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In this lesson, firstly, how a sinusoidal waveform (ac) is generated, is described, and then
the terms, such as average and effective (rms) values, related to periodic voltage or
current waveforms, are explained. Lastly, some examples to find average and root mean
square (rms) values of some periodic waveforms are presented.

Keywords: Sinusoidal waveforms, Generation, Average and RMS values of Waveforms.

After going through this lesson, the students will be able to answer the following
questions:

1. What is an ac voltage waveform?

2. How a sinusoidal voltage waveform is generated, with some detail?

3. For periodic voltage or current waveforms, to compute or obtain the average and rms
values, and also the time period.

4. To compare the different periodic waveforms, using above values.

Generation of Sinusoidal (AC) Voltage Waveform

Fig. 12.1 Schematic diagram for single phase ac generation

A multi-turn coil is placed inside a magnet with an air gap as shown in Fig. 12.1. The
flux lines are from North Pole to South Pole. The coil is rotated at an angular speed,
@ = 2 n(rad/s).

n= Zﬁ = speed of the coil (rev/sec, or rps)
VA

N =60-n = speed of the coil (rev/min, or rpm)

| = length of the coil (m)

b = width (diameter) of the coil (m)

T = No. of turns in the coil
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B = flux density in the air gap (Wb/m?)
v =z bn = tangential velocity of the coil (m/sec)
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Fig. 12.2 (a) Coil position for Fig. 12.1, and (b) Details

At a certain instant t, the coil is an angle (rad), 6 = wt with the horizontal (Fig. 12.2).
The emf (V) induced on one side of the coil (conductor) isBlvsiné,

€ can also be termed as angular displacement.
The emf induced in the coil (single turn) is 2Blvsing = 2Bl zbnsin &

The total emf induced or generated in the multi-turn coil is

e(@)=T2Blzbnsin@d=2zBlbnTsind=E_sinéd

This emf as a function of time, can be expressed as, e(t) = E,, sinwt. The graph of
e(t) or e(#), which is a sinusoidal waveform, is shown in Fig. 12.4a

Area of the coil (m*)=a=1b

Flux cut by the coil (Wb)=¢=aB=1bB

Flux linkage (Wb) = w =T ¢ =T Blb

It may be noted these values of flux ¢ and flux linkage w , are maximum, with the
coil being at horizontal position, & = 0. These values change, as the coil moves from the
horizontal position (Fig. 12.2). So, also is the value of induced emf as stated earlier.

The maximum value of the induced emf is,
E,=2znBlbT=2zn ¢T=27Z'nl//=a)l//=l//(jj—f

Determination of frequency (f) in the ac generator
In the above case, the frequency (Hz) of the emf generated is
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f =w/(27) =n, no. of poles being 2, i.e. having only one pole pair.

In the ac generator, no. of poles = p, and the speed (rps) = n, then the frequency in Hz
or cycles/sec, is

f =no. of cycles/sec = no. of cycles per rev x no. of rev per sec = no. of pairs of

poles x no. of rev per sec = (p/2) n
PN _p o

or, f = ==
120 2 2rx

Example
For a 4-pole ac generator to obtain a voltage having a frequency of 50 Hz,

the speed is, n = % = 2x50 =25 rps = 25-60 =1,500 rpm

For a 2-pole (p = 2) machine, the speed should be 3,000 rpm.

Similarly, the speed of the machine having different no. of poles, required to generate
a frequency of 50 Hz can be computed.

Sinusoidal voltage waveform having frequency, f with time period (sec), T =1/ f

Periodic Voltage or Current Waveform

Average value

The current waveform shown in Fig. 12.3a, is periodic in nature, with time period, T.
It is positive for first half cycle, while it is negative for second half cycle.
The average value of the waveform, i(t) is defined as

T/2 T/2
|- Area gver half cycle _ 1 ji(t) dt :E Ji(t) dt
Time period of half cycle T/2 { T
Please note that, in this case, only half cycle, or half of the time period, is to be used
for computing the average value, as the average value of the waveform over full cycle is

zero (0).
If the half time period (T/2) is divided into 6 equal time intervals (AT ),
(i iy i+ -rig) AT (i +i, +ig+--ig)  Area over half cycle
& 6-AT 6 Time period of half cycle

Please note that no. of time intervals is n = 6.

Root Mean Square (RMS) value

For this current in half time period subdivided into 6 time intervals as given above, in
the resistance R, the average value of energy dissipated is given by

« {(if +i] +£ +---i§>} R

Version 2 EE 11T, Kharagpur



if1)

(a)
(1)
b 12
i T2 T
— 1 (5eC)

()

Fig. 12.3 Periodic current waveform
(a) Current (i), (b) Square of current (i¥)

The graph of the square of the current waveform, i*(t) is shown in Fig. 12.3b. Let |
be the value of the direct current that produces the same energy dissipated in the
resistance R, as produced by the periodic waveform with half time period subdivided into
ntime intervals,

IZR:F&+@+@+~49AT}R

n-AT

| _\/(il2 +i; +i; +--+if) AT _ |Areaof i® curve over half cycle
n-AT Time period of half cycle

Version 2 EE 11T, Kharagpur



1 T/2 2T/2
- —jizdtz —jizdt
T/2 T

0
This value is termed as Root Mean Square (RMS) or effective one. Also to be noted
that the same rms value of the current is obtained using the full cycle, or the time period.

Average and RMS Values of Sinusoidal Voltage Waveform

(a)

EAWA

] /2 T In? n
— ) = gt

()

Fig. 12.4 Sinusoidal veltage waveform
(a) Voltage (v), (b) Square of voltage (v)

As shown earlier, normally the voltage generated, which is also transmitted and
then distributed to the consumer, is the sinusoidal waveform with a frequency of 50 Hz in
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this country. The waveform of the voltagev(t), and the square of waveform, v(t), are
shown in figures 12.4a and12.4b respectively.

Time period, T =1/ f =(27)/w ; inangle (0T =2x)
Half time period, T/2=1/2f)=xn/w;inangle (T /2=1x)
v(@) =V, sin@ for 7<0<0; v(t)=V,sin ot for (r/w)<t<0

=—j (9)d9——jv S|n6d9—v—cosé’| v =0.637V,
T
1
T 2 T
{ [v? de} =[£.[ansin20d0}
0 72-0

1 1
2 2 2 3
= V—””(e—isin 20)7 | = |, =V—’”=0-707Vm
2z 2 0

h\ll—\
N |-

271 D
:[V j (1- cosze)de
T

O

2r 2
or,V, = J2v
If time t, is used as a variable, instead of angle@,
7/ /o
V,, :ijv(t) dt_—jv sin wt dt = =3vm=0.637vm
Tlw T @ 4

In the same way, the rms value, V can be determined.

If the average value of the above waveform is computed over total time period T, it
comes out as zero, as the area of first (positive) half cycle is the same as that of second
(negative) half cycle. However, the rms value remains same, if it is computed over total
time period.

The different factors are defined as:

RMSvalue  0.707V
Average value 0.637V,

Peak factor = Maximum value = Vi =1.414

Averagevalue 0.707V
Note: The rms value is always greater than the average value, except for a rectangular
waveform, in which case the heating effect remains constant, so that the average
and the rms values are same.

Form factor =

Example

The examples of the two waveforms given are periodic in nature.
1. Triangular current waveform (Fig. 12.5)

Time period =T

it) = |m% for T<t<0
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Fig. 12.5 Triangular current waveform
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1o =0.577351

V3
Two factors of the waveform are:
RMS value _ 0577351, 11547
Average value 051,

Maximumvalue I, 20

Averagevalue 051,
To note that the form factor is slightly higher than that for the sinusoidal waveform,
while the peak factor is much higher.

Form factor =

Peak factor =

+5 |-
V1 ] ] 1 ]
0 1 2 6 7 8
5 k-

Fig. 12.6 Trapezoidal voltage waveform

2. Trapezoidal voltage waveform (Fig. 12.6)

Time period (T) =8 ms
Half time period (T/2) =8/2=4ms
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v(t)=mt=(5/)t=5t for 1<t<0; v(t)=5 for 3<t<1;
v(t)=5(4-t) for 4<t<3
Please note that time, t is in ms, and slope, m is in V/ms. Also to be noted that, as in

the case of sinusoidal waveform, only half time period is taken here for the computation
of the average and rms values.

T/2

V,, = 2] jv(t)dt— Dstdt+j5dt+j5(4 t)dt} [ v+ 2(4_t)2‘j

== E+5(3—1)+— =E:3.75V
412 2| 4

{% jvz dt}2 = H[Jl'(st)zdt +T(5)2 dt +j5 (4-t)° dtﬂ2

0

1(25 , 2 [1(25 25
_L( S \ + 251, +—(4 t) \ ﬂ L( 3 +25(3-1)+ ﬂ
- \/? =/16.67 = 4.0825 V

Two factors of the waveform are:

Form factor = RMS value = 4.0825 =1.0887

Average value  3.75

Peak factor = Maximum value = 5.0 =1.3333

Average value  3.75

To note that the both the above factors are slightly lower than those for the sinusoidal
waveform.

[

Similarly, the average and rms or effective values of periodic voltage or current
waveforms can be computed.

In this lesson, starting with the generation of single phase ac voltage, the terms, such
as average and rms values, related to periodic voltage and current waveforms are
explained with examples. In the next lesson, the background material required — the
representation of sinusoidal voltage/current as phasors, the rectangular and polar forms of
the phasors, as complex quantity, and the mathematical operations — addition/subtraction
and multiplication/division, using phasors as complex quantity, are discussed in detail
with numerical examples. In the following lessons, the study of circuits fed from single
phase ac supply, is presented.
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Problems

121

12.2

12.3

12.4

What is the speed in rpm of an ac generator with 4 poles, to produce a voltage
with a frequency of 50 Hz

(a) 3000 (b) 1500 (c) 1000 (d) 750

Determine the No. of poles required in an ac generator running at 1,000 rpm, to
produce a voltage with a frequency of 50 Hz.

(@) 2 (b) 4 (c) 6 (d)8

Calculate the speed in rpm of an ac generator with 24 poles, to produce a voltage
with a frequency of 50 Hz.

() 300 (b) 250 (c) 200 (d) 150

Determine the average and root mean square (rms) values of the following
waveforms.

Y
A |_
0 T/2 T 31)2 2T 512 3T
—>t

()
+V
Vv
0 2T/3 T 5T/3 2T 8T/3 3T 11T/3 4T
—>
Vot
(b)
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Fig. 12.7
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In the last lesson, two points were described:

1. How a sinusoidal voltage waveform (ac) is generated?

2. How the average and rms values of the periodic voltage or current waveforms, are
computed?

Some examples are also described there. In this lesson, the representation of
sinusoidal (ac) voltage/current signals by a phasor is first explained. The polar/Cartesian
(rectangular) form of phasor, as complex quantity, is described. Lastly, the algebra,
involving the phasors (voltage/current), is presented. Different mathematical operations —
addition/subtraction and multiplication/division, on two or more phasors, are discussed.

Keywords: Phasor, Sinusoidal signals, phasor algebra

After going through this lesson, the students will be able to answer the following
questions;

1. What is meant by the term, ‘phasor’ in respect of a sinusoidal signal?

2. How to represent the sinusoidal voltage or current waveform by phasor?

3. How to write a phasor quantity (complex) in polar/Cartesian (rectangular) form?
4

How to perform the operations, like addition/subtraction and multiplication/division
on two or more phasors, to obtain a phasor?

This lesson forms the background of the following lessons in the complete module of
single ac circuits, starting with the next lesson on the solution of the current in the steady
state, in R-L-C series circuits.

Symbols
i ori(t) Instantaneous value of the current (sinusoidal form)
I Current (rms value)

Maximum value of the current

I Phasor representation of the current
o Phase angle, say of the current phasor, with respect to the reference phasor

Same symbols are used for voltage or any other phasor.

Representation of Sinusoidal Signal by a Phasor

A sinusoidal quantity, i.e. current, i(t) =1, sinet, is taken up as an example. In Fig.
13.1a, the length, OP, along the x-axis, represents the maximum value of the currentl_,

on a certain scale. It is being rotated in the anti-clockwise direction at an angular speed,
@, and takes up a position, OA after a time t (or angle, & = wt, with the x-axis). The
vertical projection of OA is plotted in the right hand side of the above figure with respect
to the angle @. It will generate a sine wave (Fig. 13.1b), as OA is at an angle, & with the
x-axis, as stated earlier. The vertical projection of OA along y-axis is OC = AB =
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1(8) =1,sin@, which is the instantaneous value of the current at any time t or angle 4.
The angle @ is in rad., i.e. & =wt. The angular speed, @ is in rad/s, ie.w=27r f,

where f is the frequency in Hz or cycles/sec. Thus,
i=1,sin@=1_sinot=1_sin 2xft

So, OP represents the phasor with respect to the above current, i.
The line, OP can be taken as the rms value, | =1, /2, instead of maximum value,

Im . Then the vertical projection of OA, in magnitude equal to OP, does not represent
exactly the instantaneous value of |, but represents it with the scale factor of

1/4/2 =0.707. The reason for this choice of phasor as given above, will be given in
another lesson later in this module.

Cirele

\

2

0

(a) ih)
Fig. 13.1{a) Phasor representation of a sinusoidal current, and (b) Waveform
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Circle

(c)

(d)

Fig. 13.1 (c) Phasor representation of a phase shifted sinusoidal current, and (d) Waveform

Generalized case

The current can be of the form, i(t) =1, sin(ot—«a) as shown in Fig. 13.1d. The

phasor representation of this current is the line, OQ, at an angle,a (may be taken as
negative), with the line, OP along x-axis (Fig. 13.1c). One has to move in clockwise
direction to go to OQ from OP (reference line), though the phasor, OQ is assumed to
move in anti-clockwise direction as given earlier. After a time t, OD will be at an angle &
with OQ, which is at an angle (6 —a = wt—«), with the line, OP along x-axis. The
vertical projection of OD along y-axis gives the instantaneous value of the current,

i =2 1sin(wt—a)=1_sin(ot-a).

Phasor representation of Voltage and Current

The voltage and current waveforms are given as,

v=+/2Vsind,and i =\/§Isin(9+¢)

It can be seen from the waveforms (Fig. 13.2b) of the two sinusoidal quantities —
voltage and current, that the voltage, V lags the current I, which means that the positive
maximum value of the voltage is reached earlier by an angle, ¢, as compared to the
positive maximum value of the current. In phasor notation as described earlier, the
voltage and current are represented by OP and OQ (Fig. 13.2a) respectively, the length of
which are proportional to voltage, V and current, | in different scales as applicable to
each one. The voltage phasor, OP (V) lags the current phasor, OQ (I) by the angle¢, as
two phasors rotate in the anticlockwise direction as stated earlier, whereas the angle ¢ is
also measured in the anticlockwise direction. In other words, the current phasor (1) leads
the voltage phasor (V).
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(a) 0y

Fig. 13.2 (a) Phasor representation of a sinusoidal (i) voltage and (ii) corrent, and (b) Waveforms

Mathematically, the two phasors can be represented in polar form, with the voltage

phasor (\7 ) taken as reference, such as V =V £0° , and =1 Zg.
In Cartesian or rectangular form, these are,

V=V £0°=V+j0,and I =12L$=1cosg+jlsin g,
where, the symbol, jis givenby j=+/-1.

Of the two terms in each phasor, the first one is termed as real or its component in x-axis,

while the second one is imaginary or its component in y-axis, as shown in Fig. 13.3a. The
angle, ¢ is in degree or rad.

Phasor Algebra

Before discussing the mathematical operations, like addition/subtraction and multi-
plication/division, involving phasors and also complex quantities, let us take a look at the
two forms — polar and rectangular, by which a phasor or complex quantity is represented.
It may be observed here that phasors are also taken as complex, as given above.

-E +
= A
=
B
=]
&
= a,
T A
0 a C +

= X (real)
Fig. 13.3 Representation of a phasor, both in rectangular and polar forms

Representation of a phasor and Transformation
A phasor or a complex quantity in rectangular form (Fig. 13.3) is,
A= a, +ja,
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where a,and a, are real and imaginary parts, of the phasor respectively.
In polar form, it is expressed as

A=AZ6, = Acosd, + j Asiné,
where A and @, are magnitude and phase angle of the phasor.

From the two equations or expressions, the procedure or rule of transformation from
polar to rectangular form is

a, =Acosd, and a, = Asing,

From the above, the rule for transformation from rectangular to polar form is

A=.la;+a] and 6, :tanfl(ay/ax)

The examples using numerical values are given at the end of this lesson.

Addition/Subtraction of Phasors

Before describing the rules of addition/subtraction of phasors or complex quantities,
everyone should recall the rule of addition/subtraction of scalar quantities, which may be
positive or signed (decimal/fraction or fraction with integer). It may be stated that, for the
two operations, the quantities must be either phasors, or complex. The example of phasor
is voltage/current, and that of complex quantity is impedance/admittance, which will be
explained in the next lesson. But one phasor and another complex quantity should not be
used for addition/subtraction operation.

For the operations, the two phasors or complex quantities must be expressed in
rectangular form as

A=a, +ja,; B=b +jb,
If they are in polar form as

A=AZ0,; B=B6,

In this case, two phasors are to be transformed to rectangular form by the procedure
or rule given earlier.

The rule of addition/subtraction operation is that both the real and imaginary parts
have to be separately treated as

C=A+B=(a b, )+ j(ay iby):cx+ ic,

where ¢, =(a, £b,) ; ¢, =(a, £b,)

Say, for addition, real parts must be added, so also for imaginary parts. Same rule
follows for subtraction. After the result is obtained in rectangular form, it can be
transformed to polar one. It may be observed that the six values of a's, b's and c's —
parts of the two phasors and the resultant one, are all signed scalar quantities, though in
the example, a's and b's are taken as positive, resulting in positive values of c's. Also
the phase angle 8's may lie in any of the four quadrants, though here the angles are in
the first quadrant only.

This rule for addition can be extended to three or more quantities, as will be
illustrated through example, which is given at the end of this lesson.
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Fig. 13.4 Addition and subtraction of two phasors, both represented in polar form

The addition/subtraction operations can also be performed using the quantities as
phasors in polar form (Fig. 13.4). The two phasors are A(OA) and I:%(OB). The find the

sum é(OC), a line AC is drawn equal and parallel to OB. The line BC is equal and

parallel to OA. Thus, C =OC = OA+ AC = OA+ OB = A+ B . Also,
OC = OB+ BC = OB+ OA

To obtain the difference f)(OD), a line AD is drawn equal and parallel to OB, but in
opposite direction to AC or OB. A line OE is also drawn equal to OB, but in opposite

direction to OB. Both AD and OE represent the phasor (- B ). The line, ED is equal to

OA. Thus, D =0D =0A+AD =0OA—OB=A-B. Also OD = OE + ED =-0B + OA.
The examples using numerical values are given at the end of this lesson.

Multiplication/Division of Phasors

Firstly, the procedure for multiplication is taken up. In this case no reference is being
made to the rule involving scalar quantities, as everyone is familiar with them. Assuming

that the two phasors are available in polar from as A:AAQa and é:Bwb.

Otherwise, they are to be transformed from rectangular to polar form. This is also valid
for the procedure of division. Please note that a phasor is to be multiplied by a complex
quantity only, to obtain the resultant phasor. A phasor is not normally multiplied by
another phasor, except in special case. Same is for division. A phasor is to be divided by
a complex quantity only, to obtain the resultant phasor. A phasor is not normally divided
by another phasor.

To find the magnitude of the product C , the two magnitudes of the phasors are to be
multiplied, whereas for phase angle, the phase angles are to added. Thus,
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C=C/0,=AB=AZ0, -BLO,=(A-B)£(0,+6,)
where C=A-B and 6, =6, + 6,

Please note that the same symbol, C is used for the product in this case.

To divide A.by B to obtain the result D ., the magnitude is obtained by division of
the magnitudes, and the phase is difference of the two phase angles. Thus,
D=Do, =222 =(5j4(9a -6,)
g BZ6 B
where D=A/B and 6, =6, -6,

If the phasors are expressed in rectangular form as

A=a, +ja, and B=b, + jb,

where A=1/iaf+aji ; 0, =tan‘1(ay/ax)

The values of B are not given as they can be obtained by substituting b's for a's.
To find the product,

C=C/6,=AB=(a +ja,)b,+ib)=(ab, —ab, )+ijlab +ab,)
Please note that j*> = —1 .The magnitude and phase angle of the result (phasor) are,
c=lab,~aj,F +(ab, +a P} =l +a;) [ 16])= A-B ,anc

0 = tan-t ab, +ab,
a,b, —ab,

The phase angle,

gc =9a _Hgb :tan_l(ayJ+tan_l(E_yJ=tan_ll:l(ay/ax)+(by/bx) }

The above results are obtained by simplification.

To divide A by B to obtain D as

- a, +ja
Dzdﬁjdy:ész J_by
B x+J y

To simplifyf), i.e. to obtain real and imaginary parts, both numerator and
denominator, are to be multiplied by the complex conjugate of é, so as to convert the

denominator into real value only. The complex conjugate of B is
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B =b,+jb,=B/-6,

In the complex conjugate, the sign of the imaginary part is negative, and also the phase
angle is negative.

|5=dx+jdy :(ax+ jay)'(bx_jby):[axbx+ayby]+ j(aybx—axby]

(b, +ib, )-(b,—jb,) | bZ+b? b? +b?
The magnitude and phase angle of the result (phasor) are,

oo rap,f (b, ~ab, FE W

= =— ,and

(b2+b ) b2 +b2i
a,b, —ab
6, =tan* [MJ
a,b, +ab,
The phase angle,
(3, b, a,b, —a,b,
0,=6,-6, =tan"| L |-tan" =tan| L2
a, bX ab, +a,b,

The steps are shown here in brief, as detailed steps have been given earlier.
Example

t
(-2, +4) A
N
- - |
x4 C L8]

Fig. 13.5 Representation of phasor as an
example, both in rectangular
and polar forms

The phasor, A in the rectangular form (Fig. 13.5) is,
A= AZO,=Acos 0, + jAsin 0, =a, +ja,=-2+j4
where the real and imaginary partsare a, =-2; a, =4

To transform the phasor, A into the polar form, the magnitude and phase angle are
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A=, fal+a? =(-2)? +4% = 4.472

a
9, =tan™ [_y] =tan™ (izj =116.565° = 2.034 rad

X

Please note that &, is in the second quadrant, as real part is negative and imaginary
part is positive.

Transforming the phasor, A into rectangular form, the real and imaginary parts are

a, = Acos@, =4.472-c0s116.565° = -2.0
a, = Asing, =4.472-sin116.565° = 4.0

Phasor Algebra

C(4,10)
B(6.6)

X' -

{-8.-1)

E(-6.-6)

_".ll
Fig.13.6 Addition and subtraction of two phasors represented in polar form, as an example
Another phasor, B in rectangular form is introduced in addition to the earlier one, A

B =6+ j6=8.485.,45°
Firstly, let us take the addition and subtraction of the above two phasors. The sum and

difference are given by the phasors, Cand D respectively (Fig. 13.6).
C=A+B=(=2+j4) +(6+j6)=(-2+6)+ j(4+6)=4+ j10=10.77 £68.2°
D=A-B=(2+j4)—~(6+j6)=(-2-6)+ j(4—6)=-8— j2=8246/—166.0°

It may be noted that for the addition and subtraction operations involving phasors,
they should be represented in rectangular form as given above. If any one of the phasors
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is in polar form, it should be transformed into rectangular form, for calculating the results
as shown.

If the two phasors are both in polar form, the phasor diagram (the diagram must be
drawn to scale), or the geometrical method can be used as shown in Fig 13.6. The result
obtained using the diagram, as shown are the same as obtained earlier.

[C (OC) = 10.77, ZCOX =68.2°; and D ( OD) = 8.246, /DOX =166.0°]

Now, the multiplication and division operations are performed, using the above two
phasors represented in polar form. If any one of the phasors is in rectangular form, it may
be transformed into polar form. Also note that the same symbols for the phasors are used
here, as was used earlier. Later, the method of both multiplication and division using
rectangular form of the phasor representation will be explained.

The resultant phasoré , 1.e. the product of the two phasors is

C = A B =4.472 /116.565°x8.485 /45° = (4.472x 8.485) /(116.565° + 45°)

=37.945 £161.565° = -36 + j12
The product of the two phasors in rectangular form can be found as

C=(-2+)4)-(6+(6)=(-12—24)+ j(24—-12) = —36 + j12
The result (D) obtained by the division of A by B is

o_A_ 4472116565 (4.472

B 8.485,45° | 8.485

=0.167+ j0.5

The above result can be calculated by the procedure described earlier, using the
rectangular form of the two phasors as

D_ A -2+j4 (2+]j4)-(6-])6) (-12+24)+ j(24+12)

g 6+i6 (6+6)-(6-j6) 6% +6°
12+ )36

j4(116.565° —45°) = 0.527 /71.565°

=0.167+ j0.5

The procedure for the elementary operations using two phasors only, in both forms of
representation is shown. It can be easily extended, for say, addition/multiplication, using
three or more phasors. The simplification procedure with the scalar quantities, using the
different elementary operations, which is well known, can be extended to the phasor
quantities. This will be used in the study of ac circuits to be discussed in the following
lessons.

The background required, i.e. phasor representation of sinusoidal quantities
(voltage/current), and algebra — mathematical operations, such as addition/subtraction
and multiplication/division of phasors or complex quantities, including transformation of
phasor from rectangular to polar form, and vice versa, has been discussed here. The study
of ac circuits, starting from series ones, will be described in the next few lessons.
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Problems

13.1 Use plasor technique to evaluate the expression and then find the numerical value at
t=10 ms.

i(t) = 150 cos(lOOt-45°)+5005in(100t)+%[cos(100t-300)]

13.2 Find the result in both rectangular and polar forms, for the following, using complex
quantities:

) 5-j12
15 /53.1°

b) (5-j12)+15.£-53.1°
2 /30°-4 /210°

©) 5 450°

1
d [5.004—"
) ( 3J§4-45°j

.2 £210°
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In the last lesson, two points were described:

1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current by a phasor?

2. How to perform elementary mathematical operations, like addition/ subtraction and
multiplication/division, of two or more phasors, represented as complex quantity?

Some examples are also described there. In this lesson, the solution of the steady state
currents in simple circuits, consisting of resistance R, inductance L and/or capacitance C
connected in series, fed from single phase ac supply, is presented. Initially, only one of
the elements R / L / C, is connected, and the current, both in magnitude and phase, is
computed. Then, the computation of total reactance and impedance, and the current, in
the circuit consisting of two components, R & L / C only in series, is discussed. The
process of drawing complete phasor diagram with current(s) and voltage drops in the
different components is described. Lastly, the computation of total power and also power
consumed in the components, along with the concept of power factor, is explained.

Keywords: Series circuits, reactance, impedance, phase angle, power, power factor.

After going through this lesson, the students will be able to answer the following
questions;

1. How to compute the total reactance and impedance of the R-L-C series circuit, fed
from single phase ac supply of known frequency?

2. How to compute the current and also voltage drops in the components, both in
magnitude and phase, of the circuit?

How to draw the complete phasor diagram, showing the current and voltage drops?

How to compute the total power and also power consumed in the components, along
with power factor?

Solution of Steady State Current in Circuits Fed from Single-
phase AC Supply

Elementary Circuits
1. Purely resistive circuit (R only)
The instantaneous value of the current though the circuit (Fig. 14.1a) is given by,

vV .
I=—=-Tsinot=1_sin ot
R R

where,
Imand Vp, are the maximum values of current and voltage respectively.
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Fig. 14.1: Circuit with Resistance (R)
(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current
(c) Phasor diagram

The rms value of current is given by
IRVAVNFEY
V2 R R

In phasor notation,
V =V £0°=V 1+ j0)=V + jO

I=120°=1(1+j0)=1+j0

The impedance or resistance of the circuit is obtained as,
VoV £0°
| 1400

Please note that the voltage and the current are in phase (¢ =0°), which can be
observed from phasor diagram (Fig. 14.1b) with two (voltage and current) phasors, and
also from the two waveforms (Fig. 14.1c).

In ac circuit, the term, Impedance is defined as voltage/current, as is the resistance in
dc circuit, following Ohm’s law. The impedance, Z is a complex quantity. It consists of
real part as resistance R, and imaginary part as reactance X, which is zero, as there is no
inductance/capacitance. All the components are taken as constant, having linear V-I
characteristics. In the three cases being considered, including this one, the power

=Z/0°=R+j0
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consumed and also power factor in the circuits, are not taken up now, but will be
described later in this lesson.

2. Purely inductive circuit (L only)
For the circuit (Fig. 14.2a), the current i, is obtained by the procedure described here.

As v = L%:Vm sin wt =~/2V sin wt,

di = \/ELV sin (wt) dt
Integrating,
i = —@cos ot :@sin (wt—90°) =1 sin (ot—90°) = V2 1sin (ot —90°)
ol ol
Y
m :-“
# 1

(i)

o n2 &
\-‘5nﬂ@ L ™ - =

- _... Beat)
(a) -,
-V
(b)
> v
90
i

(c)

Fig. 14.2: Circuit with Inductance (L)
(a) Circuit diagram
(b) Wavelorms: (i) Voltage (ii) Current
(¢) Phasor diagram

It may be mentioned here that the current i, is the steady state solution, neglecting the
constant of integration. The rms value, | is

1=V /90
ol

V=Vs0°=V+j0 ; 1=1£-90°=0-jl
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The impedance of the circuit is

Zz¢=VT= V2 V =joL=0+jX_ =X_490°=wL £90°
[ 1£-90° —jl
where, the inductive reactance is X, =woL =2z f L.
Note that the current lags the voltage by ¢ =+90°. This can be observed both

from phasor diagram (Fig. 14.2b), and waveforms (Fig. 14.2c). As the circuit has no
resistance, but only inductive reactance X, =w L (positive, as per convention), the

impedance Z is only in the y-axis (imaginary).

3. Purely capacitive circuit (C only)
The current i, in the circuit (Fig. 14.3a), is,

Substituting v =~/2V sinwt =V_sinwt , i is
i = c%(\/?v sin a)t): V2w CV coswt =2 wCV sin (ot +90°) =+/2 I sin (ot + 90°)

=1 sin(ot+90°)
The rms value, | is

| =wCV = =1 .£90°
1/(wC)
V=V/0°=V+j0 : 1=1-90°=0+]jl
The impedance of the circuit is
2,5V VOV L ) g jx =X, /-90°=—1 so0e
I 1 £290° jlI jwC oC oC
where, the capacitive reactance is X 1! :
wC 2xfC

Note that the current leads the voltage by ¢ =90° (this value is negative, i.e.
¢ =-90°), as per convention being followed here. This can be observed both from

phasor diagram (Fig. 14.3b), and waveforms (Fig. 14.3c). As the circuit has no resistance,
but only capacitive reactance, X, =1/(wC) (negative, as per convention), the impedance

Z is only in the y-axis (imaginary).
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Fig. 14.3: Circuit with Capacitance (C)
{(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current
(¢} Phasor diagram

Series Circuits
1. Inductive circuit (R and L in series)

The voltage balance equation for the R-L series circuit (Fig. 14.4a) is,

v=Ri+ Lﬂ
dt

where, v=+/2Vsinot =V_ sinwt =+/2Vsing, @ being wt.

The current, i (in steady state) can be found as

i =~/21sin(@t—¢)=1_sin(ot—¢)=~21sin (0 -¢)

The current, i(t) in steady state is sinusoidal in nature (neglecting transients of the
form shown in the earlier module on dc transients). This can also be observed, if one sees
the expression of the current, i =1 sin(wt) for purely resistive case (with R only), and
I =1, sin(ot—-90°) for purely inductive case (with L only).

Alternatively, if the expression for i is substituted in the voltage equation, the
equation as given here is obtained.

V2Vsinwt =R -2 1sin(wt—¢)+wL-v2 1 cos(wt—¢)

If, first, the trigonometric forms in the RHS side is expanded in terms of sin ot and
cos wt, and then equating the terms of sin wt and cos wt from two (LHS & RHS)

sides, the two equations as given here are obtained.
V =(R-cos¢+wL-sing)-1,and
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0=(-R-sing+wL-cos¢)

From these equations, the magnitude and phase angle of the current, | are derived.
From the second one, tan¢ = (w L/R)

So, phase angle, ¢ =tan"(wL/R)

Two relations, cos¢ =(R/Z), and sing =(wL/Z), are derived, with the term

(impedance), Z = R? + (w L)?

If these two expressions are substituted in the first one, it can be shown that the
magnitude of the currentis 1 =V /Z , with both V and Z in magnitude only.

The steps required to find the rms value of the current I, using complex form of
impedance, are given here.

A
(a)

()

LR

(c)
Fig. 14.4: Circuit with Resistance (R) and Inductance (L) in series.

(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current (iii) Power
(¢) Phasor diagram
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Fig. 14.5: The complex form of the impedance
(R-L series circuit)

The impedance (Fig. 14.5) of the inductive (R-L) circuit is,
Z/p=R+jX =R+ jolL
where,

Z:\/R2+Xf =\/R2 +(a)L)2 and ¢=tan_1[%j=tan‘l(%l‘j

iz—¢:VZOO: V+j0 _ V+j0
Z/Zp R+JX, R+jolL
vV \Y 3 \Y
Z JR?+x? JR¥+(oL)’

Note that the current lags the voltage by the angle ¢, value as given above. In this
case, the voltage phasor has been taken as reference phase, with the current phasor
lagging the voltage phasor by the angle, ¢ . But normally, in the case of the series circuit,
the current phasor is taken as reference phase, with the voltage phasor leading the current
phasor by ¢. This can be observed both from phasor diagram (Fig. 14.4b), and
waveforms (Fig. 14.4c). The inductive reactance X, is positive. In the phasor diagram,
as one move from voltage phasor to current phasor, one has to go in the clockwise
direction, which means that phase angle, ¢ is taken as positive, though both phasors are
assumed to move in anticlockwise direction as shown in the previous lesson.

The complete phasor diagram is shown in Fig. 14.4b, with the voltage drops across
the two components and input (supply) voltage (OA), and also current (OB). The
voltage phasor is taken as reference. It may be observed that
Voc EIR)+V o, [=1(J X )=V (=12),
using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor
diagram can also be drawn with the current phasor as reference, as will be shown in the
next lesson.

Power consumed and Power factor

From the waveform of instantaneous power (W =v-i) also shown in Fig. 14.4c for
the above circuit, the average power is,
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W =£]iv-id6’=£]ix/§Vsin6’\/§Isin(9—¢)d6=1j'v I [cos ¢ —cos (20 —¢)] d&
7[0 7[0

%
1 - VI . b
:;{v | cos 6 == sin (26’—¢)|0}

=£{V | cos ¢ (z —0) —%[sin (277 — ¢) +sin ¢]} =V | cos¢

T

Note that power is only consumed in resistance, R only, but not in the inductance, L.
So, W = I°R.

average power V1cosg¢g cos ¢ = R_ R

apparent power Vi Z JR?+(wL)?

The power factor in this circuit is less than 1 (one), as 0° < ¢ <90°, ¢ being positive
as given above.

Power factor =

For the resistive (R) circuit, the power factor is 1 (one), as ¢ =0°, and the average
poweris VI .

For the circuits with only inductance, L or capacitance, C as described earlier, the
power factor is O (zero), as ¢ = +90°. For inductance, the phase angle, or the angle of the
impedance, ¢ = +90° (lagging), and for capacitance, ¢ = —90° (leading). It may be noted
that in both cases, the average power is zero (0), which means that no power is consumed
in the elements, L and C.

The complex power, Volt-Amperes (VA) and reactive power will be discussed after
the next section.

2. Capacitive circuit (R and C in series)

This part is discussed in brief. The voltage balance equation for the R-C series circuit
(Fig. 14.6a) is,

1. .
v:R|+EI|dt:\/§Vsma)t

The current is
i =2 1sin(wt+¢)

The reasons for the above choice of the current, i, and the steps needed for the
derivation of the above expression, have been described in detail, in the case of the earlier
example of inductive (R-L) circuit. The same set of steps has to be followed to derive the
current, i in this case.

Alternatively, the steps required to find the rms value of the current I, using complex
form of impedance, are given here.
The impedance of the capacitive (R-C) circuit is,
Z/-¢=R—-jX.=R- ji
wC
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2
Z=4R*+X% = R%(LJ and
oC
p=tan| - —=|=tan™ NS P
owCR owCR
| 24— VZ0°  V+j0  V+jo0
Z/-¢ R-jX. R-j/wC)
V Vv V

"7 RPex: JR? +(1/ »C)’

¢ \..’m H
4 ]n L {l}
T / (ii)
L
'l
K =1
il — D{ct)
*) -V, L
(b)
L(-jX.)

Fig. 14.6: Circuit with Resistance (R) and Capacitance (C) in series.
{a) Circuit diagram
(b)) Waveforms: (i) Voltage (ii) Current
{c) Phasor diagram
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Note that the current leads the voltage by the angle ¢, value as given above. In this

case, the voltage phasor has been taken as reference phase, with the current phasor
leading the voltage phasor by the angle, ¢ . But normally, in the case of the series circuit,

the current phasor is taken as reference phase, with the voltage phasor lagging the current
phasor by ¢. This can be observed both from phasor diagram (Fig. 14.6b), and

waveforms (Fig. 14.6c). The capacitive reactance X is negative. In the phasor diagram,

as one move from voltage phasor to current phasor, one has to go in the anticlockwise
direction, which means that phase angle, ¢ is taken as negative. This is in contrast to the

case as described earlier. The complete phasor diagram is shown in Fig. 14.6b, with the
voltage drops across the two components and input (supply) voltage, and also current.
The voltage phasor is taken as reference.

The power factor in this circuit is less than 1 (one), with ¢ being same as given

above. The expression for the average power is P =V | cos¢, which can be obtained by

the method shown above. The power is only consumed in the resistance, R, but not in the
capacitance, C. One example is included after the next section.

Complex Power, Volt-Amperes (VA) and Reactive Power

The complex power is the product of the voltage and complex conjugate of the
current, both in phasor form. For the inductive circuit, described earlier, the voltage
(V £0°) is taken as reference and the current (1 £—¢ =1cos¢— jlsin ¢) is lagging the

voltage by an angle, ¢ . The complex power is
S=V-1"=V £0°12¢g=N1)2L$=V1cos ¢+ jVIising=P+jQ
The Volt-Amperes (S), a scalar quantity, is the product of the magnitudes the voltage

and the current. So, S =V -1 ={P? +Q? . It is expressed in VA.
The active power (W) is

P =Re (é) =Re (\7~ 1) =V I cos ¢, as derived earlier.

The reactive power (VAr) is given by Q =Im (S)=Im (V-17) =V Isin ¢.

As the phase angle, ¢ is taken as positive in inductive circuits, the reactive power is
positive. The real part, (1cos ¢) is in phase with the voltage V , whereas the imaginary
part, Isin ¢ is in quadrature (—90°) with the voltage V . But in capacitive circuits, the
current (1 Z¢ ) leads the voltage by an angle ¢ , which is taken as negative. So, it can be
stated that the reactive power is negative here, which can easily be derived

Example 14.1

A voltage of 120 V at 50 Hz is applied to a resistance, R in series with a capacitance,
C (Fig. 14.7a). The current drawn is 2 A, and the power loss in the resistance is 100 W.
Calculate the resistance and the capacitance.

Solution
V=120V | =2A P=100W f =50Hz
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R=P/12=100/22=25Q

Z=R?+X2=V/1=120/2=60 Q

X, =1/(27 £ C) =+/Z% —=R? =/(60) - (25)* =54.540)

C= ! = L =58.36-10"° =58.36 uF
2r f X, 27-50.0x54.54

The power factor is, cos ¢ = R/Z =25/60 = 0.417 (lead)
The phase angle is ¢ = cos™ (0.417) = 65.38°

109y

f"'"-E"\

LS
Il
]|

(b)

Fig. 14.7: (a) Circuit diagram
(b) Phasor diagram

The phasor diagram, with the current as reference, is shown in Fig. 14.7b. The examples,
with lossy inductance coil (r in series with L), will be described in the next lesson. The
series circuit with all elements, R. L & C, along with parallel circuits, will be taken up in

the next lesson.

Version 2 EE 1T, Kharagpur 13



Problems

141

14.2

14.3

14.4

Calculate the power factor in the following cases for the circuit with the
elements, as given, fed from a single phase ac supply.

(i) With resistance, R only, but no L and C

(@) 1.0 (©=0°) (b) 0.0 lagging (®=+90°)
(c) 0.0 leading (©=-90°) (d) None of the above
(i) with only pure/lossless inductance, L, butno R and C

(@) 1.0 (®=0°) (b) 0.0 lagging (®=+90°)
(c) 0.0 leading (©=-90°) (d) None of the above
(iii) with only pure capacitance, C, butno R and L.

(@) 1.0 (®=0°) (b) 0.0 lagging (®=+90°)
(c) 0.0 leading (©=-90°) (d) None of the above

Calculate the current and power factor (lagging / leading) in the following cases
for the circuits having impedances as given, fed from an ac supply of 200 V. Also
draw the phasor diagram in all cases.

(i) Z = (15+j20) ©

(i Z=(14j149)Q

@)  Z=R+j(XL-Xc),whereR=10Q, X, =20 Q, and Xc =10 Q.

A 200 V, 50 Hz supply is connected to a resistance (R) of 20 Q in series with an
iron cored choke coil (r in series with L). The readings of the voltmeters across
the resistance and across the coil are 120 V and 150 V respectively. Find the loss
in the coil. Also find the total power factor. Draw the phasor diagram.

A circuit, with a resistance, R and a lossless inductance in series, is connected
across an ac supply (V) of known frequency (f). A capacitance, C is now

connected in series with R-L, with V and f being constant. Justify the following
statement with reasons.

The current in the circuit normally increases with the introduction of C.

Under what condition, the current may also decrease. Explain the condition with
reasons.
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In the last lesson, two points were described:

1.

How to solve for the impedance, and current in an ac circuit, consisting of single
element, R/L/C?

How to solve for the impedance, and current in an ac circuit, consisting of two
elements, R and L / C, in series, and then draw complete phasor diagram?

In this lesson, the solution of currents in simple circuits, consisting of resistance R,

inductance L and/or capacitance C connected in series, fed from single phase ac supply,
is presented. Then, the circuit with all above components in parallel is taken up. The
process of drawing complete phasor diagram with current(s) and voltage drops in the
different components is described. The computation of total power and also power
consumed in the different components, along with power factor, is explained. One
example of series circuit are presented in detail, while the example of parallel circuit will
be taken up in the next lesson.

Keywords: Series and parallel circuits, impedance, admittance, power, power factor.

After going through this lesson, the students will be able to answer the following

questions;

1.

How to compute the total reactance and impedance / admittance, of the series and
parallel circuits, fed from single phase ac supply?

How to compute the different currents and also voltage drops in the components, both
in magnitude and phase, of the circuit?

How to draw the complete phasor diagram, showing the currents and voltage drops?

How to compute the total power and also power consumed in the different
components, along with power factor?

Solution of Current in R-L-C Series Circuit

Series (R-L-C) circuit

o RD L. E ,C

O T

1

"\/'
+ -
\Y

Fig. 15.1 (a) Circuit diagram
The voltage balance equation for the circuit with R, L and C in series (Fig. 15.1a), is

. di 1. ]
Vv=Ri+L—+=|idt=+42Vsinwt
dt cj J2Vsine
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The current, i is of the form,

i =2 1sin(wt + ¢)
As described in the previous lesson (#14) on series (R-L) circuit, the current in steady
state is sinusoidal in nature. The procedure given here, in brief, is followed to determine

the form of current. If the expression for i = V2 Isin (wt—¢) is substituted in the voltage
equation, the equation shown here is obtained, with the sides (LHS & RHS) interchanged.
R-v21sin(wt—¢)+aL -2 1cos(wt—¢)—(1/wC)-2 1 cos(at —¢)
=2V sinwt

or R-v21sin(wt—¢)+[wL—0/®C)]-v21cos(wt—¢) =2V sinwt

The steps to be followed to find the magnitude and phase angle of the current | , are
same as described there (#14).

So, the phase angleis ¢ =tan " [wL - (1/®»C)]/R

and the magnitude of the currentis | =V /Z

where the impedance of the series circuit is Z = \/RZ +[oL-(@1/wC))

Alternatively, the steps to find the rms value of the current I, using complex form of
impedance, are given here.
The impedance of the circuit is

24i¢:R+j(XL—XC):R+j[wL—%)
w

where,
Z =[R2+ (X, - X¢)? =yR?+(@wL-(1/wC)) ,and

4 tanl(XL ~ X j _ tanl(a)L—(lla)C)J
R R

- V0 V+j0 V+ij0
| L¥¢= = - = :

Z/+¢ R+j(X_ —X.) R+jl@L-(1/wC))
[V Vv ~ Y
R (x XY 1Y

R2+(0)L—J
wC

Two cases are: (a) Inductive | o L > L , and (b) Capacitive | o L < L :
oC oC

(@) Inductive

In this case, the circuit is inductive, as total reactance (a) L—(l/a)C)) is positive, under
the condition (wL > (1/@C)). The current lags the voltage by ¢ (taken as positive),

with the voltage phasor taken as reference. The power factor (lagging) is less than 1
(one), as 0° < ¢ <90°. The complete phasor diagram, with the voltage drops across the
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components and input voltage (OA), and also current (OB ), is shown in Fig. 15.1b. The
voltage phasor is taken as reference, in all cases. It may be observed that

Voc (=iR) +VCD =i(] XL)]+VDA [=-i(] Xc)] =VOA(= i1Z)

using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor
diagram can also be drawn with the current phasor as reference, as will be shown in the
example given here. The expression for the average power is V 1 cos¢ = 1R . The power

is only consumed in the resistance, R, but not in inductance/capacitance (L/C), in all three
cases.

4 E

I (-1Xc)

Inductive (X > Xc)
Fig 15.1 (b) Phasor diagram

In this case, the circuit is inductive, as total reactance (@ L—(l/a)C)) is positive, under
the condition (wL > (1/@C)). The current lags the voltage by ¢ (positive). The power
factor (lagging) is less than 1 (one), as 0° < ¢ <90°. The complete phasor diagram, with

the voltage drops across the components and input voltage (OA), and also current (OB ),
is shown in Fig. 15.1b. The voltage phasor is taken as reference, in all cases. It may be
observed that

Voc (: [ R) +VCD [: |(J XL)]+VDA [: —i (J Xc)] :VOA(: i Z)

using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor
diagram can also be drawn with the current phasor as reference, as will be shown in the
example given here. The expression for the average power is V 1 cos¢ = | R . The power

is only consumed in the resistance, R, but not in inductance/capacitance (L/C), in all three
cases.
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(b) Capacitive

1(+1X,)

I (-1Xc)

A
\Y

Capacitive (X < Xc¢)
Fig 15.1 (c) Phasor diagram

The circuit is now capacitive, as total reactance (o L —(1/ @ C)) is negative, under the
condition (a) L< (l/a)C)). The current leads the voltage by ¢, which is negative as per

convention described in the previous lesson. The voltage phasor is taken as reference
here. The complete phasor diagram, with the voltage drops across the components and
input voltage, and also current, is shown in Fig. 15.1c. The power factor (leading) is less
than 1 (one), as0° < ¢ <90°, ¢ being negative. The expression for the average power

remains same as above.

The third case is resistive, as total reactance (wL—-1/wC) is zero (0), under the
condition (wL =1/wC). The impedance isZ Z0° =R+ jO. The current is now at unity
power factor (¢ =0°), i.e. the current and the voltage are in phase. The complete phasor

diagram, with the voltage drops across the components and input (supply) voltage, and
also current, is shown in Fig. 15.1d. This condition can be termed as ‘resonance’ in the
series circuit, which is described in detail in lesson #17. The magnitude of the impedance
in the circuit is minimum under this condition, with the magnitude of the current being
maximum. One more point to be noted here is that the voltage drops in the inductance, L
and also in the capacitance, C, is much larger in magnitude than the supply voltage,
which is same as the voltage drop in the resistance, R. The phasor diagram has been
drawn approximately to scale.
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+ E
1(J.X,)
I('j Xc)
0] -|__> ryD,A
a1 Voo, Vos (I.R)

Resistive (XL = X¢)
Fig. 15.1 (d) Phasor diagram

It may be observed here that two cases of series (R-L & R-C) circuits, as discussed in
the previous lesson, are obtained in the following way. The first one (inductive) is that of
(@), with C very large, i.e.1/wC ~ 0, which means that C is not there. The second one

(capacitive) is that of (b), with L not being there (L or @ L =0).
Example 15.1

A resistance, R is connected in series with an iron-cored choke coil (r in series with
L). The circuit (Fig. 15.2a) draws a current of 5 A at 240 V, 50 Hz. The voltages across
the resistance and the coil are 120 V and 200 V respectively. Calculate,

(a) the resistance, reactance and impedance of the coil,

(b) the power absorbed by the coil, and

(c) the power factor (pf) of the input current.

A R
C
A
VW |

>

U_‘P

\/

B
Fig. 15.2 (a) Circuit diagram
Solution
| (OB) =5A V, (OA) =240V f =50Hz w=2xf
The voltage drop across the resistance V, (OC) =1-R =120V
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The resistance, R=V, /1 =120/5=24 Q
The voltage drop across the coil V, (CA)=1-Z, =200V

The impedance of the coil, Z, =/r* + X? =V, /1 =200/5=40 Q
From the phasor diagram (Fig. 15.2b),

l D

|

NOHOF
VWA—000 .

1®

)

40V, 50 Hz

o
/
Fig. 15.2(b): Phasor Diagram

OA? +0OC? —CA?* _ (120)% + (240)* — (200)> _ 32,000
2-0A.0C 2x120x 240 57,600

cos ¢ = cos ZAOC =

=0.556
The power factor (pf) of the input current = cos ¢ = 0.556 (lag)

The phase angle of the total impedance, ¢ = cos™ (0.556) = 56.25°
Input voltage, Vi (OA) =1-Z =240V

The total impedance of the circuit, Z = /(R+r)* + X? =V, /1 =240/5=48 Q
ZZp=(R+r)+ X =48 £56.25° =(26.67 + j39.91) Q

The total resistance of the circuit, R+r =24 +r =26.67 Q

The resistance of the coil, r = 26.67 —24.0 =2.67 Q

The reactance of the coil, X, =oL=27fL=399 Q

X, 399

= =0.127H =127-1073 =127 mH
27 f  2xx50

The inductance of the coil, L =

The phase angle of the cail,

¢, =cos™(r/Z,)=cos™(2.67/40.0) = cos™(0.067) = 86.17°
Z Z$ =r+ )X =(2.67+ ] 39.9)=40 £86.17°7) Q

The power factor (pf) of the coil, cos ¢ =0.067 (lag)

The copper loss in the coil = 1°r =5* x2.67 =66.75 W

Example 15.2
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An inductive coil, having resistance of 8 QQ and inductance of 80 mH, is connected in
series with a capacitance of 100 xF across 150 V, 50 Hz supply (Fig. 15.3a). Calculate,

(a) the current, (b) the power factor, and (c) the voltages drops in the coil and capaci-
tance respectively.

Fig. 15.3 (a) Circuit diagram

Solution
f =50 Hz w=2rf=27rx50=314.16rad /s
L=80mH =80-10"° =0.08H X, =wlL =314.16x0.08=25.13 Q
C =100 xF =100-10°F Xe = 1 _ L —=31.83 Q
oC 314.16x100-10
R=8Q V, (OA) =150 V

The impedance of the coil, Z, Z¢, =R+ j X =(8.0+ ] 25.13) =26.375£72.34° Q)
The total impedance of the circuit,

Z/-¢=R+j(X —Xc,)=80+j(25.13-31.83)=(8.0~-j6.7)
=10.435/-39.95° Q

The current drawn from the supply,

|4¢:vzo [ 150

Z/-¢ |10435
The currentis, | =14.375 A
The power factor (pf) = cos ¢ = cos 39.95° = 0.767 (lead)

J £39.95° =14.375 £39.95° A= (11.02 + j9.26) A

D
1Z |(jX|_)
A = E l. (5Xc)
| / ' J C
B

Fig. 15.3 (b) Phasor diagram
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Please note that the current phasor is taken as reference in the phasor diagram (Fig.
15.3b) and also here. The voltage drop in the coil is,
V,£60,=1£0°-Z, £ =(14.375x26.375) £72.34° =379.14 L72.34° V

= (115.1+ j361.24)V

The voltage drop in the capacitance in,
V, 26, =1,0°2, £—¢. = (14.475x31.83) £ —90.0° = 457.58 £ —90.0° V

= —j457.58 V

Solution of Current in Parallel Circuit

Parallel circuit

The circuit with all three elements, R, L & C connected in parallel (Fig. 15.4a), is fed
to the ac supply. The current from the supply can be computed by various methods, of
which two are described here.

| —>
+ h¢ ih lk
v R L T ¢

Fig. 15.4 (a) Circuit diagram.
First method

The current in three branches are first computed and the total current drawn from the
supply is the phasor sum of all three branch currents, by using Kirchoff’s first law related
to the currents at the node. The voltage phasor (V) is taken as reference.

All currents, i.e. three branch currents and total current, in steady state, are sinusoidal
in nature, as the input (supply voltage is sinusoidal of the form,

V=42 Vsinwt

Three branch currents are obtained by the procedure given in brief.
V=R-iy ,oriy =v/R=+2 (V/R)sinwt=~2l,sinwt,
where, |I|=|(V/R)]

Similarly, v = Lﬂ
dt

So, i, is,
i, = (/L) [vdt=(/L) [v2 V(sinot) dt =2 [V /(& L)] coswt =—~/2 1, cosot
=21 sin(ot—-90°)

Version 2 EE 11T, Kharagpur



where, |1 |=|(V/X_)| with X, =aL

V= (1/C)jic dt , from which i. is obtained as,

i =C%:C%(\/§Vsina)t):\/§ V- -»C) coswt:ﬁlc cos mt
=2 1. sin(ot+90°)

where, [I.|=|(V/X,)| with X; =(1/wC)

Total (supply) current, i is

i=i, +i, +i. =v2 1 sinwt—~/21, coswt +/2 I coswt

= 2IRsina)t—ﬁ(lL—lc)cosa)t:ﬁlsin(a)t$¢)

The two equations given here are obtained by expanding the trigonometric form
appearing in the last term on RHS, into components of coswt and sinwt, and then

equating the components of coswt and sinwt from the last term and last but one
(previous) .

lcosg=1; and Ising=(I_—1.)
From these equations, the magnitude and phase angle of the total (supply) current are,

; ; 1 (1 1Y
=007+, 1) :M'\/(Ej +[X—L—X—cj
1\ (1 ?
R O e
¢ =tan™ Jozle | o WXD =W X)) sl g [ L1
Iy (L/R) X, X,
:tanl[R-(i—a)Cﬂ
ol

where, the magnitude of the term (admittance of the circuit) is,

s 8] e

Please note that the admittance, which is reciprocal of impedance, is a complex
quantity. The angle of admittance or impedance, is same as the phase angle, ¢ of the

current | , with the input (supply) voltage taken as reference phasor, as given earlier.

Alternatively, the steps required to find the rms values of three branch currents

and the total (suuply) current, using complex form of impedance, are given here.
Three branch currents are
I, £0°=1, =!; I, £-90°=—jI = _V = _V =—j v

I X, JolL ol

\ \

. /+90°=jl.= = _
¢ Je ~jX. -j@wC)

JoCV
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Of the three branches, the first one consists of resistance only, the current, I is in
phase with the voltage (V). In the second branch, the current, 1, lags the voltage by 90°,

as there is inductance only, while in the third one having capacitance only, the current,
|- leads the voltage 90°. All these cases have been presented in the previous lesson.

The total current is

| £+ ¢= IR+J('C"L):V[%+J{@C_LH

ol

where,

L=12+(1g =1, ) _v\/lé%w(:—ﬁﬂ ,and
o)l 2]

The two cases are as described earlier in series circuit.

(a) Inductive

lr—> D _A
>

Inductive (I_ > I¢)
Fig. 15.4 (b) Phasor diagram

In this case, the circuit being inductive, the current lags the voltage by ¢ (positive),
as I >, ,ie l/loL>wC, or wL<1/®wC .This condition is in contrast to that
derived in the case of series circuit earlier. The power factor is less than 1 (one). The
complete phasor diagram, with the three branch currents along with total current, and also
the voltage, is shown in Fig. 15.4b. The voltage phasor is taken as reference in all cases.
It may be observed there that
I.(OD)+ 1, (DC)+1.(CB)=1(0OB)
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The Kirchoff’s first law related to the currents at the node is applied, as stated above. The
expression for the average power is V lcos¢=12R=V?/R. The power is only
consumed in the resistance, R, but not in inductance/capacitance (L/C), in all three cases.

(b) Capacitive
The circuit is capacitive, as I > 1, ,i.e. wC>1/wL,0or oL >1/®C . The current

leads the voltage by ¢ (¢ being negative), with the power factor less than 1 (one). The
complete phasor diagram, with the three branch currents along with total current, and also

the voltage, is shown in Fig. 15.4c.
The third case is resistive, as || | =|l;|, i.e.l/oL=wC or @L=1/wC. This is the

same condition, as obtained in the case of series circuit. It may be noted that two currents,
I, and I., are equal in magnitude as shown, but opposite in sign (phase difference

being180°), and the sum of these currents (I, + 1) is zero (0). The total current is in
phase with the voltage (¢=0°), with |I|=|l;|, the power factor being unity. The

complete phasor diagram, with the three branch currents along with total current, and also
the voltage, is shown in Fig. 15.4d. This condition can be termed as ‘resonance’ in the
parallel circuit, which is described in detail in lesson #17. The magnitude of the
impedance in the circuit is maximum (i.e., the magnitude of the admittance is minimum)
under this condition, with the magnitude of the total (supply) current being minimum.

B

L/
\ 4

v \ 4 A 4

E

Capacitive (I_< I¢)
Fig. 15.4 (c) Phasor diagram
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The circuit with two elements, say R & L, can be solved, or derived with C being large
(I.=00r1/wC=0).

I (VIGiX,))

YOI (VIGX )
E

Resistive (I_ = 1¢)
Fig. 15.4 (d) Phasor Diagram

Second method

Before going into the details of this method, the term, Admittance must be explained.
In the case of two resistance connected in series, the equivalent resistance is the sum of
two resistances, the resistance being scalar (positive). If two impedances are connected in
series, the equivalent impedance is the sum of two impedances, all impedances being
complex. Please note that the two terms, real and imaginary, of two impedances and also
the equivalent one, may be positive or negative. This was explained in lesson no. 12.

If two resistances are connected in parallel, the inverse of the equivalent resistance is
the sum of the inverse of the two resistances. If two impedances are connected in parallel,
the inverse of the equivalent impedance is the sum of the inverse of the two impedances.
The inverse or reciprocal of the impedance is termed ‘Admittance’, which is complex.
Mathematically, this is expressed as

Y :lzi+i:Y1 +Y,

z 7, Z,
As admittance (Y) is complex, its real and imaginary parts are called conductance (G)
and susceptance (B) respectively. So, Y =G + jB. If impedance, Z Z¢ =R+ j X with

X being positive, then the admittance is

1 1 R—jX R-jX
A R - 1%
Z/0° R+jX (R+jX)(R-jX) R2+X
R ) X ]
= = =G-jB
R% + X2 JR2+X2 J
where,
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R g X
R2+X?%' R? + X?

G:

Please note the way in which the result of the division of two complex quantities is
obtained. Both the numerator and the denominator are multiplied by the complex
conjugate of the denominator, so as to make the denominator a real quantity. This has
also been explained in lesson no. 12.

The magnitude and phase angle of Z and Y are

Z=+R*+X?; g=tan(X/R) ,and

Y=JeiiBl- 1 _; ¢:tanl(5]:tanl(£j
VRZ + X? G R

To obtain the current in the circuit (Fig. 15.4a), the steps are given here.
The admittances of the three branches are

N SE SRV S S T
Z, R Z, jX, ol
Y34900=i= ,1 = joC
Zs _JXC

The total admittance, obtained by the phasor sum of the three branch admittances, is
YZEp=Y,+Y,+Y, :£+j a)C—i =G+]B
R ol

where,

o [lo- e 2

G=1/R; B=wC-1/wlL
The total impedance of the circuit is
1 1 G . B
Z Z_ = = = —
0=y, G6+je 62182 JGiiBe
The total current in the circuit is obtained as

V £0°
|l Lt¢= =VL0°-YZLxp=(NVY)LZE
¢ 7734 p=(VY)LEg
where the magnitude of currentis | =V .Y =V /Z

The current is the same as obtained earlier, with the value of Y substituted in the
above equation.

This is best illustrated with an example, which is described in the next lesson.

The solution of the current in the series-parallel circuits will also be discussed there,
along with some examples.
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Problems

15.1 Calculate the current and power factor (lagging / leading) for the following
circuits (Fig. 15.5a-d), fed from an ac supply of 200 V. Also draw the phasor

diagram in all cases.

- ] Xc
+ é + i
iX _ p—
200V ( ~ % AL = -
<> ROQL P=jsa 200V 25 0 =200
i =20Q -
(a) (b)
+ IXc C e ) 150 —-JX:C- j25Q
200V R $=j58 T =d20Q 200 V<“V> iXc Te
- 789 [0 -T -j00
(c)
(d)

Fig. 15.5

15.2 A voltage of 200 V is applied to a pure resistor (R), a pure capacitor, C and a
lossy inductor coil, all of them connected in parallel. The total current is 2.4 A,
while the component currents are 1.5, 2.0 and 1.2 A respectively. Find the total
power factor and also the power factor of the coil. Draw the phasor diagram.

15.3 A 200 V. 50Hz supply is connected to a lamp having a rating of 100 V, 200 W, in
series with a pure inductance, L, such that the total power consumed is the same,

i.e. 200W. Find the value of L.

A capacitance, C is now connected across the supply. Find value of C, to bring
the supply power factor to unity (1.0). Draw the phasor diagram in the second

case.

1.(a) Find the value of the load resistance (R_) to be connected in series with a real
voltage source (Vs + Rs in series), such that maximum power is transferred from

the above source to the load resistance.

(b) Find the voltage was 8Q resistance in the circuit shown in Fig. 1(b).

2.(a) Find the Theremin’s equivalent circuit (draw the ckt.) between the terminals A + B,

of the circuit shown in Fig. 2(a).
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(b) A circuit shown in Fig. 2(b) is supplied at 40V, 50Hz. The two voltages V; and V;
(magnitude only) is measured as 60V and 25V respectively. If the current, | is
measured as 1A, find the values of R, L and C. Also find the power factor of the
circuit (R-L-C). Draw the complete phasor diagram.

3.(a) Find the line current, power factor, and active (real) power drawn from 3-phase,
100V, 50Hz, balanced supply in the circuit shown in Fig. 3(a).

(b) In the circuit shown in Fig. 3(b), the switch, S is put in position 1 at t = 0. Find ie(t),
t>0, if vo(0) = 6V. After the circuit reaches steady state, the switch, S is brought to
position 2, at t = T. Find i¢(t), t > T1. Switch the above waveform.

4.(a) Find the average and rms values of the periodic waveform shown in Fig. 4(a).

(b) A coil of ImH lowing a series resistance of 1Q is connected in parallel with a
capacitor, C and the combination is fed from 100 mV (0.1V), 1 kHz supply (source)
having an internal resistance of 10Q. If the circuit draws power at unity power
factor (upf), determine the value of the capacitor, quality factor of the coil, and
power drawn by the circuit. Also draw the phasor diagram.
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Lesson
17

Resonance in Series
and Parallel Circuits
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In the last lesson, the following points were described:

1. How to compute the total impedance in parallel and series-parallel circuits?

2. How to solve for the current(s) in parallel and series-parallel circuits, fed from single
phase ac supply, and then draw complete phasor diagram?

3. How to find the power consumed in the circuits and also the different components,
and the power factor (lag/lead)?

In this lesson, the phenomenon of the resonance in series and parallel circuits, fed
from single phase variable frequency supply, is presented. Firstly, the conditions
necessary for resonance in the above circuits are derived. Then, the terms, such as
bandwidth and half power frequency, are described in detail. Some examples of the
resonance conditions in series and parallel circuits are presented in detail, along with the
respective phasor diagrams.

Keywords: Resonance, bandwidth, half power frequency, series and parallel circuits,

After going through this lesson, the students will be able to answer the following
questions;

1. How to derive the conditions for resonance in the series and parallel circuits, fed from
a single phase variable frequency supply?

2. How to compute the bandwidth and half power frequency, including power and
power factor under resonance condition, of the above circuits?

3. How to draw the complete phasor diagram under the resonance condition of the
above circuits, showing the currents and voltage drops in the different components?

Resonance in Series and Parallel Circuits

Series circuit

frequency

(®

B
Fig. 17.1 (a) Circuit diagram.

The circuit, with resistance R, inductance L, and a capacitor, C in series (Fig. 17.1a) is

connected to a single phase variable frequency ( f ) supply.
The total impedance of the circuit is
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. 1
Z/¢=R+jloL-——
p=rerif -]

where,

2
Z= [R2+(wL%J]; ¢=tan‘1M; w=2rxf

10} R

The current is

|4—¢:\;§; =(V/z)z-¢

\Y

where | = -
R+ (wL-(/oC) |

) o . ) 1
The current in the circuit is maximum, if w L = _C .
@

The frequency under the above condition is

f oD _ 1
° 2z 2zyLC

This condition under the magnitude of the current is maximum, or the magnitude of
the impedance is minimum, is called resonance. The frequency under this condition with

the constant values of inductance L, and capacitance C, is called resonant frequency. If
the capacitance is variable, and the frequency, f is kept constant, the value of the

capacitance needed to produce this condition is
1 1
'L 2z f)’L

The magnitude of the impedance under the above condition is |Z| =R, with the

reactance X =0, as the inductive reactance X, =@ L is equal to capacitive reactance
Xc. =1/@C . The phase angle is ¢ = 0°, and the power factor is unity (cos ¢ = 1), which
means that the current is in phase with the input (supply) voltage.. So, the magnitude of
the current ( |(\/ /R) |) in the circuit is only limited by resistance, R. The phasor diagram
is shown in Fig. 17.1b.

The magnitude of the voltage drop in the inductance L/capacitance C (both are equal,
as the reactance are equal)is | -0, L=1-(1/®,C).

The magnification of the voltage drop as a ratio of the input (supply) voltage is

o, L 2zf L 1L

Q=g R R\C
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1(j.X,)
I('j Xc)
A H [ l
—_
I V5> Vs (LR)

Fig. 17.1 (b) Phasor Diagram

It is termed as Quality (Q) factor of the coil.

The impedance of the circuit with the constant values of inductance L, and capa-
citance C is minimum at resonant frequency ( f ), and increases as the frequency is
changed, i.e. increased or decreased, from the above frequency. The current is maximum
at f = f, and decreases as frequency is changed (f > f_,or f < f ), i.e. f = f . The

variation of current in the circuit having a known value of capacitance with a variable
frequency supply is shown in Fig. 17.2.

I;n=V/ R& -
:g - T small R
]
= o
O 5
=
=]
@)
L, _ 1V
V2 2R : |
fi fo f
51 T B —
frequency (f) frequency
(@) (b)

Fig. 17.2 Variation of current under variable frequency supply

The maximum value of the current is (V /R). If the magnitude of the current is
reduced to (1/ V2 ) of its maximum value, the power consumed in R will be half of that
with the maximum current, as power is |°R. So, these points are termed as half power
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points. If the two frequencies are taken as f, andf,, where f =f,—Af/2 and
f, = f, + Af /2 , the band width being given by Af = f, — f, .
The magnitude of the impedance with the two frequencies is

2 12
Z =|R>+| 27(f, £+ Af /2)L - !
2z(f, £Af/2)C

As (27 f,L=1/27 f,C) and the ratio (Af /2 f;) is small, the magnitude of the

reactance of the circuit at these frequencies is X = X, (Af / f;). As the current is

(1/ V2 ) of its maximum value, the magnitude of the impedance is (\/5 ) of its minimum
value (R) at resonant frequency.

So, Z =+/2-R = [R? + (X, (Af / fo))zﬁ
From the above, it can be obtained that (Af / f,)X , =R
_Rf, Rf, R
' X, 2rxf,L 2xL
The band width is given by Af = f, — f, =R/(2z L)
It can be observed that, to improve the quality factor (Q) of a coil, it must be designed
to have its resistance, R as low as possible. This also results in reduction of band width

and losses (for same value of current). But if the resistance, R cannot be decreased, then
Q will decrease, and also both band width and losses will increase.

or Af =f, - f

Example 17.1

A constant voltage of frequency, 1 MHz is applied to a lossy inductor (r in series with
L), in series with a variable capacitor, C (Fig. 17.3). The current drawn is maximum,

when C = 400 pF; while current is reduced to (1/ V2 ) of the above value, when C = 450
pF. Find the values of r and L. Calculate also the quality factor of the coil, and the
bandwidth.

R L
VVWA—000
+
<O #
T c
f=1MHz
Fig. 17.3 Circuit diagram
Solution
f=1MHz=10°Hz o=2rxf C =400 pF =400-107° F
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l..=V/r as X =X, X, = ! = 61 — =398 Q
27zfC  27-10°%x400-10

X =Xc=272fL=398Q L= 398'06263.34/1H
27x-10

]
C, =450 pF X, == =353.7Q
: P 2 109%450-107

ZZp=r+j(X —Xe)=r+]j(398.0-353.7)=(r+ j44.3) Q
e VOV Vv

N2 N2er 2 74y
From above, V2r= \r? +(44.3) or 2r> =r* +(44.3)’

or r =443 Q

The quality factor of the coil is Q = X = % =8.984

The band with is S

Af =f,—f = ' 44.3 44.3 =0.1113-10° = 0.1113 MHz

27l 27x6334-10° 398-10°
~1113-10° = 111.3 kHz

Parallel circuit

The circuit, with resistance R, inductance L, and a capacitor, C in parallel (Fig. 17.4a)
is connected to a single phase variable frequency ( f ) supply.

The total admittance of the circuit is

—> 1
0)
+ ‘LIL \LIC

e 3 g T,

frequency

(D B

Fig. 17.4 (a) Circuit diagram.

1 1
Y 2=+ j|lwc-—
¢ R+J(a) a)Lj

where,
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2
Y = Ler a)C—L ; ¢=tan”'| R a)C—L ; o=2rf
R ol ol

The impedanceis ZZ£—-¢=1/Y L¢

The current is
| £Lp=V £0°Y Lp=N -Y)Lp=NV L0°/Z2L—-¢p=N/2Z)L¢

2
where, | =V LZ+ a)C—L
R ol

The current in the circuit is minimum, if ®C = ——

ol
The frequency under the above condition is
. ®, 1
° 2z 2rLC
+
I=1; (V/ R)
0)
1)
I (V/(5X.))

v I (V/GX L))

Fig. 17.4 (b) Phasor Diagram

This condition under which the magnitude of the total (supply) current is minimum,
or the magnitude of the admittance is minimum (which means that the impedance is
maximum), is called resonance. It may be noted that, for parallel circuit, the current or
admittance is minimum (the impedance being maximum), while for series circuit, the
current is maximum (the impedance being minimum). The frequency under this condition
with the constant values of inductance L, and capacitance C, is called resonant frequency.
If the capacitance is variable, and the frequency, f is kept constant, the value of the
capacitance needed to produce this condition is

1 1

T o'l Q)L

The magnitude of the impedance under the above condition is (|Z| =R), while the

magnitude of the admittance is (|Y| =G =(1/R)). The reactive part of the admittance is
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B=0, as the susceptance (inductive)B, =(1/@wL) is equal to the susceptance
(capacitive) B, =wC. The phase angle is ¢ =0°, and the power factor is unity
(cos ¢ =1). The total (supply) current is phase with the input voltage. So, the magnitude
of the total current ( |(V /R) |) in the circuit is only limited by resistance R. The phasor
diagram is shown in Fig. 17.4b.

The magnitude of the current in the inductance, L / capacitance, C (both are equal, as
the reactance are equal), is V (1/@,L) =V -@,C . This may be termed as the circulating
current in the circuit with only inductance and capacitance, the magnitude of which is

C

1= lef=v, [

substituting the value of @w, =27z f,. This circulating current is smaller in magnitude
than the input current or the current in the resistance as ,C = (1/o,L) > R.

The input current increases as the frequency is changed, i.e. increased or decreased
from the resonant frequency (f > f ,or f < f ),ie. f = f,.

In the two cases of series and parallel circuits described earlier, all components,
including the inductance, are assumed to be ideal, which means that the inductance is
lossless, having no resistance. But, in actual case, specially with an iron-cored choke coil,
normally a resistance r is assumed to be in series with the inductance L, to take care of
the winding resistance and also the iron loss in the core. In an air-cored coil, the winding
resistance may be small and no loss occurs in the air core.

An iron-cored choke coil is connected in parallel to capacitance, and the combination
is fed to an ac supply (Fig. 17.5a).

—_— |

+ R \1, —L‘l’IC
@ L Te

Fig. 17.5 (a) Circuit diagram.

The total admittance of the circuit is
r—jolL
r+jolL r’+o’l’
If the magnitude of the admittance is to be minimum, then
ol L
0C=————or C=—

r’+w?l? r’+o?l®

+ joC

The frequency is
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w 1 |[L ,

T
This is the resonant frequency. The total admittance is Y £0° = m
The total impedance is Z £0° = r2+—f)2|_2
The total (input) current is
1 20o= Y20 v s00.v 200 = (MJAO" =(V-Y)Z£0° =%
7 /0° Z r+o°L

This current is at unity power factor with ¢ = 0°. The total current can be written as
1 £0°=1+jO=1_Z—¢ +jl.=1_cos g +j(I sing —1I)

So, the conditionis |, =1 sing,

Vv ol

where | =L=V -0C ; || =—/—m———; sing, =—=

From the above, the condition, as given earlier, can be obtained.

The total currentis | =1, cos¢,

The value, as given here, can be easily obtained. The phasor diagram is shown in Fig.
17.5b. It may also be noted that the magnitude of the total current is minimum, while the
magnitude of the impedance is maximum.

I D A/
A —>
o,
Ic
I
B

Fig. 17.5 (b) Phasor Diagram

Example 17.2

A coil, having a resistance of 15 Q and an inductance of 0.75 H, is connected in
series with a capacitor (Fig. 17.6a. The circuit draws maximum current, when a voltage
of 200 V at 50 Hz is applied. A second capacitor is then connected in parallel to the
circuit (Fig. 17.6b). What should be its value, such that the combination acts like a non-
inductive resistance, with the same voltage (200 V) at 100 Hz? Calculate also the current
drawn by the two circuits.
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+

_l’_
V=200V -, V=200V T &

fi = 50Hz f, = 100Hz

Fig. 17.6 (a) Circuit diagram Fig. 17.6 (b) Circuit diagram

Solution
f, =50 Hz V=200V R=15Q L=0.75H
From the condition of resonance at 50 Hz in the series circuit,
X,=oL=27fL=X; = ! = !
oC, 2rfC,
1 1
So, C, = = =13.5-10° =13.5 uF

2z f, )L (27-50) x0.75
The maximum current drawn from the supply is, I, =V /R =200/15=13.33 A
f, =100 Hz w, =27 f,=27-100=6283 rad/s
X, =2zt L=27-100-0.75=471.24 Q

1 1

e = f.C = 2210013510

7 1,C, V4 .
Z,Zd, =R+ j(X_, =X, )=15+ j(471.24-117.8) =15+ j353.44
=353.75/87.57° Q

1 1 ~ 1

Z, /¢ 15+ j353.44 353.75./87.57°
=(0.12- j2.824)-107 Q™
Y,=1/Z, = J(a)2 Cz)

=117.8.Q

Y, L ¢, = =2.827-107 £ -87.57°

As the combination is resistive in nature, the total admittance is
YZ0°=Y +jO0=Y,+Y, =(0.12- j2.824)-10" + jw, C,
From the above expression, @, C, = 628.3-C, =2.824-10"
2.824-107
628.3
The total admittanceis Y =0.12-107 Q™'
The total impedance is Z =1/Y =1/(0.12-107 ) =8.33-10° Q = 8.33 kQ
The total current drawn from the supply is

or, C, = =4.5-10"° =4.5uF
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I =V.Y =V/Z=200x0.12-10" =0.024 A=24-10" =24 mA
The phasor diagram for the circuit (Fig. 17.6b) is shown in Fig. 17.6c.

I
b1 = 87.6° 2

I

Fig. 17.6 (c) Phasor diagram

The condition for resonance in both series and parallel circuits fed from single phase
ac supply is described. It is shown that the current drawn from the supply is at unity
power factor (upf) in both cases. The value of the capacitor needed for resonant condition
with a constant frequency supply, and the resonant frequency with constant value of
capacitance, have been derived. Also taken up is the case of a lossy inductance coil in
parallel with a capacitor under variable frequency supply, where the total current will be
at upf. The quality factor of the coil and the bandwidth of the series circuit with known
value of capacitance have been determined. This is the final lesson in this module of
single phase ac circuits. In the next module, the circuits fed from three phase ac supply
will be described.
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Problems

17.1

17.2

17.3

b)

A coil having a resistance of 20 Q and inductance of 20 mH, in series with a
capacitor is fed from a constant voltage variable frequency supply. The maximum
current is 10 A at 100 Hz. Find the two cut-off frequencies, when the current is
0.71 A.

With the ac voltage source in the circuit shown in Fig. 17.7 operating a frequency
of f, it was found that [ =1.0 £0° A. When the source frequency was doubled (2f),
the current became [ =0.707 £ —45° A. Find:

a) The frequency f, and

b) The inductance L, and also the reactances, X; and Xc at 2f

For the circuit shown in Fig. 17.8,

Find the resonant frequency fy, if R = 250 Q, and also calculate Qq (quality
factor), BW (band width) in Hz, and lower and upper cut-off frequencies (f; and
f;) of the circuit.

Suppose it was desired to increase the selectivity, so that BW was 65 Hz. What
value of R would accomplish this?

R=100Q L
100 £0°V —
C=0.01 uF
Fig. 17.7
Inductor
R coil
YW — ¥
' 150 O I L:= 12H
I I
I+ I '
I
Vo : : Rij= 200 Q
— ] - ] I — S |
11
C=033 uF
Fig. 17.8
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17.4 (a) For the circuit shown in Fig. 17.9, show that the circulating current is given by
V.4/C/L, if R is small and V is the input voltage.

(b) Find the total current at
(1) resonant frequency, fy, and
(i1) at a frequency, f; = 0.9 fo.

17.5  The circuit components of a parallel circuit shown in Fig. 17.10 are R = 60 kQ, L
= 5mH, and C = 50 pF. Find
a) the resonant frequency, fo,
b) the quality factor, Qo, and
c) the bandwidth.

I
=1 S
- R . +
v T v C/\D % 1
, R L+
Fig. 17.9 l

Fig. 17.10
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