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In this lesson, firstly, how a sinusoidal waveform (ac) is generated, is described, and then 
the terms, such as average and effective (rms) values, related to periodic voltage or 
current waveforms, are explained. Lastly, some examples to find average and root mean 
square (rms) values of some periodic waveforms are presented. 
Keywords: Sinusoidal waveforms, Generation, Average and RMS values of Waveforms. 

 After going through this lesson, the students will be able to answer the following 
questions: 

1. What is an ac voltage waveform? 
2. How a sinusoidal voltage waveform is generated, with some detail? 
3. For periodic voltage or current waveforms, to compute or obtain the average and rms 

values, and also the time period. 
4. To compare the different periodic waveforms, using above values. 

Generation of Sinusoidal (AC) Voltage Waveform 
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Fig. 12.1 Schematic diagram for single phase ac generation   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A multi-turn coil is placed inside a magnet with an air gap as shown in Fig. 12.1. The 
flux lines are from North Pole to South Pole. The coil is rotated at an angular speed, 

nπω 2= (rad/s). 

 
π
ω
2

=n = speed of the coil (rev/sec, or rps) 

  = speed of the coil (rev/min, or rpm) nN ⋅= 60
 l  = length of the coil (m) 
 b = width (diameter) of the coil (m) 
 T = No. of turns in the coil 
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 B = flux density in the air gap ( ) 2/ mWb
 nbv π=  = tangential velocity of the coil (m/sec) 
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At a certain instant t, the coil is an angle (rad), tωθ =  with the horizontal (Fig. 12.2). 
The emf (V) induced on one side of the coil (conductor) is θsinvlB , 

 θ  can also be termed as angular displacement. 
 The emf induced in the coil (single turn) is θπθ sin2sin2 nblBvlB =  
 The total emf induced or generated in the multi-turn coil is  
 θθπθπθ sinsin2sin2)( mETnblBnblBTe ===  
 This emf as a function of time, can be expressed as, tEte m ωsin)( = . The graph of 

or )(te )(θe , which is a sinusoidal waveform, is shown in Fig. 12.4a 
 Area of the coil  blam ==)( 2

 Flux cut by the coil (Wb) = BblBa ==φ  
 Flux linkage (Wb) = blBTT == φψ  
 It may be noted these values of flux φ  and flux linkage ψ , are maximum, with the 
coil being at horizontal position, 0=θ . These values change, as the coil moves from the 
horizontal position (Fig. 12.2). So, also is the value of induced emf as stated earlier.  
 The maximum value of the induced emf is,  

dt
dnTnTblBnEm
θψψωψπφππ ===== 222  

Determination of frequency (f) in the ac generator 

 In the above case, the frequency (Hz) of the emf generated is  

B 

(a) 

θ = ωt 
O
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L
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θ 

(b) 

Fig. 12.2 (a) Coil position for Fig. 12.1, and (b) Details  
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 nf == )2/( πω , no. of poles being 2, i.e. having only one pole pair.   
In the ac generator, no. of poles = p, and the speed (rps) = n, then the frequency in Hz 
or cycles/sec, is 
f  = no. of cycles/sec = no. of cycles per rev × no. of rev per sec = no. of pairs of 

poles × no. of rev per sec =     np )2/(

 or, 
π
ω
22120
⋅==

pNpf  

Example 
 For a 4-pole ac generator to obtain a voltage having a frequency of 50 Hz,  

 the speed is, 25
4
5022

=
×

==
p
fn  rps = 500,16025 =⋅  rpm  

 For a 2-pole (p = 2) machine, the speed should be 3,000 rpm. 
Similarly, the speed of the machine having different no. of poles, required to generate 
a frequency of 50 Hz can be computed. 

 Sinusoidal voltage waveform having frequency, with time period (sec), f fT 1=   

Periodic Voltage or Current Waveform 

Average value  
 The current waveform shown in Fig. 12.3a, is periodic in nature, with time period, T. 
It is positive for first half cycle, while it is negative for second half cycle. 
 The average value of the waveform,  is defined as   )(ti

 ∫∫ ===
2

0

2

0

)(2)(
2

1 TT

av dtti
T

dtti
TcyclehalfofperiodTime

cyclehalfoverAreaI    

 Please note that, in this case, only half cycle, or half of the time period, is to be used 
for computing the average value, as the average value of the waveform over full cycle is 
zero (0).   
 If the half time period (T/2) is divided into 6 equal time intervals ( TΔ ), 

 
cyclehalfofperiodTime

cyclehalfoverAreaiiii
T

Tiiii
I av =

+++
=

Δ⋅
Δ+++

=
6

)(
6

)( 63216321    

 Please note that no. of time intervals is n = 6. 

Root Mean Square (RMS) value 
For this current in half time period subdivided into 6 time intervals as given above, in 

the resistance R, the average value of energy dissipated is given by  

 R
iiii

⎥
⎦

⎤
⎢
⎣

⎡ +++
∝

6
)( 2

6
2
3

2
2

2
1  
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 The graph of the square of the current waveform,  is shown in Fig. 12.3b. Let I 
be the value of the direct current that produces the same energy dissipated in the 
resistance R, as produced by the periodic waveform with half time period subdivided into 

time intervals, 

)(2 ti

n

  R
Tn

Tiiii
RI n

⎥
⎦

⎤
⎢
⎣

⎡
Δ⋅

Δ+++
=

)( 22
3

2
2

2
12  

 

 
cyclehalfofperiodTime

cyclehalfovercurveiofArea
Tn
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I n

222
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 ∫∫ ==
2

0

2
2

0

2 2
2

1 TT

dti
T

dti
T

 

 This value is termed as Root Mean Square (RMS) or effective one. Also to be noted 
that the same rms value of the current is obtained using the full cycle, or the time period.  

Average and RMS Values of Sinusoidal Voltage Waveform 
 

 
 

 As shown earlier, normally the voltage generated, which is also transmitted and 
then distributed to the consumer, is the sinusoidal waveform with a frequency of 50 Hz in 
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this country. The waveform of the voltage , and the square of waveform, , are 
shown in figures 12.4a and12.4b respectively. 

)(tv )(2 tv

 Time period, ωπ /)2(/1 == fT ; in angle ( πω 2=T ) 
 Half time period, ωπ /)2/(12/ == fT ; in angle ( πω =2/T ) 
 0)(sin)(;0sin)( ≤≤=≤≤= tfortVtvforVv mm ωπωθπθθ  

 mm
m

mav VV
V

dVdvV 637.02cossin1)(1 0
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 If time t, is used as a variable, instead of angleθ ,  
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 In the same way, the rms value, V can be determined. 

 If the average value of the above waveform is computed over total time period T, it 
comes out as zero, as the area of first (positive) half cycle is the same as that of second 
(negative) half cycle. However, the rms value remains same, if it is computed over total 
time period. 

 The different factors are defined as:  

 Form factor 11.1
637.0
707.0

===
m

m

V
V

valueAverage
valueRMS  

 Peak factor 414.1
707.0

===
m

m

V
V

valueAverage
valueMaximum  

Note:  The rms value is always greater than the average value, except for a rectangular 
waveform, in which case the heating effect remains constant, so that the average 
and the rms values are same. 

Example 

 The examples of the two waveforms given are periodic in nature. 

1.  Triangular current waveform (Fig. 12.5) 

 Time period = T 

 0)( ≤≤= tTfor
T
tIti m   
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 Two factors of the waveform are:  

 Form factor 1547.1
5.0

57735.0
===

m

m

I
I

valueAverage
valueRMS  

 Peak factor 0.2
5.0

===
m

m

I
I

valueAverage
valueMaximum  

 To note that the form factor is slightly higher than that for the sinusoidal waveform, 
while the peak factor is much higher.  

0           T             2T 
t

i 

Im 

Fig. 12.5 Triangular current waveform  

v  
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Fig. 12.6 Trapezoidal voltage waveform 
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2.  Trapezoidal voltage waveform (Fig. 12.6) 

 Time period (T) = 8 ms 
 Half time period ( 2T ) ms428 ==  
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 Please note that time, t is in ms, and slope, m is in V/ms. Also to be noted that, as in 
the case of sinusoidal waveform, only half time period is taken here for the computation 
of the average and rms values.  

V

tttdttdtdttdttv
T

V
T

av

75.3
4

15
2
5)13(5

2
5

4
1

)4(
2
55

2
5

4
1)4(555

4
1)(

2
1 3

4

23

1

1

0

2
4

3

3

1

1

0

2

0

==⎥⎦
⎤

⎢⎣
⎡ +−+=

⎥⎦
⎤

⎢⎣
⎡ −++=⎥

⎦

⎤
⎢
⎣

⎡
−++== ∫∫∫∫

V

ttt

dttdtdttdtv
T

V
T

0825.467.16
3

50

3
25)13(25

3
25

4
1)4(

3
2525

3
25

4
1

)4(5)5()5(
4
1

2
1

2
1

2
1

3

4

33

1

1

0

3

2
1

4

3

2
3

1

2
1

0

2
2
1

2

0

2

===

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−+=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −++=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∫∫∫∫

  

 Two factors of the waveform are:  

 Form factor 0887.1
75.3

0825.4
===

valueAverage
valueRMS  

 Peak factor 3333.1
75.3
0.5

===
valueAverage
valueMaximum  

 To note that the both the above factors are slightly lower than those for the sinusoidal 
waveform.  

 Similarly, the average and rms or effective values of periodic voltage or current 
waveforms can be computed. 

 In this lesson, starting with the generation of single phase ac voltage, the terms, such 
as average and rms values, related to periodic voltage and current waveforms are 
explained with examples. In the next lesson, the background material required – the 
representation of sinusoidal voltage/current as phasors, the rectangular and polar forms of 
the phasors, as complex quantity, and the mathematical operations – addition/subtraction 
and multiplication/division, using phasors as complex quantity, are discussed in detail 
with numerical examples. In the following lessons, the study of circuits fed from single 
phase ac supply, is presented.  
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Problems 
 
12.1  What is the speed in rpm of an ac generator with 4 poles, to produce a voltage 

with a frequency of 50 Hz 
 

(a) 3000   (b) 1500   (c) 1000  (d) 750 
 
12.2 Determine the No. of poles required in an ac generator running at 1,000 rpm, to 

produce a voltage with a frequency of 50 Hz. 
 
 (a) 2   (b) 4   (c) 6   (d) 8 
 
12.3 Calculate the speed in rpm of an ac generator with 24 poles, to produce a voltage 

with a frequency of 50 Hz. 
 
 (a) 300   (b) 250   (c) 200   (d) 150 
 
12.4 Determine the average and root mean square (rms) values of the following 

waveforms. 
 
 
 
 
 
 
 
 
 
            
            
             

0 T/2 T 3T/2 2T 5T/2 3T 
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In the last lesson, two points were described: 

1. How a sinusoidal voltage waveform (ac) is generated? 

2. How the average and rms values of the periodic voltage or current waveforms, are 
computed? 

 Some examples are also described there. In this lesson, the representation of 
sinusoidal (ac) voltage/current signals by a phasor is first explained. The polar/Cartesian 
(rectangular) form of phasor, as complex quantity, is described. Lastly, the algebra, 
involving the phasors (voltage/current), is presented. Different mathematical operations –
addition/subtraction and multiplication/division, on two or more phasors, are discussed.  

Keywords: Phasor, Sinusoidal signals, phasor algebra 

After going through this lesson, the students will be able to answer the following 
questions; 

1. What is meant by the term, ‘phasor’ in respect of a sinusoidal signal? 

2. How to represent the sinusoidal voltage or current waveform by phasor? 

3. How to write a phasor quantity (complex) in polar/Cartesian (rectangular) form? 

4. How to perform the operations, like addition/subtraction and multiplication/division 
on two or more phasors, to obtain a phasor? 

 This lesson forms the background of the following lessons in the complete module of 
single ac circuits, starting with the next lesson on the solution of the current in the steady 
state, in R-L-C series circuits.  

Symbols 
 i  or i(t)  Instantaneous value of the current (sinusoidal form)   

 I  Current (rms value) 

  Maximum value of the current mI

 
−

I  Phasor representation of the current 

 φ  Phase angle, say of the current phasor, with respect to the reference phasor 

 Same symbols are used for voltage or any other phasor.  

Representation of Sinusoidal Signal by a Phasor 
A sinusoidal quantity, i.e. current, tIti m ωsin)( = , is taken up as an example. In Fig. 

13.1a, the length, OP, along the x-axis, represents the maximum value of the current , 
on a certain scale. It is being rotated in the anti-clockwise direction at an angular speed, 

mI

ω , and takes up a position, OA after a time t (or angle, tωθ = , with the x-axis). The 
vertical projection of OA is plotted in the right hand side of the above figure with respect 
to the angle θ . It will generate a sine wave (Fig. 13.1b), as OA is at an angle, θ  with the 
x-axis, as stated earlier. The vertical projection of OA along y-axis is OC = AB = 
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θθ sin)( mIi = , which is the instantaneous value of the current at any time t or angle θ . 
The angle θ  is in rad., i.e. tωθ = . The angular speed, ω  is in rad/s, i.e. fπω 2= , 
where is the frequency in Hz or cycles/sec. Thus, f

ftItIIi mmm πωθ 2sinsinsin ===  
So, OP represents the phasor with respect to the above current, i. 

The line, OP can be taken as the rms value, 2/mII = , instead of maximum value, 
Im . Then the vertical projection of OA, in magnitude equal to OP, does not represent 
exactly the instantaneous value of I, but represents it with the scale factor of 

707.02/1 = . The reason for this choice of phasor as given above, will be given in 
another lesson later in this module.  
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Generalized case 
The current can be of the form, )(sin)( αω −= tIti m  as shown in Fig. 13.1d. The 

phasor representation of this current is the line, OQ, at an angle,α  (may be taken as 
negative), with the line, OP along x-axis (Fig. 13.1c). One has to move in clockwise 
direction to go to OQ from OP (reference line), though the phasor, OQ is assumed to 
move in anti-clockwise direction as given earlier. After a time t, OD will be at an angle θ  
with OQ, which is at an angle ( αωαθ −=− t ), with the line, OP along x-axis. The 
vertical projection of OD along y-axis gives the instantaneous value of the current, 

 )(sin)(sin2 αωαω −=−= tItIi m . 

Phasor representation of Voltage and Current 
The voltage and current waveforms are given as, 

θsin2Vv = , and )(sin2 φθ += Ii   
It can be seen from the waveforms (Fig. 13.2b) of the two sinusoidal quantities – 

voltage and current, that the voltage, V lags the current I, which means that the positive 
maximum value of the voltage is reached earlier by an angle, φ , as compared to the 
positive maximum value of the current. In phasor notation as described earlier, the 
voltage and current are represented by OP and OQ (Fig. 13.2a) respectively, the length of 
which are proportional to voltage, V and current, I in different scales as applicable to 
each one. The voltage phasor, OP (V) lags the current phasor, OQ (I) by the angleφ , as 
two phasors rotate in the anticlockwise direction as stated earlier, whereas the angleφ  is 
also measured in the anticlockwise direction. In other words, the current phasor (I) leads 
the voltage phasor (V).  
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 Mathematically, the two phasors can be represented in polar form, with the voltage 

phasor ( ) taken as reference, such as , and . 
−

V 00∠=
−

VV φ∠=
−

II
 In Cartesian or rectangular form, these are, 

000 jVVV +=∠=
−

, and ,  φφφ sincos IjIII +=∠=
−

where, the symbol, j is given by 1−=j .  
Of the two terms in each phasor, the first one is termed as real or its component in x-axis, 
while the second one is imaginary or its component in y-axis, as shown in Fig. 13.3a. The 
angle,φ  is in degree or rad.      

Phasor Algebra 
Before discussing the mathematical operations, like addition/subtraction and multi-

plication/division, involving phasors and also complex quantities, let us take a look at the 
two forms – polar and rectangular, by which a phasor or complex quantity is represented. 
It may be observed here that phasors are also taken as complex, as given above. 

 

 
Representation of a phasor and Transformation  

A phasor or a complex quantity in rectangular form (Fig. 13.3) is,  

yx ajaA +=
−
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where and  are real and imaginary parts, of the phasor respectively. xa ya
In polar form, it is expressed as 

aaa AjAAA θθθ sincos +=∠=
−

  
where A  and aθ are magnitude and phase angle of the phasor. 
From the two equations or expressions, the procedure or rule of transformation from 

polar to rectangular form is  
ax Aa θcos=  and  ay Aa θsin=    

From the above, the rule for transformation from rectangular to polar form is  
22
yx aaA += and ( )xya aa /tan 1−=θ   

The examples using numerical values are given at the end of this lesson.  
 

Addition/Subtraction of Phasors 
Before describing the rules of addition/subtraction of phasors or complex quantities, 

everyone should recall the rule of addition/subtraction of scalar quantities, which may be 
positive or signed (decimal/fraction or fraction with integer). It may be stated that, for the 
two operations, the quantities must be either phasors, or complex. The example of phasor 
is voltage/current, and that of complex quantity is impedance/admittance, which will be 
explained in the next lesson. But one phasor and another complex quantity should not be 
used for addition/subtraction operation. 

For the operations, the two phasors or complex quantities must be expressed in 
rectangular form as  

yxyx bjbBajaA +=+=
−−

;     
If they are in polar form as 

ba BBAA θθ ∠=∠=
−−

;   
In this case, two phasors are to be transformed to rectangular form by the procedure 

or rule given earlier. 
The rule of addition/subtraction operation is that both the real and imaginary parts 

have to be separately treated as 

( ) ( ) yxyyxx cjcbajbaBAC +=±+±=±=
−−−

  
where ( ) ( )yyyxxx bacbac ±=±= ;  
Say, for addition, real parts must be added, so also for imaginary parts. Same rule 

follows for subtraction. After the result is obtained in rectangular form, it can be 
transformed to polar one. It may be observed that the six values of ,  and  – 
parts of the two phasors and the resultant one, are all signed scalar quantities, though in 
the example,  and  are taken as positive, resulting in positive values of . Also 
the phase angle 

sa' sb' sc'

sa' sb' sc'
s'θ  may lie in any of the four quadrants, though here the angles are in 

the first quadrant only. 
This rule for addition can be extended to three or more quantities, as will be 

illustrated through example, which is given at the end of this lesson. 
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The addition/subtraction operations can also be performed using the quantities as 

phasors in polar form (Fig. 13.4). The two phasors are  and . The find the 

sum , a line AC is drawn equal and parallel to OB. The line BC is equal and 

parallel to OA. Thus, . Also, 

)(OAA
−

)(OBB
−

)(OCC
−

−−−

+=+=+== BAOBOAACOAOCC
OAOBBCOBOC +=+=  

To obtain the difference , a line AD is drawn equal and parallel to OB, but in 
opposite direction to AC or OB. A line OE is also drawn equal to OB, but in opposite 

direction to OB. Both AD and OE represent the phasor (

)(ODD
−

−

− B ).  The line, ED is equal to 

OA. Thus, . Also 
−−−

−=−=+== BAOBOAADOAODD OAOBEDOEOD +−=+= . 
The examples using numerical values are given at the end of this lesson.  

 
Multiplication/Division of Phasors 

Firstly, the procedure for multiplication is taken up. In this case no reference is being 
made to the rule involving scalar quantities, as everyone is familiar with them. Assuming 

that the two phasors are available in polar from as  and . 
Otherwise, they are to be transformed from rectangular to polar form. This is also valid 
for the procedure of division. Please note that a phasor is to be multiplied by a complex 
quantity only, to obtain the resultant phasor. A phasor is not normally multiplied by 
another phasor, except in special case. Same is for division. A phasor is to be divided by 
a complex quantity only, to obtain the resultant phasor. A phasor is not normally divided 
by another phasor.   

aAA θ∠=
−

bBB θ∠=
−

To find the magnitude of the product  , the two magnitudes of the phasors are to be 
multiplied, whereas for phase angle, the  phase angles are to added. Thus, 

−

C
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( )baBAc BABABACC θθθθθ +∠⋅=∠⋅∠=⋅=∠=
−−−

)(  
where  and BAC ⋅= bac θθθ +=  

Please note that the same symbol,  is used for the product in this case.  
−

C

To divide .by 
−

A
−

B  to obtain the result ., the magnitude is obtained by division of 
the magnitudes, and the phase is difference of the two phase angles. Thus,  

−

D

( )ba
b

a
d B

A
B
A

B

ADD θθ
θ
θ

θ −∠⎟
⎠
⎞

⎜
⎝
⎛=

∠
∠

==∠= −

−
−

 

where  and BAD /= bad θθθ −=  
 

If the phasors are expressed in rectangular form as  

yx ajaA +=
−

 and   yx bjbB +=
−

where ( ) ( )xyayx aaaaA /tan; 122 −=+= θ  

The values of 
−

B are not given as they can be obtained by substituting  for . sb' sa'
To find the product, 

( ) ( ) ( ) ( )xyyxyyxxyxyxc babajbababjbajaBACC ++−=+⋅+=⋅=∠=
−−−

θ  

Please note that  .The magnitude and phase angle of the result (phasor) are,  12 −=j

( ) ( )[ ] ( ) ( ) BAbbaababababaC yxyxxyyxyyxx ⋅=+⋅+=++−= 22222
1

22  , and 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+
= −

yyxx

xyyx
c baba

baba1tanθ   

The phase angle, 
( ) ( )
( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅−

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+=

−

−−−

yyxx

xyyx

xyxy

xyxy

x

y

x

y
bac

baba
baba

bbaa
bbaa

b
b

a
a

1

111

tan

//1
//

tantantanθθθ

 

The above results are obtained by simplification. 

To divide  by 
−

A
−

B  to obtain  as 
−

D

yx

yx
yx bjb

aja

B

AdjdD
+
+

==+= −

−
−   

To simplify , i.e. to obtain real and imaginary parts, both numerator and 

denominator, are to be multiplied by the complex conjugate of 

−

D
−

B , so as to convert the 

denominator into real value only. The complex conjugate of 
−

B  is 
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byx BbjbB θ−∠=+=*   
In the complex conjugate, the sign of the imaginary part is negative, and also the phase 
angle is negative. 

( ) ( )
( ) ( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
=

−⋅+

−⋅+
=+=

−

2222
yx

yxxy

yx

yyxx

yxyx

yxyx
yx bb

baba
j

bb
baba

bjbbjb
bjbaja

djdD   

The magnitude and phase angle of the result (phasor) are,  

 
( ) ( )[ ]

( )
( )
( ) B

A
bb

aa

bb
babababa

D
yx

yx

yx

yxxyyyxx =
+

+
=

+

−++
=

22

22

22

2
1

22

 , and 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
= −

yyxx

yxxy
d baba

baba1tanθ   

The phase angle, 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−= −−−

yyxx

yxxy

x

y

x

y
bad baba

baba
b
b

a
a 111 tantantanθθθ  

The steps are shown here in brief, as detailed steps have been given earlier. 

Example 

 

The phasor,  in the rectangular form (Fig. 13.5) is, 
−

A

42sincos jajaAjAAA yxaaa +−=+=+=∠=
−

θθθ  
where the real and imaginary parts are 4;2 =−= yx aa    

To transform the phasor,  into the polar form, the magnitude and phase angle are 
−

A
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rad
a
a

aaA

x

y
a

yx

034.2565.116
2

4tantan

472.44)2(

11

2222

=°=⎟
⎠
⎞

⎜
⎝
⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=+−=+=

−−θ
 

Please note that aθ is in the second quadrant, as real part is negative and imaginary 
part is positive. 

Transforming the phasor,  into rectangular form, the real and imaginary parts are 
−

A

0.4565.116sin472.4sin
0.2565.116cos472.4cos

=°⋅==
−=°⋅==

ay

ax

Aa
Aa

θ
θ

 

Phasor Algebra 
 

 
Another phasor,

−

B  in rectangular form is introduced in addition to the earlier one,  
−

A

°∠=+=
−

45485.866 jB  
Firstly, let us take the addition and subtraction of the above two phasors. The sum and 

difference are given by the phasors, and  respectively (Fig. 13.6).  
−

C
−

D

°∠=+=+++−=+++−=+=
−−−

2.6877.10104)64()62()66()42( jjjjBAC  

°−∠=−−=−+−−=+−+−=−=
−−−

0.166246.828)64()62()66()42( jjjjBAD  

It may be noted that for the addition and subtraction operations involving phasors, 
they should be represented in rectangular form as given above. If any one of the phasors 
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is in polar form, it should be transformed into rectangular form, for calculating the results 
as shown. 

If the two phasors are both in polar form, the phasor diagram (the diagram must be 
drawn to scale), or the geometrical method can be used as shown in Fig 13.6. The result 
obtained using the diagram, as shown are the same as obtained earlier.  

[ (OC) = 10.77, ; and ( OD) = 8.246, 
−

C °=∠ 2.68COX
−

D °=∠ 0.166DOX ]  

Now, the multiplication and division operations are performed, using the above two 
phasors represented in polar form. If any one of the phasors is in rectangular form, it may 
be transformed into polar form. Also note that the same symbols for the phasors are used 
here, as was used earlier. Later, the method of both multiplication and division using 
rectangular form of the phasor representation will be explained.  

The resultant phasor , i.e. the product of the two phasors is 
−

C

( )
1236565.161945.37

45565.116)485.8472.4(45485.8565.116472.4
j

BAC
+−=°∠=

°+°∠×=°∠×°∠=⋅=
−−−

  

The product of the two phasors in rectangular form can be found as 

1236)1224()2412()66()42( jjjjC +−=−+−−=+⋅+−=
−

 

The result ( ) obtained by the division of  by 
−

D
−

A
−

B  is 

( )

5.0167.0

565.71527.045565.116
485.8
472.4

45485.8
565.116472.4

j
B

AD

+=

°∠=°−°∠⎟
⎠
⎞

⎜
⎝
⎛=

°∠
°∠

== −

−
−

 

The above result can be calculated by the procedure described earlier, using the 
rectangular form of the two phasors as  

5.0167.0
72

3612

66
)1224()2412(

)66()66(
)66()42(

66
42

22

jj

j
jj
jj

j
j

B

AD

+=
+

=

+
+++−

=
−⋅+
−⋅+−

=
+
+−

== −

−
−

 

The procedure for the elementary operations using two phasors only, in both forms of 
representation is shown. It can be easily extended, for say, addition/multiplication, using 
three or more phasors. The simplification procedure with the scalar quantities, using the 
different elementary operations, which is well known, can be extended to the phasor 
quantities. This will be used in the study of ac circuits to be discussed in the following 
lessons.     

The background required, i.e. phasor representation of sinusoidal quantities 
(voltage/current), and algebra – mathematical operations, such as addition/subtraction 
and multiplication/division of phasors or complex quantities, including transformation of 
phasor from rectangular to polar form, and vice versa, has been discussed here. The study 
of ac circuits, starting from series ones, will be described in the next few lessons. 
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Problems 
 

13.1 Use plasor technique to evaluate the expression and then find the numerical value at 
t = 10 ms. 

  

 ( ) ( ) ( ) ( )0 0di t   =  150 cos 100t - 45 + 500 sin 100t + cos 100t -30dt
⎡ ⎤⎣ ⎦  

 
13.2 Find the result in both rectangular and polar forms, for the following, using complex 
quantities: 
 

a) 5- j12
15  53.1∠ °  

b)  ( )5- j12 +15  -53.1∠ °

c) 2  30 - 4  210
5  450

∠ ° ∠ °
∠ °  

d) 15 0 + . 2  210
3 2 - 45

⎛ ⎞∠ ° ∠ °⎜ ⎟∠ °⎝ ⎠
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In the last lesson, two points were described: 

1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current by a phasor? 

2. How to perform elementary mathematical operations, like addition/ subtraction and 
multiplication/division, of two or more phasors, represented as complex quantity? 

 Some examples are also described there. In this lesson, the solution of the steady state 
currents in simple circuits, consisting of resistance R, inductance L and/or capacitance C 
connected in series, fed from single phase ac supply, is presented. Initially, only one of 
the elements R / L / C, is connected, and the current, both in magnitude and phase, is 
computed.  Then, the computation of total reactance and impedance, and the current, in 
the circuit consisting of two components, R & L / C only in series, is discussed. The 
process of drawing complete phasor diagram with current(s) and voltage drops in the 
different components is described.  Lastly, the computation of total power and also power 
consumed in the components, along with the concept of power factor, is explained. 

Keywords: Series circuits, reactance, impedance, phase angle, power, power factor. 

After going through this lesson, the students will be able to answer the following 
questions; 

1. How to compute the total reactance and impedance of the R-L-C series circuit, fed 
from single phase ac supply of known frequency?  

2. How to compute the current and also voltage drops in the components, both in 
magnitude and phase, of the circuit?  

3. How to draw the complete phasor diagram, showing the current and voltage drops?  

4. How to compute the total power and also power consumed in the components, along 
with power factor? 

Solution of Steady State Current in Circuits Fed from Single-
phase AC Supply  
 
Elementary Circuits 
1. Purely resistive circuit (R only)  

The instantaneous value of the current though the circuit (Fig. 14.1a) is given by, 

tIt
R

V
R
vi m

m ωω sinsin ===   

where, 

Im and Vm are the maximum values of current and voltage respectively. 
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The rms value of current is given by 

R
V

R
VI

I mm

−
−

===
2/

2
 

In phasor notation, 

  0)01(0 jVjVVV +=+=°∠=
−

  0)01(0 jIjIII +=+=°∠=
−

 The impedance or resistance of the circuit is obtained as, 

 00
0
0 jRZ

I
V

I

V
+=°∠=

°∠
°∠

=−

−

 

 Please note that the voltage and the current are in phase ( °= 0φ ), which can be 
observed from phasor diagram (Fig. 14.1b) with two (voltage and current) phasors, and 
also from the two waveforms (Fig. 14.1c).  
 In ac circuit, the term, Impedance is defined as voltage/current, as is the resistance in 
dc circuit, following Ohm’s law. The impedance, Z is a complex quantity. It consists of 
real part as resistance R, and imaginary part as reactance X, which is zero, as there is no 
inductance/capacitance. All the components are taken as constant, having linear V-I 
characteristics. In the three cases being considered, including this one, the power 
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consumed and also power factor in the circuits, are not taken up now, but will be 
described later in this lesson. 

2. Purely inductive circuit (L only)  
 For the circuit (Fig. 14.2a), the current i, is obtained by the procedure described here.  

 As tVtV
dt
diLv m ωω sin2sin === , 

 dtt
L

Vdi )(sin2 ω=  

Integrating, 

)90(sin2)90(sin)90(sin2cos2
°−=°−=°−=−= tItIt

L
Vt

L
Vi m ωωω

ω
ω

ω
 

 

 
It may be mentioned here that the current i, is the steady state solution, neglecting the 

constant of integration. The rms value, I is 

°−∠==

−
−

90I
L

VI
ω

 

IjIIjVVV −=°−∠=+=°∠=
−−

090;00    
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The impedance of the circuit is 

°∠=°∠=+==
−

=
°−∠

°∠
==∠ −

−

90900
90
0 LXXjLj

Ij
V

I
V

I

VZ LL ωωφ  

where, the inductive reactance is LfLX L πω 2== . 
 Note that the current lags the voltage by °+= 90φ . This can be observed both 
from phasor diagram (Fig. 14.2b), and waveforms (Fig. 14.2c). As the circuit has no 
resistance, but only inductive reactance LX L ω=  (positive, as per convention), the 
impedance Z is only in the y-axis (imaginary).  

3. Purely capacitive circuit (C only)  
The current i, in the circuit (Fig. 14.3a), is,  

dt
dvCi =  

Substituting itVtVv m ,sinsin2 ωω ==  is 

( )
)90(sin

)90(sin2)90(sin2cos2sin2

°+=

°+=°+===

tI

tItVCtVCtV
dt
dCi

m ω

ωωωωωω

 The rms value, I is 

°∠===

−
−−

90
)/(1

I
C

VVCI
ω

ω  

    IjIIjVVV +=°∠=+=°∠=
−−

090;00
The impedance of the circuit is 

°∠=°−∠=−=−===
°∠
°∠

==∠ −

−

9019001
90
0

C
XXj

C
j

CjIj
V

I
V

I

VZ CC ωωω
φ  

where, the capacitive reactance is 
CfC

X C πω 2
11

== . 

 Note that the current leads the voltage by °= 90φ  (this value is negative, i.e. 
°−= 90φ ), as per convention being followed here. This can be observed both from 

phasor diagram (Fig. 14.3b), and waveforms (Fig. 14.3c). As the circuit has no resistance, 
but only capacitive reactance, )/(1 CX c ω=  (negative, as per convention), the impedance 
Z is only in the y-axis (imaginary).  
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Series Circuits 
1. Inductive circuit (R and L in series)  

The voltage balance equation for the R-L series circuit (Fig. 14.4a) is, 

dt
diLiRv +=   

where, θωω sin2sinsin2 VtVtVv m === , θ  being tω . 
The current, i (in steady state) can be found as  

 )(sin2)(sin)(sin2 φθφωφω −=−=−= ItItIi m  
 The current,  in steady state is sinusoidal in nature (neglecting transients of the 
form shown in the earlier module on dc transients). This can also be observed, if one sees 
the expression of the current, 

)(ti

)(sin tIi m ω= for purely resistive case (with R only), and 
)90(sin °−= tIi m ω for purely inductive case (with L only). 

 Alternatively, if the expression for  is substituted in the voltage equation, the 
equation as given here is obtained.  

i

 )(cos2)(sin2sin2 φωωφωω −⋅+−⋅= tILtIRtV  
 If, first, the trigonometric forms in the RHS side is expanded in terms of tωsin  and 

tωcos , and then equating the terms of tωsin  and tωcos  from two (LHS & RHS) 
sides, the two equations as given here are obtained. 
 ILRV ⋅⋅+⋅= )sincos( φωφ , and  
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 )cossin(0 φωφ ⋅+⋅−= LR   
 From these equations, the magnitude and phase angle of the current, I  are derived. 
 From the second one, )/(tan RLωφ =  
 So, phase angle,   )/(tan 1 RLωφ −=

Two relations, )/(cos ZR=φ , and )/(sin ZLωφ = , are derived, with the term 

(impedance), 22 )( LRZ ω+=  
 If these two expressions are substituted in the first one, it can be shown that the 
magnitude of the current is , with both V  and ZVI /= Z  in magnitude only.  

 The steps required to find the rms value of the current I, using complex form of 
impedance, are given here. 
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 The impedance (Fig. 14.5) of the inductive (R-L) circuit is, 
 LjRXjRZ L ωφ +=+=∠  
 where,  

 2222 )( LRXRZ L ω+=+= and ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= −−

R
L

R
X L ωφ 11 tantan  

 
LjR

jV
XjR
jV

Z
VI

L ωφ
φ

+
+

=
+
+

=
∠
°∠

=−∠

−
− 000  

 
2222 )( LR

V
XR

V
Z
VI

L ω+
=

+
==       

 Note that the current lags the voltage by the angle φ , value as given above. In this 
case, the voltage phasor has been taken as reference phase, with the current phasor 
lagging the voltage phasor by the angle, φ . But normally, in the case of the series circuit, 
the current phasor is taken as reference phase, with the voltage phasor leading the current 
phasor by φ . This can be observed both from phasor diagram (Fig. 14.4b), and 
waveforms (Fig. 14.4c). The inductive reactance  is positive. In the phasor diagram, 
as one move from voltage phasor to current phasor, one has to go in the 

LX
clockwise 

direction, which means that phase angle, φ  is taken as positive, though both phasors are 
assumed to move in anticlockwise direction as shown in the previous lesson.  
 The complete phasor diagram is shown in Fig. 14.4b, with the voltage drops across 
the two components and input (supply) voltage (OA ), and also current (OB ). The 
voltage phasor is taken as reference. It may be observed that 

)()]([)( ZIVXjIVRIV OALCAOC ===+= , 
using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor 
diagram can also be drawn with the current phasor as reference, as will be shown in the 
next lesson. 

Power consumed and Power factor 
From the waveform of instantaneous power ( ivW ⋅= ) also shown in Fig. 14.4c for 

the above circuit, the average power is, 
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[ ]

[ ] φφφππφ
π

φθθφ
π

θφθφ
π

θφθθ
π

θ
π

ππ

πππ

cossin)2(sin
2

)0(cos1

)2(sin
2

cos1

)2(coscos1)(sin2sin211

00

000

IVIVIV

IVIV

dIVdIVdivW

=⎥⎦
⎤

⎢⎣
⎡ +−−−=

⎥⎦
⎤

⎢⎣
⎡ −−=

−−=−=⋅= ∫∫∫

 

Note that power is only consumed in resistance, R only, but not in the inductance, L. 
 So, . RIW 2=

 Power factor 
22 )(

coscos

LR
R

Z
R

IV
IV

powerapparent
poweraverage

ω
φφ

+
=====  

 The power factor in this circuit is less than 1 (one), as °≤≤° 900 φ , φ  being positive 
as given above. 

 For the resistive (R) circuit, the power factor is 1 (one), as °= 0φ , and the average 
power is . IV

 For the circuits with only inductance, L or capacitance, C as described earlier, the 
power factor is 0 (zero), as °±= 90φ . For inductance, the phase angle, or the angle of the 
impedance, °+= 90φ (lagging), and for capacitance, °−= 90φ  (leading). It may be noted 
that in both cases, the average power is zero (0), which means that no power is consumed 
in the elements, L and C. 
 The complex power, Volt-Amperes (VA) and reactive power will be discussed after 
the next section.  

2. Capacitive circuit (R and C in series)  
This part is discussed in brief. The voltage balance equation for the R-C series circuit 
(Fig. 14.6a) is,  

 tVdti
C

iRv ωsin21
=+= ∫  

 The current is 

 )(sin2 φω += tIi  

 The reasons for the above choice of the current, i , and the steps needed for the 
derivation of the above expression, have been described in detail, in the case of the earlier 
example of inductive (R-L) circuit. The same set of steps has to be followed to derive the 
current, i  in this case. 

 Alternatively, the steps required to find the rms value of the current I, using complex 
form of impedance, are given here. 
 The impedance of the capacitive (R-C) circuit is, 

 
C

jRXjRZ C ω
φ 1

−=−=−∠  
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 where, 

 
2

222 1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

C
RXRZ C ω

and  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎠
⎞

⎜
⎝
⎛−= −−−

RCRCR
X C

ωω
φ 1tan1tantan 111  

 
)/1(

000
CjR

jV
XjR
jV

Z
VI

C ωφ
φ

−
+

=
−
+

=
−∠
°∠

=∠

−
−

 

 
( )2222 /1 CR

V
XR

V
Z
VI

C ω+
=

+
==  
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 Note that the current leads the voltage by the angle φ , value as given above. In this 
case, the voltage phasor has been taken as reference phase, with the current phasor 
leading the voltage phasor by the angle, φ . But normally, in the case of the series circuit, 
the current phasor is taken as reference phase, with the voltage phasor lagging the current 
phasor by φ . This can be observed both from phasor diagram (Fig. 14.6b), and 
waveforms (Fig. 14.6c). The capacitive reactance  is negative. In the phasor diagram, 
as one move from voltage phasor to current phasor, one has to go in the 

CX
anticlockwise 

direction, which means that phase angle, φ  is taken as negative. This is in contrast to the 
case as described earlier. The complete phasor diagram is shown in Fig. 14.6b, with the 
voltage drops across the two components and input (supply) voltage, and also current. 
The voltage phasor is taken as reference.  
 The power factor in this circuit is less than 1 (one), with φ  being same as given 
above. The expression for the average power is φcosIVP = , which can be obtained by 
the method shown above. The power is only consumed in the resistance, R, but not in the 
capacitance, C. One example is included after the next section. 

Complex Power, Volt-Amperes (VA) and Reactive Power 
 The complex power is the product of the voltage and complex conjugate of the 
current, both in phasor form. For the inductive circuit, described earlier, the voltage 
( ) is taken as reference and the current (°∠0V φφφ sincos IjII −=−∠ ) is lagging the 
voltage by an angle, φ . The complex power is  

  QjPIVjIVIVIVIVS +=+=∠=∠⋅°∠=⋅=
−−

φφφφ sincos)(0*

The Volt-Amperes (S), a scalar quantity, is the product of the magnitudes the voltage 
and the current. So, 22 QPIVS +=⋅= . It is expressed in VA.   

The active power (W) is  

φcos)(Re)(Re * IVIVSP =⋅==
−−

, as derived earlier.  

 The reactive power (VAr) is given by .  φsin)(Im)(Im * IVIVSQ =⋅==
−−

 As the phase angle, φ   is taken as positive in inductive circuits, the reactive power is 
positive. The real part, ( φcosI ) is in phase with the voltage V , whereas the imaginary 
part, φsinI  is in quadrature ( ) with the voltage V . But in capacitive circuits, the 
current (

°− 90
φ∠I ) leads the voltage by an angle φ  , which is taken as negative. So, it can be 

stated that the reactive power is negative here, which can easily be derived  

Example 14.1 
 A voltage of 120 V at 50 Hz is applied to a resistance, R in series with a capacitance, 
C (Fig. 14.7a). The current drawn is 2 A, and the power loss in the resistance is 100 W. 
Calculate the resistance and the capacitance. 

Solution 

 = 120 V  V I  = 2 A P  = 100 W  = 50 Hz  f
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 Ω=== 252/100/ 22IPR  

 Ω===+= 602/120/22 IVXRZ C  

 Ω=−=−== 54.54)25()60()2/(1 2222 RZCfX c π  

 F
Xf

C
C

μ
ππ

36.581036.58
54.540.502

1
2

1 6 =⋅=
×⋅

== −  

 The power factor is, )(417.060/25/cos leadZR ===φ   
 The phase angle is °== − 38.65)417.0(cos 1φ  

 
 
The phasor diagram, with the current as reference, is shown in Fig. 14.7b. The examples, 
with lossy inductance coil (r in series with L), will be described in the next lesson. The 
series circuit with all elements, R. L & C, along with parallel circuits, will be taken up in 
the next lesson.  
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Problems 
14.1 Calculate the power factor in the following cases for the circuit with the             

elements, as given, fed from a single phase ac supply. 

   (i) With resistance, R only, but no L and C 

  (a) 1.0 (Φ=0°)    (b) 0.0 lagging (Φ=+90°) 

 (c) 0.0 leading (Φ=-90°)  (d) None of the above   

  (ii) with only pure/lossless inductance, L, but no R and C 

  (a) 1.0 (Φ=0°)    (b) 0.0 lagging (Φ=+90°) 

 (c) 0.0 leading (Φ=-90°)  (d) None of the above   

  (iii) with only pure capacitance, C, but no R and L. 

  (a) 1.0 (Φ=0°)    (b) 0.0 lagging (Φ=+90°) 

 (c) 0.0 leading (Φ=-90°)  (d) None of the above   

14.2 Calculate the current and power factor (lagging / leading) in the following cases 

for the circuits having impedances as given, fed from an ac supply of 200 V. Also 

draw the phasor diagram in all cases. 

(i) Z = (15+j20) Ω 

(ii) Z  = (14-j14) Ω 

(iii) Z = R + j (XL – XC), where R = 10 Ω, XL = 20 Ω, and XC = 10 Ω. 

14.3   A 200 V, 50 Hz supply is connected to a resistance (R) of 20 Ω in series with an 

iron cored choke coil (r in series with L). The readings of the voltmeters across 

the resistance and across the coil are 120 V and 150 V respectively. Find the loss 

in the coil. Also find the total power factor. Draw the phasor diagram. 

14.4 A circuit, with a resistance, R and a lossless inductance in series, is connected 
across an ac supply (V) of known frequency (f). A capacitance, C is now 
connected in series with R-L, with V and f being constant. Justify the following 
statement with reasons.  

 The current in the circuit normally increases with the introduction of C. 

  Under what condition, the current may also decrease. Explain the condition with 
reasons. 

Version 2 EE IIT, Kharagpur 14



List of Figures 
Fig. 14.1 Resistive (R) load, connected to single phase ac supply 

 (a) Circuit diagram (b) Phasor diagram 

 (c) Waveforms  –  1. Voltage (v), 2. Current (i) 

Fig. 14.2 Load – Inductance (L) only 

 (a) Circuit diagram (b) Phasor diagram 

 (c) Waveforms  –  1. Voltage (v), 2. Current (i) 

Fig. 14.3 Load – Capacitance (C) only 

 (a) Circuit diagram (b) Phasor diagram 

 (c) Waveforms  –  1. Voltage (v), 2. Current (i) 

Fig. 14.4 Load – Inductive (R and L in series) 

 (a) Circuit diagram (b) Phasor diagram 

 (c) Waveforms  –  1. Voltage (v), 2. Current (i), 

 3. Instantaneous power (W = v·i) 

Fig. 14.5  The complex form of the impedance (R-L series circuit) 

Fig. 14.6 Load – Capacitive (R and C in series) 

 (a) Circuit diagram (b) Phasor diagram 

 (c) Waveforms  –  1. Voltage (v), 2. Current (i), 

Fig. 14.7 (a) Circuit diagram (Ex. 14.1) (b) Phasor diagram 
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In the last lesson, two points were described: 

1. How to solve for the impedance, and current in an ac circuit, consisting of single 
element, R / L / C? 

2. How to solve for the impedance, and current in an ac circuit, consisting of two 
elements, R and L / C, in series, and then draw complete phasor diagram? 

 In this lesson, the solution of currents in simple circuits, consisting of resistance R, 
inductance L and/or capacitance C connected in series, fed from single phase ac supply, 
is presented. Then, the circuit with all above components in parallel is taken up. The 
process of drawing complete phasor diagram with current(s) and voltage drops in the 
different components is described. The computation of total power and also power 
consumed in the different components, along with power factor, is explained. One 
example of series circuit are presented in detail, while the example of parallel circuit will 
be taken up in the next lesson.  

Keywords: Series and parallel circuits, impedance, admittance, power, power factor. 

After going through this lesson, the students will be able to answer the following 
questions; 

1. How to compute the total reactance and impedance / admittance, of the series and 
parallel circuits, fed from single phase ac supply?  

2. How to compute the different currents and also voltage drops in the components, both 
in magnitude and phase, of the circuit?  

3. How to draw the complete phasor diagram, showing the currents and voltage drops?  

4. How to compute the total power and also power consumed in the different 
components, along with power factor? 

Solution of Current in R-L-C Series Circuit  

Series (R-L-C) circuit  
  

+ -
V

R L C

Fig. 15.1 (a) Circuit diagram

O D E A
I

 

 

 

 

 

 

 The voltage balance equation for the circuit with R, L and C in series (Fig. 15.1a), is  

 tVdti
Cdt

diLiRv ωsin21
=++= ∫  
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 The current, i  is of the form, 

 )(sin2 φω ±= tIi  
 As described in the previous lesson (#14) on series (R-L) circuit, the current in steady 
state is sinusoidal in nature. The procedure given here, in brief, is followed to determine 
the form of current. If the expression for )(sin2 φω −= tIi  is substituted in the voltage 
equation, the equation shown here is obtained, with the sides (LHS & RHS) interchanged.  

 
tV

tICtILtIR

ω

φωωφωωφω

sin2

)(cos2)/1()(cos2)(sin2

=

−⋅−−⋅+−⋅
  

    or  tVtICLtIR ωφωωωφω sin2)(cos2)]/1([)(sin2 =−⋅−+−⋅   
 The steps to be followed to find the magnitude and phase angle of the current I , are 
same as described there (#14). 
 So, the phase angle is    RCL /)]/1([tan 1 ωωφ −= −

 and the magnitude of the current is ZVI /=  
 where the impedance of the series circuit is 22 )]/1([ CLRZ ωω −+=  

 Alternatively, the steps to find the rms value of the current I, using complex form of 
impedance, are given here. 
 The impedance of the circuit is 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=−+=±∠

C
LjRXXjRZ CL ω

ωφ 1)(  

 where, 
( )2222 )/1()( CLRXXRZ CL ωω −+=−+= , and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟

⎠
⎞

⎜
⎝
⎛ −

= −−

R
CL

R
XX CL )/1(tantan 11 ωωφ  

 ( ))/1(
0

)(
00

CLjR
jV

XXjR
jV

Z
VI

CL ωωφ
φ

−+
+

=
−+

+
=

±∠
°∠

=∠

−
−

∓  

 
2

2
22

1)(
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=
−+

==

C
LR

V
XXR

V
Z
VI

CL

ω
ω

 

 Two cases are: (a) Inductive ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>

C
L

ω
ω 1 , and (b) Capacitive ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
<

C
L

ω
ω 1 .  

 
(a) Inductive 

In this case, the circuit is inductive, as total reactance ( ))/1( CL ωω −  is positive, under 
the condition ( )/1( CL )ωω > .  The current lags the voltage by φ  (taken as positive), 
with the voltage phasor taken as reference. The power factor (lagging) is less than 1 
(one), as °≤≤° 900 φ . The complete phasor diagram, with the voltage drops across the 
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components and input voltage (OA), and also current (OB ), is shown in Fig. 15.1b. The 
voltage phasor is taken as reference, in all cases. It may be observed that 

)()]([DA)]([)( ZiVXjiVXjiVRiV OACLCDOC  +=+= −= = =
using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor 
diagram can also be drawn with the current phasor as reference, as will be shown in the 
example given here. The expression for the average power is . The power 
is only consumed in the resistance, R, but not in inductance/capacitance (L/C), in all three 
cases. 

RIIV 2cos =φ

 

φ 

O D

E 

V

      Inductive (XL > XC) 
Fig 15.1 (b) Phasor diagram 

I (-jXC) 

I (+jXL)

A

B 
I 

I.R

 

 

 

 

 

 

 

 

 

 

 

 

 
 

In this case, the circuit is inductive, as total reactance ( ))/1( CL ωω −  is positive, under 
the condition ( )/1( CL )ωω > .  The current lags the voltage by φ  (positive). The power 
factor (lagging) is less than 1 (one), as °≤≤° 900 φ . The complete phasor diagram, with 
the voltage drops across the components and input voltage ( ), and also current ( ), 
is shown in Fig. 15.1b. The voltage phasor is taken as reference, in all cases. It may be 
observed that 

OA OB

)()]([)]([)( ZiVXjiVXjiVRiV OACDALCDOC ==−=+=+=  
using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor 
diagram can also be drawn with the current phasor as reference, as will be shown in the 
example given here. The expression for the average power is . The power 
is only consumed in the resistance, R, but not in inductance/capacitance (L/C), in all three 
cases. 

RIIV 2cos =φ
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(b) Capacitive 

 

 

 

 

 

 

 

 

 

 

 

 

φ 
O D

E 

V

      Capacitive (XL < XC) 
Fig 15.1 (c) Phasor diagram 

I (-jXC) 

LI(+jX )

A

B 
I I.R

 
 

The circuit is now capacitive, as total reactance ( ))/1( CL ωω −  is negative, under the 
condition ( )/1( CL )ωω < .  The current leads the voltage by φ , which is negative as per 
convention described in the previous lesson. The voltage phasor is taken as reference 
here. The complete phasor diagram, with the voltage drops across the components and 
input voltage, and also current, is shown in Fig. 15.1c. The power factor (leading) is less 
than 1 (one), as °≤≤° 900 φ , φ  being negative. The expression for the average power 
remains same as above. 

The third case is resistive, as total reactance )/1( CL ωω −  is zero (0), under the 
condition )/1( CL ωω = . The impedance is 00 jRZ +=°∠ . The current is now at unity 
power factor ( °= 0φ ), i.e. the current and the voltage are in phase. The complete phasor 
diagram, with the voltage drops across the components and input (supply) voltage, and 
also current, is shown in Fig. 15.1d. This condition can be termed as ‘resonance’ in the 
series circuit, which is described in detail in lesson #17.  The magnitude of the impedance 
in the circuit is minimum under this condition, with the magnitude of the current being 
maximum. One more point to be noted here is that the voltage drops in the inductance, L 
and also in the capacitance, C, is much larger in magnitude than the supply voltage, 
which is same as the voltage drop in the resistance, R. The phasor diagram has been 
drawn approximately to scale.   
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+ 

- 

E 

O 

( )LI j.X

( )CI -j X

I ( )OD OBV , V  I.R

        Resistive (XL = XC) 

Fig. 15.1 (d) Phasor diagram  

D, A 

 

 

 

 

 

 

 

 

 
It may be observed here that two cases of series (R-L & R-C) circuits, as discussed in 

the previous lesson, are obtained in the following way. The first one (inductive) is that of 
(a), with C very large, i.e. 0/1 ≈Cω , which means that C is not there. The second one 
(capacitive) is that of (b), with L not being there ( or L 0=Lω ).    

Example 15.1 
A resistance, R is connected in series with an iron-cored choke coil (r in series with 

L). The circuit (Fig. 15.2a) draws a current of 5 A at 240 V, 50 Hz. The voltages across 
the resistance and the coil are 120 V and 200 V respectively. Calculate, 

(a) the resistance, reactance and impedance of the coil,  
(b) the power absorbed by the coil, and 
(c) the power factor (pf) of the input current.  

 

I

V

A

L 

B

CR

I

 Fig. 15.2 (a) Circuit diagram

D 
r 

 

 

 

 

 

 

 
 
Solution 

)(OBI  = 5 A  = 240 V  = 50 Hz )(OAVS f fπω 2=  
The voltage drop across the resistance VRIOCV 120)(1 =⋅=  
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The resistance, Ω=== 245/120/1 IVR   
The voltage drop across the coil VZICAV L 200)(2 =⋅=  

The impedance of the coil, Ω===+= 405/200/2
22 IVXrZ LL   

From the phasor diagram (Fig. 15.2b), 
 
 

V1 V2

A 

A 
R L C 

E B D 

40V, 50 Hz

I 

1A 

Fig. 15.2(b): Phasor Diagram   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

556.0
600,57
000,32

2401202
)200()240()120(

2
coscos

222222

=

=
××

−+
=

⋅⋅
−+

=∠=
OCOA

CAOCOAAOCφ    

The power factor (pf) of the input current = )(556.0cos lag=φ   
The phase angle of the total impedance,  °== − 25.56)556.0(cos 1φ
Input voltage, VZIOAVS 240)( =⋅=  

The total impedance of the circuit, Ω===++= 485/240/)( 22 IVXrRZ SL   
Ω+=°∠=++=∠ )91.3967.26(25.5648)( jXjrRZ Lφ  

The total resistance of the circuit, Ω=+=+ 67.2624 rrR  
The resistance of the coil, Ω=−= 67.20.2467.26r  
The reactance of the coil, Ω=== 9.392 LfLX L πω  

The inductance of the coil, mHH
f

XL L 12710127127.0
502
9.39

2
3 =⋅==

×
== −

ππ
 

The phase angle of the coil,  
°==== −−− 17.86)067.0(cos)0.40/67.2(cos)/(cos 111

LL Zrφ  
Ω°∠=+=+=∠ )717.8640)9.3967.2( jXjrZ LLL φ  

The power factor (pf) of the coil, )(067.0cos lag=φ  

The copper loss in the coil  WrI 75.6667.2522 =×==

Example 15.2 
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An inductive coil, having resistance of 8 Ω  and inductance of 80 mH, is connected in 
series with a capacitance of 100 Fμ across 150 V, 50 Hz supply (Fig. 15.3a). Calculate, 
(a) the current, (b) the power factor, and (c) the voltages drops in the coil and capaci-
tance respectively. 

 ER L

+ 

- 
B 

A

I
D

V 

Fig. 15.3 (a) Circuit diagram 

C
 
 
 
 
 

Solution 

f = 50 Hz   sradf /16.3145022 =×== ππω    
L =   HmH 08.0108080 3 =⋅= − Ω=×== 13.2508.016.314LX l ω  

C =  FF 610100100 −⋅=μ Ω=
⋅×

== − 83.31
1010016.314

11
6C

X C ω
 

R = 8    Ω VOAVS 150)( =  
The impedance of the coil, Ω°∠=+=+=∠ 34.72375.26)13.250.8( jXjRZ LLL φ  
The total impedance of the circuit, 

Ω°−∠=
−=−+=−+=−∠

95.39435.10
)7.60.8()83.3113.25(0.8)( 4 jjXXjRZ CLφ

 

The current drawn from the supply, 

AjA
Z
VI )26.902.11(95.39375.1495.39

435.10
1500

+=°∠=°∠⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−∠
°∠

=∠
φ

φ  

The current is,  AI 375.14=
The power factor (pf) )(767.095.39coscos lead=°== φ  
 
 D

A E
I 

I.R 

B

   IZL I. (jXL) 

I. (-jXC) 

Fig. 15.3 (b) Phasor diagram
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Please note that the current phasor is taken as reference in the phasor diagram (Fig. 
15.3b) and also here. The voltage drop in the coil is, 

Vj
VZIV LL

)24.3611.115(
34.7214.37934.72)375.26375.14(011

+=
°∠=°∠×=∠⋅°∠=∠ φθ

 

The voltage drop in the capacitance in, 

Vj
VZIV CC

58.457
0.9058.4570.90)83.31475.14(022

−=
°−∠=°−∠×=−∠⋅°∠=∠ φθ

 

Solution of Current in Parallel Circuit 

Parallel circuit  
 The circuit with all three elements, R, L & C connected in parallel (Fig. 15.4a), is fed 
to the ac supply. The current from the supply can be computed by various methods, of 
which two are described here. 

C 

+ 

- 

V 

Fig. 15.4 (a) Circuit diagram. 

I 

IL

L R 

IR IC

 
 

 

 

 

 

 

 

 

First method  
 The current in three branches are first computed and the total current drawn from the 
supply is the phasor sum of all three branch currents, by using Kirchoff’s first law related 
to the currents at the node. The voltage phasor (V ) is taken as reference.  

 All currents, i.e. three branch currents and total current, in steady state, are sinusoidal 
in nature, as the input (supply voltage is sinusoidal of the form, 
 tVv ωsin2=    
 Three branch currents are obtained by the procedure given in brief. 
  , or RiRv ⋅= tItRVRvi RR ωω sin2sin)/(2/ === , 
 where, )/( RVI R =  

 Similarly, 
dt
idLv L=   

 So,  is, Li
 tItLVdttVLdtvLi LL ωωωω cos2cos)]/([2)sin(2)/1()/1( −=−=== ∫∫  

 )90(sin2 °−= tI L ω  
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 where, )/( LL XVI =  with LX L ω=  

 , from which   is obtained as, ∫= dtiCv C)/1( Ci

 tItCVtV
dt
dC

dt
vdCi CC ωωωω cos2 cos)(2)sin2( =⋅===  

 )90(sin2 °+= tIC ω  
 where, )/( Cc XVI =  with )/1( CX C ω=  
 Total (supply) current, i  is  
  cos2cos2sin2 tItItIiiii CLRCLR ωωω +−=++=  

 )(sin2cos)(2sin2 φωωω ∓tItIItI CLR =−−=  
 The two equations given here are obtained by expanding the trigonometric form 
appearing in the last term on RHS, into components of tωcos  and tωsin , and then 
equating the components of tωcos  and tωsin  from the last term and last but one 
(previous) . 
 RII =φcos  and )(sin CL III −=φ  
 From these equations, the magnitude and phase angle of the total (supply) current are, 

 
22

22 111)()( ⎟⎟
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 where, the magnitude of the term (admittance of the circuit) is, 
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 Please note that the admittance, which is reciprocal of impedance, is a complex 
quantity. The angle of admittance or impedance, is same as the phase angle, φ  of the 
current I , with the input (supply) voltage taken as reference phasor, as given earlier. 

   Alternatively, the steps required to find the rms values of three branch currents 
and the total (suuply) current, using complex form of impedance, are given here. 
 Three branch currents are 

 
L

Vj
Lj

V
Xj
VIjI

R
VII

L
LLRR ωω

−===−=°−∠==°∠ 90;0  
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Cj

V
Xj

VIjI
C

CC ω
ω

=
−

=
−

==°+∠
)/1(

90  
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 Of the three branches, the first one consists of resistance only, the current,  is in 
phase with the voltage (V). In the second branch, the current,  lags the voltage by , 
as there is inductance only, while in the third one having capacitance only, the current, 

 leads the voltage . All these cases have been presented in the previous lesson. 

RI

LI °90

CI °90
 The total current is  

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
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⎝

⎛
−+=−+=±∠

L
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R
VIIjII LcR ω

ωφ 11  

 where,  
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 The two cases are as described earlier in series circuit. 

(a) Inductive 

IC

E 

O 

D AIR 

IL 

I 

φ 

        Inductive (IL > IC) 
Fig. 15.4 (b) Phasor diagram  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In this case, the circuit being inductive, the current lags the voltage by φ  (positive), 

as  , i.e. CL II > CL ωω >/1 , or CL ωω /1<  .This condition is in contrast to that 
derived in the case of series circuit  earlier. The power factor is less than 1 (one). The 
complete phasor diagram, with the three branch currents along with total current, and also 
the voltage, is shown in Fig. 15.4b. The voltage phasor is taken as reference in all cases.  
It may be observed there that 

)()()()( OBICBIDCIODI CLR =++      
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The Kirchoff’s first law related to the currents at the node is applied, as stated above. The 
expression for the average power is . The power is only 
consumed in the resistance, R, but not in inductance/capacitance (L/C), in all three cases. 

RVRIIV R /cos 22 ==φ

(b) Capacitive 

The circuit is capacitive, as  , i.e. LC II > LC ωω /1> , or CL ωω /1> . The current 
leads the voltage by φ  (φ  being negative), with the power factor less than 1 (one). The 
complete phasor diagram, with the three branch currents along with total current, and also 
the voltage, is shown in Fig. 15.4c. 

The third case is resistive, as CL II = , i.e. CL ωω =/1  or CL ωω /1= . This is the 
same condition, as obtained in the case of series circuit. It may be noted that two currents, 

 and , are equal in magnitude as shown, but opposite in sign (phase difference 
being ), and the sum of these currents 

LI CI
°180 )( CL II +  is zero (0). The total current is in 

phase with the voltage ( °= 0φ ), with RII = , the power factor being unity. The 
complete phasor diagram, with the three branch currents along with total current, and also 
the voltage, is shown in Fig. 15.4d. This condition can be termed as ‘resonance’ in the 
parallel circuit, which is described in detail in lesson #17.  The magnitude of the 
impedance in the circuit is maximum (i.e., the magnitude of the admittance is minimum) 
under this condition, with the magnitude of the total (supply) current being minimum.  

O 

B 

E 

I 

φ 
D 

IC 

IR 

      Capacitive (IL < IC) 
Fig. 15.4 (c) Phasor diagram 

A 

V 

IL 
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The circuit with two elements, say R & L, can be solved, or derived with C being large 
(  or 0=CI 0/1 =Cω ).  

 
+

-

O 

L LI (V /( jX )

( )C CI V/(-jX )

( )RI = I V R
V 

          Resistive (IL = IC) 

Fig. 15.4 (d) Phasor Diagram 
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Second method  
 Before going into the details of this method, the term, Admittance must be explained. 
In the case of two resistance connected in series, the equivalent resistance is the sum of 
two resistances, the resistance being scalar (positive). If two impedances are connected in 
series, the equivalent impedance is the sum of two impedances, all impedances being 
complex. Please note that the two terms, real and imaginary, of two impedances and also 
the equivalent one, may be positive or negative. This was explained in lesson no. 12.  
  If two resistances are connected in parallel, the inverse of the equivalent resistance is 
the sum of the inverse of the two resistances. If two impedances are connected in parallel, 
the inverse of the equivalent impedance is the sum of the inverse of the two impedances. 
The inverse or reciprocal of the impedance is termed ‘Admittance’, which is complex. 
Mathematically, this is expressed as  

 21
21

111 YY
ZZZ

Y +=+==  

As admittance (Y) is complex, its real and imaginary parts are called conductance (G) 
and susceptance (B) respectively. So, BjGY += . If impedance, XjRZ +=∠φ  with 
X being positive, then the admittance is 

 
BjG

XR
Xj

XR
R

XR
XjR

XjRXjR
XjR

XjRZ
Y

−=
+

−
+

=

+
−

=
−+

−
=

+
=

°∠
=−∠

2222

22)()(
1

0
1φ

  

 where,  
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XR

XB
XR

RG
+

=
+

=   

Please note the way in which the result of the division of two complex quantities is 
obtained. Both the numerator and the denominator are multiplied by the complex 
conjugate of the denominator, so as to make the denominator a real quantity. This has 
also been explained in lesson no. 12.  
 The magnitude and phase angle of Z and Y are 
 )/(tan; 122 RXXRZ −=+= φ  , and  

 ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

+
=+= −−

R
X

G
B

XR
BGY 11

22

22 tantan;1 φ  

To obtain the current in the circuit (Fig. 15.4a), the steps are given here.  
The admittances of the three branches are 

L
j

XjZ
Y

RZ
Y

L ω
11190;110

2
2

1
1 −===°−∠==°∠    

Cj
XjZ

Y
C

ω=
−

==°∠
1190

3
3  

The total admittance, obtained by the phasor sum of the three branch admittances, is 

BjG
L

Cj
R

YYYY +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=++=±∠
ω

ωφ 11
321   

where,  

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
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⎞
⎜⎜
⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= −

L
CR

L
C

R
Y

ω
ωφ

ω
ω 1tan;11 1

2

2  , and 

LCBRG ωω /1;/1 −==  
The total impedance of the circuit is 

2222

11
BG

Bj
BG

G
BjGY

Z
+

−
+

=
+

=
±∠

=∠
φ

φ∓  

The total current in the circuit is obtained as 

φφ
φ

φ ±∠=±∠⋅°∠=
∠

°∠
=±∠ )(00 YVYV

Z
VI
∓

 

where the magnitude of current is ZVYVI /=⋅=  
The current is the same as obtained earlier, with the value of Y substituted in the 

above equation. 

This is best illustrated with an example, which is described in the next lesson. 

 The solution of the current in the series-parallel circuits will also be discussed there, 
along with some examples.  
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Problems 
15.1 Calculate the current and power factor (lagging / leading) for the following 

circuits (Fig. 15.5a-d), fed from an ac supply of 200 V. Also draw the phasor 
diagram in all cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 

- 

200 V 

 (a)  

L R 
 

 

= 20 Ω 

jXL

= j 25 Ω

+ 

- 
  

R

L 

200 V  

 (c)  

C 

= 15 Ω 

jXL

= j25  
Ω

-jXC

=-j20 Ω C 

+ 

- 

200 V 

 (d)  

-jXC

= - j25 Ω
jXC

- j20 Ω

R =
15 Ω

Fig. 15.5

C 

+ 

- 

200 V

 (b)  

R = 
25 Ω 

- jXC

= -j20 Ω 

15.2 A voltage of 200 V is applied to a pure resistor (R), a pure capacitor, C and a 
lossy inductor coil, all of them connected in parallel. The total current is 2.4 A, 
while the component currents are 1.5, 2.0 and 1.2 A respectively. Find the total 
power factor and also the power factor of the coil. Draw the phasor diagram. 

 
15.3 A 200 V. 50Hz supply is connected to a lamp having a rating of 100 V, 200 W, in 

series with a pure inductance, L, such that the total power consumed is the same, 
i.e. 200W. Find the value of L.  

  A capacitance, C is now connected across the supply. Find value of C, to bring 
the supply power factor to unity (1.0). Draw the phasor diagram in the second 
case. 

 
 
1.(a) Find the value of the load resistance (RL) to be connected in series with a real 
 voltage source (VS + RS in series), such that maximum power is transferred from 
 the above source to the load resistance.  
 

 (b) Find the voltage was 8Ω resistance in the circuit shown in Fig. 1(b).  
 
2.(a) Find the Theremin’s equivalent circuit (draw the ckt.) between the terminals A + B,  
  of the circuit shown in Fig. 2(a).  
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 (b) A circuit shown in Fig. 2(b) is supplied at 40V, 50Hz. The two voltages V1 and V2 
(magnitude only) is measured as 60V and 25V respectively. If the current, I is 
measured as 1A, find the values of R, L and C. Also find the power factor of the 
circuit (R-L-C). Draw the complete phasor diagram. 

 
3.(a) Find the line current, power factor, and active (real) power drawn from 3-phase,  
  100V, 50Hz, balanced supply in the circuit shown in Fig. 3(a). 
 
 (b) In the circuit shown in Fig. 3(b), the switch, S is put in position 1 at t = 0. Find ie(t), 

t > 0, if vc(0-) = 6V. After the circuit reaches steady state, the switch, S is brought to 
position 2, at t = T1. Find ic(t), t > T1. Switch the above waveform.  

 
4.(a) Find the average and rms values of the periodic waveform shown in Fig. 4(a).  
 

 (b) A coil of 1mH lowing a series resistance of 1Ω is connected in parallel with a 
capacitor, C and the combination is fed from 100 mV (0.1V), 1 kHz supply (source) 
having an internal resistance of 10Ω. If the circuit draws power at unity power 
factor (upf), determine the value of the capacitor, quality factor of the coil, and 
power drawn by the circuit. Also draw the phasor diagram.  
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In the last lesson, the following points were described: 
1. How to compute the total impedance in parallel and series-parallel circuits? 

2. How to solve for the current(s) in parallel and series-parallel circuits, fed from single 
phase ac supply, and then draw complete phasor diagram? 

3. How to find the power consumed in the circuits and also the different components, 
and the power factor (lag/lead)? 

 In this lesson, the phenomenon of the resonance in series and parallel circuits, fed 
from single phase variable frequency supply, is presented. Firstly, the conditions 
necessary for resonance in the above circuits are derived. Then, the terms, such as 
bandwidth and half power frequency, are described in detail. Some examples of the 
resonance conditions in series and parallel circuits are presented in detail, along with the 
respective phasor diagrams.  

Keywords: Resonance, bandwidth, half power frequency, series and parallel circuits,  

After going through this lesson, the students will be able to answer the following 
questions; 

1. How to derive the conditions for resonance in the series and parallel circuits, fed from 
a single phase variable frequency supply?  

2. How to compute the bandwidth and half power frequency, including power and 
power factor under resonance condition, of the above circuits?  

3. How to draw the complete phasor diagram under the resonance condition of the 
above circuits, showing the currents and voltage drops in the different components?  

Resonance in Series and Parallel Circuits  

Series circuit  
  

C 

E 
L A R    D    

+ 

- 

I 

B 

V 

frequency 
       (f) 

Fig. 17.1 (a) Circuit diagram.

 

 
 
 
 
 
 
 
 
 
 
 
 
The circuit, with resistance R, inductance L, and a capacitor, C in series (Fig. 17.1a) is 
connected to a single phase variable frequency ( ) supply.  f
 The total impedance of the circuit is 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=∠

C
LjRZ

ω
ωφ 1  

 where,  

 f
R

CL
C

LRZ πωωωφ
ω

ω 2;)/1(tan;1 1
2

2 =
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= −  

 The current is  

 ( ) φ
φ

φ −∠=
∠

°∠
=−∠ ZV

Z
VI /0  

 where 
( )[ ]2122 /1( CLR

VI
ωω −+

=  

 The current in the circuit is maximum, if 
C

L
ω

ω 1
=  . 

 The frequency under the above condition is  

 
CL

f o
o ππ

ω
2

1
2

==   

This condition under the magnitude of the current is maximum, or the magnitude of 
the impedance is minimum, is called resonance. The frequency under this condition with 
the constant values of inductance L, and capacitance C, is called resonant frequency. If 
the capacitance is variable, and the frequency,  is kept constant, the value of the 
capacitance needed to produce this condition is 

f

LfL
C 22 )2(

11
πω

==    

The magnitude of the impedance under the above condition is RZ = , with the 
reactance , as the inductive reactance0=X LX l ω=  is equal to capacitive reactance 

CX C ω/1= . The phase angle is °= 0φ , and the power factor is unity ( 1cos =φ ), which 
means that the current is in phase with the input (supply) voltage.. So, the magnitude of 
the current ( )/( RV ) in the circuit is only limited by resistance, R. The phasor diagram 
is shown in Fig. 17.1b. 

The magnitude of the voltage drop in the inductance L/capacitance C (both are equal, 
as the reactance are equal) is )/1( CILI oo ωω ⋅=⋅ .    

The magnification of the voltage drop as a ratio of the input (supply) voltage is  

C
L

RR
Lf

R
L

Q oo 12
===

πω
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I ( )AD ABV , V  I.R

Fig. 17.1 (b) Phasor Diagram  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is termed as Quality (Q) factor of the coil.  
The impedance of the circuit with the constant values of inductance L, and capa-

citance C is minimum at resonant frequency ( ), and increases as the frequency is 
changed, i.e. increased or decreased, from the above frequency.  The current is maximum 
at , and decreases as frequency is changed ( , or 

of

off = off > off < ), i.e. . The 
variation of current in the circuit having a known value of capacitance with a variable 
frequency supply is shown in Fig. 17.2. 

off ≠

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17.2 Variation of current under variable frequency supply 

C
ur

re
nt

 (I
) 

f1 f0 f2

mI 1 V= .
R2 2  

frequency (f) 

 (a)  

Im = V/ R 

small R 

large RC
ur

re
nt

  

frequency 

(b)   

The maximum value of the current is ( ). If the magnitude of the current is 
reduced to (

RV /
2/1 ) of its maximum value, the power consumed in R will be half of that 

with the maximum current, as power is RI 2 . So, these points are termed as half power 
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points. If the two frequencies are taken as  and , where  and 
 , the band width being given by 

1f 2f 2/01 fff Δ−=
2/02 fff Δ+= 12 fff −=Δ  . 

The magnitude of the impedance with the two frequencies is 

2
1

2

0
0

2

)2/(2
1)2/(2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ±

−Δ±+=
Cff

LffRZ
π

π   

As ( CfLf 00 2/12 ππ = ) and the ratio ( 02/ ffΔ ) is small, the magnitude of the 
reactance of the circuit at these frequencies is )/( 00 ffXX L Δ= . As the current is 

( 2/1 ) of its maximum value, the magnitude of the impedance is ( 2 ) of its minimum 
value (R) at resonant frequency. 

 So, ( )[ ]212
00

2 )/(2 ffXRRZ L Δ+=⋅=  
From the above, it can be obtained that ( ) RXff L =Δ 00/   

or 
L

R
Lf

fR
X

fR
fff

L ππ 22 0

0

0

0
12 ===−=Δ  

The band width is given by )2/(12 LRfff π=−=Δ  
It can be observed that, to improve the quality factor (Q) of a coil, it must be designed 

to have its resistance, R as low as possible. This also results in reduction of band width 
and losses (for same value of current). But if the resistance, R cannot be decreased, then 
Q will decrease, and also both band width and losses will increase.   

Example 17.1 
A constant voltage of frequency, 1 MHz is applied to a lossy inductor (r in series with 

L), in series with a variable capacitor, C (Fig. 17.3). The current drawn is maximum, 
when C =  400 pF; while current is reduced to ( 2/1 ) of the above value, when C = 450 
pF. Find the values of r and L. Calculate also the quality factor of the coil, and the 
bandwidth. 

L R      

 
  

C 

+ 

- 

V 

f = 1 MHz 
Fig. 17.3 Circuit diagram 

 
 
 
 
 
 
 
Solution 

f = 1 MHz = Hz  610 fπω 2=   FpFC 1210400400 −⋅==
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rVI /max =  as  CL XX = Ω=
⋅×⋅
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10400102

1
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1
126ππ Cf

Xc  

Ω=== 3982 LfXX CL π  HL μ
π

34.63
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0.398
6 =

⋅
=  

pFC 4501 =  Ω=
⋅×⋅
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10450102

1
1261 πCX  

( ) Ω+=−+=−+=∠ )3.44()7.3530.398(1 jrjrXXjrZ CLφ  

22

max
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==

⋅
==

r
V

Z
V

r
VI
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From above, 22 )3.44(2 +=⋅ rr  or  222 )3.44(2 += rr
or   Ω= 3.44r

The quality factor of the coil is 984.8
3.44
0.398
===

r
XQ L  

The band with is  
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L

rfff

3.111103.111

1113.0101113.0
10398
3.44

1034.632
3.44

2
3

6
6612

=⋅=

=⋅=
⋅

=
⋅×

==−=Δ −−ππ  

Parallel circuit  
 The circuit, with resistance R, inductance L, and a capacitor, C in parallel (Fig. 17.4a) 
is connected to a single phase variable frequency ( ) supply.  f
 The total admittance of the circuit is 
  

C 

+ 

- 

B 

V 

frequency 
       (f) 

Fig. 17.4 (a) Circuit diagram. 
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L
Cj

R
Y

ω
ωφ 11  

 where,  
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 The impedance is φφ ∠=−∠ YZ /1  
 The current is  
 φφφφφ ∠=−∠°∠=∠⋅=∠⋅°∠=∠ )/(/0)(0 ZVZVYVYVI  

 where, 
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The current in the circuit is minimum, if 
L

C
ω

ω 1
=  

 The frequency under the above condition is  
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ω
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-

O 

L LI (V /( jX ))

( )C CI V/(-jX )

( )RI = I V R

Fig. 17.4 (b) Phasor Diagram

V 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

This condition under which the magnitude of the total (supply) current is minimum, 
or the magnitude of the admittance is minimum (which means that the impedance is 
maximum), is called resonance.  It may be noted that, for parallel circuit, the current or 
admittance is minimum (the impedance being maximum), while for series circuit, the 
current is maximum (the impedance being minimum). The frequency under this condition 
with the constant values of inductance L, and capacitance C, is called resonant frequency. 
If the capacitance is variable, and the frequency, f is kept constant, the value of the 
capacitance needed to produce this condition is 

LfL
C 22 )2(

11
πω

==    

The magnitude of the impedance under the above condition is ( RZ = ), while the 

magnitude of the admittance is ( )/1( RGY == ). The reactive part of the admittance is 
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0=B , as the susceptance (inductive) )/1( LBL ω=  is equal to the susceptance 
(capacitive)  CBC ω= . The phase angle is °= 0φ , and the power factor is unity 
( 1cos =φ ). The total (supply) current is phase with the input voltage. So, the magnitude 
of the total current ( )/( RV ) in the circuit is only limited by resistance R. The phasor 
diagram is shown in Fig. 17.4b. 

The magnitude of the current in the inductance, L / capacitance, C (both are equal, as 
the reactance are equal), is CVLV oo ωω ⋅=)/1( . This may be termed as the circulating 
current in the circuit with only inductance and capacitance, the magnitude of which is  

L
CVII CL ==  

substituting the value of oo fπω 2= . This circulating current is smaller in magnitude 
than the input current or the current in the resistance as RLC oo >= )/1( ωω .  

The input current increases as the frequency is changed, i.e. increased or decreased 
from the resonant frequency ( , or off > off < ), i.e. off ≠ . 

In the two cases of series and parallel circuits described earlier, all components, 
including the inductance, are assumed to be ideal, which means that the inductance is 
lossless, having no resistance. But, in actual case, specially with an iron-cored choke coil,   
normally a resistance r is assumed to be in series with the inductance L, to take care of 
the winding resistance and also the iron loss in the core. In an air-cored coil, the winding 
resistance may be small and no loss occurs in the air core.  

An iron-cored choke coil is connected in parallel to capacitance, and the combination 
is fed to an ac supply (Fig. 17.5a). 

 

 Fig. 17.5 (a) Circuit diagram.
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The total admittance of the circuit is  

Cj
Lr
LjrCj

Ljr
YYY ω

ω
ωω

ω
+

+
−

=+
+

=+= 22221
1  

If the magnitude of the admittance is to be minimum, then 

222 Lr
LC
ω

ωω
+

=  or 222 Lr
LC
ω+

=  . 

 
The frequency is  
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This is the resonant frequency. The total admittance is 2220
Lr

rY
ω+

=°∠  

The total impedance is 
r

LrZ
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=°∠  

The total (input) current is  

2220)(000
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This current is at unity power factor with °= 0φ . The total current can be written as  
( )CLLLLCLL IIjIIjIjII −+=+−∠=+=°∠ φφφ sincos00  

So, the condition is lLC II φsin=  

where
222222

sin;;
Lr

L

Lr
VICV

X
VI LL

C
C

ω

ωφ
ω

ω
+

=
+

=⋅==  

From the above, the condition, as given earlier, can be obtained. 
The total current is LLII φcos=  
The value, as given here, can be easily obtained. The phasor diagram is shown in Fig. 

17.5b. It may also be noted that the magnitude of the total current is minimum, while the 
magnitude of the impedance is maximum. 
 V D I 

A 

B 

IC 

IL 

LΦ

Fig. 17.5 (b) Phasor Diagram 

 
 
 
 
 
 
 
Example 17.2 

A coil, having a resistance of 15 Ω  and an inductance of 0.75 H, is connected in 
series with a capacitor (Fig. 17.6a. The circuit draws maximum current, when a voltage 
of 200 V at 50 Hz is applied. A second capacitor is then connected in parallel to the 
circuit (Fig. 17.6b). What should be its value, such that the combination acts like a non-
inductive resistance, with the same voltage (200 V) at 100 Hz? Calculate also the current 
drawn by the two circuits.  
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Solution 

1f  = 50 Hz V = 200 V R = 15  Ω  L = 0.75 H 
From the condition of resonance at 50 Hz in the series circuit,  

1111
1111 2

112
CfC

XLfLX CL πω
πω =====   

So, 
( ) ( )

F
Lf

C μ
ππ

5.13105.13
75.0502

1
2

1 6
22

1
1 =⋅=

×⋅
== −  

The maximum current drawn from the supply is, ARVI 33.1315/200/max ===  

2f  = 100 Hz sradf /3.62810022 22 =⋅== ππω  
Ω=⋅⋅== 24.47175.010022 22 ππ LfX L  

Ω=
⋅⋅⋅

== − .8.117
105.131002

1
2

1
6

12
2 ππ Cf

X C  

( )
Ω°∠=

+=−+=−+=∠
57.8775.353

44.35315)8.11724.471(152211 jjXXjRZ CLφ
 

13

3

11
11

10)824.212.0(

57.8710827.2
57.8775.353

1
44.35315

11

−−

−

Ω⋅−=

°−∠⋅=
°∠

=
+

=
∠

=−∠

j

jZ
Y

φ
φ

 

( )2222 /1 CjZY ω==  
 
As the combination is resistive in nature, the total admittance is 

22
3

21 10)824.212.0(00 CjjYYjYY ω+⋅−=+=+=°∠ −  
From the above expression,  3

222 10824.23.628 −⋅=⋅= CCω

or, FC μ5.4105.4
3.628
10824.2 6

3

2 =⋅=
⋅

= −
−

  

The total admittance is  131012.0 −− Ω⋅=Y
The total impedance is ( ) Ω=Ω⋅=⋅== − kYZ 33.81033.81012.0/1/1 33  
The total current drawn from the supply is 

 
  

C1

L R 

+ 

C1

•
L R  

+ 

- 

f2 = 100Hz 

Fig. 17.6 (b) Circuit diagram 

V = 200 V 

I

I1

C2

I2

- 

f1 = 50Hz 

Fig. 17.6 (a) Circuit diagram 

V = 200 V 

•
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mAAZVYVI 241024024.01012.0200/ 33 =⋅==⋅×==⋅= −−  
The phasor diagram for the circuit (Fig. 17.6b) is shown in Fig. 17.6c.  

 

I V

I2

I1

φ1 = 87.6° 

Fig. 17.6 (c) Phasor diagram

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The condition for resonance in both series and parallel circuits fed from single phase 
ac supply is described. It is shown that the current drawn from the supply is at unity 
power factor (upf) in both cases. The value of the capacitor needed for resonant condition 
with a constant frequency supply, and the resonant frequency with constant value of 
capacitance, have been derived. Also taken up is the case of a lossy inductance coil in 
parallel with a capacitor under variable frequency supply, where the total current will be 
at upf. The quality factor of the coil and the bandwidth of the series circuit with known 
value of capacitance have been determined. This is the final lesson in this module of 
single phase ac circuits. In the next module, the circuits fed from three phase ac supply 
will be described.     
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Problems 
17.1 A coil having a resistance of 20 Ω and inductance of 20 mH, in series with a 

capacitor is fed from a constant voltage variable frequency supply. The maximum 
current is 10 A at 100 Hz. Find the two cut-off frequencies, when the current is 
0.71 A. 

 
17.2 With the ac voltage source in the circuit shown in Fig. 17.7 operating a frequency 

of f, it was found that I =1.0 ∠0° A. When the source frequency was doubled (2f), 
the current became I = 0.707 ∠ – 45° A. Find: 

a) The frequency f, and 
b) The inductance L, and also the reactances, XL and XC at 2f   

 
17.3 For the circuit shown in Fig. 17.8, 

a) Find the resonant frequency f0, if R = 250 Ω, and also calculate Q0 (quality 
factor), BW (band width) in Hz, and lower and upper cut-off frequencies (f1 and 
f2) of the circuit. 

b) Suppose it was desired to increase the selectivity, so that BW was 65 Hz. What 
value of R would accomplish this? 

 
 L R = 100 Ω  

 
  

C = 0.01 μF 

 

- 

100 ∠0° V 

Fig. 17.7 

 
 
 
 
 
 
 
 
 
 
 

 
 

L = 1.2 H 

R  

 
  

 
 
 
 
 
 
 
 
 
             
    

C = 0.33 μF

+ 

- 
VO 

Fig. 17.8 

RL = 200 Ω     

Inductor
coil

R = 150  ΩO
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17.4 (a) For the circuit shown in Fig. 17.9, show that the circulating current is given by 
V.. C L , if R is small and V is the input voltage. 

  (b) Find the total current at  
    (i)   resonant frequency, f0, and 
   (ii) at a frequency, f1 = 0.9 f0. 
 
17.5 The circuit components of a parallel circuit shown in Fig. 17.10 are R = 60 kΩ, L 

= 5mH, and C = 50 pF. Find   
     a)   the resonant frequency, f0, 
  b)  the quality factor, Q0, and 
  c)  the bandwidth. 
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- 
V  

Fig. 17.9 

R 

L 

I • 

• C 

+ 

- 

V 

Fig. 17.10 
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