 'S v
' Inductive \Y; Inductive : -~ C
+ load load
- L[
(€Y (b)

. Fisure 1.28  Phasor diagram showing the
Flgure [1.27  Power factor correction: (a) original inductive load, ef%ect of adding acapa:li?gr in parall(lel ?Nith

(b) inductive load with improved power factor. the inductive load.
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Figure [1.29 Power triangleillustrating power

factor correction.

Qc

Q

Q
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evident from Fig. 11.28 that adding the capacitor has caused the phase
angle between the supplied voltage and current to reduce from 6 to 6,,
thereby increasing the power factor. We also notice from the magnitudes
of thevectorsin Fig. 11.28 that with the same supplied voltage, the circuit
in Fig. 11.27(a) draws larger current I, than the current I drawn by the
circuitinFig. 11.27(b). Power companieschargemorefor larger currents,
because they result in increased power losses (by a squared factor, since
P = IZR). Therefore, it isbeneficial to both the power company and the
consumer that every effort is made to minimize current level or keep the
power factor as closeto unity aspossible. By choosing asuitable sizefor
the capacitor, the current can be made to be completely in phase with the
voltage, implying unity power factor.

Wecanlook at the power factor correctionfromanother perspective.
Consider the power triangle in Fig. 11.29. If the original inductive load
has apparent power S, then

P = S1c0s64, Q1= 818n6, = Ptano, (11.57)

If we desire to increase the power factor from cos6; to cos6, without
altering thereal power (i.e,, P = S, cos6-), then the new reactive power
is

02 = Ptant, (11.58)

The reduction in the reactive power is caused by the shunt capacitor, that
is,

Qc = 01— Q2 = P(tan6, — tanby) (11.59)

But from Eq. (11.49), Q¢ = V2./Xc = oCV2,. The vaue of the
required shunt capacitance C is determined as

. Oc _P(tan@l—tanez)

- 2 2
0 Vits ©Vits

(11.60)

Note that the real power P dissipated by the load is not affected by the
power factor correction because the average power dueto the capacitance
is zero.

Although the most common situation in practice is that of an in-
ductiveload, it isaso possible that the load is capacitive, that is, the load
is operating at a leading power factor. In this case, an inductor should
be connected across the load for power factor correction. The required
shunt inductance L can be calculated from

Vr?ns Vr?ns Vf%T'IS
O X, oL Yoy (e

where Q; = 01 — Q», the difference between the new and old reactive
powers.

When connectedto a120-V (rms), 60-Hz power line, aload absorbs4 kW
at alagging power factor of 0.8. Find the value of capacitance necessary
to raise the pf to 0.95.
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Solution:
If the pf = 0.8, then
cosf, = 0.8 — 0, = 36.87°

where 61 is the phase difference between voltage and current. We obtain
the apparent power from the real power and the pf as

P 4000
S = = —— =5000VA
! CoSs6Hq 0.8

The reactive power is
01 = S18in6 = 5000sin36.87 = 3000 VAR
When the pf israised to 0.95,
cosd, = 0.95 == 0, = 18.19°

Thereal power P hasnot changed. But the apparent power has changed;
itsnew valueis

P 4000
S2 = = —
C0Ss6o 0.95
The new reactive power is

02 = S»sinf, = 1314.4 VAR

= 4210.5VA

The difference between the new and old reactive powers is due to the
parallel addition of the capacitor to the load. The reactive power due to
the capacitor is

Qc = 01— Q2 = 3000 — 1314.4 = 1685.6 VAR

and

_ 0c 16856

C = V2. = arx60x 1202 SHOSHKF
PRACTICE PROBLEMENINE
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Find the value of paralel capacitance needed to correct a load of
140 kVAR at 0.85 lagging pf to unity pf. Assumethat theload issupplied
by a110-V (rms), 60-Hz line.

Answer: 30.69 mF.

fI1.9  APPLICATIONS

In this section, we consider two important application areas. how power
is measured and how electric utility companies determine the cost of
electricity consumption.

[1.9.1 Power Measurement
The average power absorbed by a load is measured by an instrument
called the wattmeter.

Reactive power is measured by an instrument
called the varmeter. The varmeter is often con-
nected to the load in the same way as the
wattmeter.
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{ The wattmeter is the instrument for measuring the average power.

Figure 11.30 shows a wattmeter that consists essentially of two
coils: the current coil and the voltage coil. A current coil with very
low impedance (ideally zero) is connected in series with the load (Fig.
11.31) and responds to the load current. The voltage coil with very high
impedance (ideally infinite) isconnectedin parallel with theload asshown
in Fig. 11.31 and responds to the load voltage. The current coil acts like
ashort circuit because of itslow impedance; the voltage coil behaveslike
an open circuit because of its high impedance. As aresult, the presence
of thewattmeter does not disturb the circuit or have an effect on the power
measurement.

i i
— + —
S11h
Current coil |

Some wattmeters do not have coils; the watt-
meter considered here is the electromagnetic

type.

+

+
* 0—AWW— . v Z
+ Voltage coil E _

Figure | [.3]  The wattmeter connected to the load.

O

d
* When the two coils are energized, the mechanical inertia of the

Figure 1130 A wattmeter. moving system produces a deflection angle that is proportiona to the
average value of the product v(¢)i(¢). If the current and voltage of the
load are v(t) = V,, cos(wt + 6,) and i(¢t) = I,, cos(wt + 6;), their corre-
sponding rms phasors are

I m

Vin
Vims = 7 /6, and s = 7 /6 (11.62)
and the wattmeter measures the average power given by
1
P = |Vmg|lms| COS(0, — 6;) = EVm I, cos(@, — 6;) (11.63)

As shown in Fig. 11.31, each wattmeter coil has two terminals
with one marked +. To ensure upscale deflection, the 4 terminal of the
current coil istoward the source, whilethe 4 terminal of the voltage coil
is connected to the same line as the current coil. Reversing both coil
connections still results in upscale deflection. However, reversing one
coil and not the other results in downscale deflection and no wattmeter
reading.
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MII.M

Find the wattmeter reading of the circuit in Fig. 11.32.

120 j100 |,
TN
Jmmﬂ
8Q

60

150,0°V rms

—

Figure [1.32 For Example 11.16.

Solution:

In Fig. 11.32, the wattmeter reads the average power absorbed by the

(8 — j6) Q impedance because the current coil is in series with the

impedancewhilethevoltagecoil isinparallel withit. Thecurrent through

thecircuitis

| 150 /0° 150

~ (12+ j10) + (8— j6) 20+ j4

The voltage across the (8 — j6) Q2 impedance is

150(8 — j6)
20+ j4

Arms

V=I8-j6)= V rms

The complex power is
150(8 — j6) 150 150%(8 — j6)

S=VIT= 20+ j4 20— j4 202+ 42
— 423.7 — j324.6 VA
The wattmeter reads
P =Re(S) = 432.7W
PRACTICE PROBLEMBEEEEN

For the circuit in Fig. 11.33, find the wattmeter reading.

N AMN—]
+

120/30°V rms (’:) joq E § 120

Figure .33 For Practice Prob. 11.16.

Answer: 1437 W.
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11.9.2 Electricity Consumption Cost

In Section 1.7, we considered a simplified model of the way the cost of
electricity consumption is determined. But the concept of power factor
was not included in the calculations. Now we consider the importance of
power factor in electricity consumption cost.

Loads with low power factors are costly to serve because they re-
quire large currents, as explained in Section 11.8. The idea situation
would be to draw minimum current from asupply sothat S = P, Q =0,
andpf = 1. Aloadwithnonzero Q meansthat energy flowsforthand back
between the load and the source, giving rise to additional power losses.
Inview of this, power compani es often encourage their customersto have
power factors as close to unity as possible and penalize some customers
who do not improve their load power factors.

Utility companies divide their customers into categories. as resi-
dential (domestic), commercial, andindustrial, or assmall power, medium
power, and large power. They have different rate structures for each
category. The amount of energy consumed in units of kilowatt-hours
(kwWh) ismeasured using akilowatt-hour meter installed at the customer’s
premises.

Although utility companies use different methodsfor charging cus-
tomers, the tariff or charge to aconsumer is often two-part. Thefirst part
isfixed and corresponds to the cost of generation, transmission, and dis-
tribution of electricity to meet the load reguirements of the consumers.
This part of the tariff is generally expressed as a certain price per kW of
maximum demand. Or it may instead be based on kVA of maximum de-
mand, to account for the power factor (pf) of the consumer. A pf penalty
charge may beimposed on the consumer whereby a certain percentage of
kW or kVA maximum demand is charged for every 0.01 fall in pf below
aprescribed value, say 0.85 or 0.9. On the other hand, a pf credit may be
given for every 0.01 that the pf exceeds the prescribed value.

The second part is proportional to the energy consumed in kWh; it
may bein graded form, for example, the first 100 kWh at 16 centskWh,
the next 200 kWh at 10 cents’kWh and so forth. Thus, the bill is deter-
mined based on the following equation:

Total Cost = Fixed Cost + Cost of Energy (11.64)

A manufacturing industry consumes 200 MWh in one month. If the
maximum demand is 1600 kW, calculate the electricity bill based on the
following two-part rate:

Demand charge: $5.00 per month per kW of billing demand.

Energy charge: 8 cents per kWh for the first 50,000 kWh, 5 cents
per kWh for the remaining energy.

Solution:
The demand chargeis

$5.00 x 1600 = $8000 (11.17.1)
The energy charge for the first 50,000 kWhis



