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SADDLE POINT

The second case (say X^ < 0 and Â  > 0) corresponds to a saddle point (Figure 2.9(c)).
The phase portrait of the system has the interesting "saddle" shape shown in Figure
2.9(c). Because of the unstable pole Xj , almost all of the system trajectories diverge
to infinity. In this figure, one also observes two straight lines passing through the
origin. The diverging line (with arrows pointing to infinity) corresponds to initial
conditions which make £2 (i.e., the unstable component) equal zero. The converging
straight line corresponds to initial conditions which make kl equal zero.

STABLE OR UNSTABLE FOCUS

The third case corresponds to a focus. A stable focus occurs when the real part of the
eigenvalues is negative, which implies that x(t) and x(t) both converge to zero. The
system trajectories in the vicinity of a stable focus are depicted in Figure 2.9(d). Note
that the trajectories encircle the origin one or more times before converging to it,
unlike the situation for a stable node. If the real part of the eigenvalues is positive,
then x(t) and x(t) both diverge to infinity, and the singularity point is called an
unstable focus. The trajectories corresponding to an unstable focus are sketched in
Figure 2.9(e).

CENTER POINT

The last case corresponds to a center point, as shown in Figure 2.9(f). The name
comes from the fact that all trajectories are ellipses and the singularity point is the
center of these ellipses. The phase portrait of the undamped mass-spring system
belongs to this category.

Note that the stability characteristics of linear systems are uniquely determined
by the nature of their singularity points. This, however, is not true for nonlinear
systems.

2.5 Phase Plane Analysis of Nonlinear Systems

In discussing the phase plane analysis of nonlinear systems, two points should be kept
in mind. Phase plane analysis of nonlinear systems is related to that of linear systems,
because the local behavior of a nonlinear system can be approximated by the behavior
of a linear system. Yet, nonlinear systems can display much more complicated
patterns in the phase plane, such as multiple equilibrium points and limit cycles. We
now discuss these points in more detail.
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LOCAL BEHAVIOR OF NONLINEAR SYSTEMS

In the phase portrait of Figure 2.2, one notes that, in contrast to linear systems, there
are two singular points, (0,0) and (-3,0) . However, we also note that the features of
the phase trajectories in the neighborhood of the two singular points look very much
like those of linear systems, with the first point corresponding to a stable focus and the
second to a saddle point. This similarity to a linear system in the local region of each
singular point can be formalized by linearizing the nonlinear system, as we now
discuss.

If the singular point of interest is not at the origin, by defining the difference
between the original state and the singular point as a new set of state variables, one
can always shift the singular point to the origin. Therefore, without loss of generality,
we may simply consider Equation (2.1) with a singular point at 0. Using Taylor
expansion, Equations (2.1a) and (2.1b) can be rewritten as

h = c x l + dx2 + 82^1 ' X2>

where gj and g2 contain higher order terms.

In the vicinity of the origin, the higher order terms can be neglected, and
therefore, the nonlinear system trajectories essentially satisfy the linearized equation

JL'j = axl + bx2

x2 = cxi+dx2

As a result, the local behavior of the nonlinear system can be approximated by the
patterns shown in Figure 2.9.

LIMIT CYCLES

m the phase portrait of the nonlinear Van der Pol equation, shown in Figure 2.8, one
observes that the system has an unstable node at the origin. Furthermore, there is a
closed curve in the phase portrait. Trajectories inside the curve and those outside the
curve all tend to this curve, while a motion started on this curve will stay on it forever,
circling periodically around the origin. This curve is an instance of the so-called
"limit cycle" phenomenon. Limit cycles are unique features of nonlinear systems.

In the phase plane, a limit cycle is defined as an isolated closed curve. The
trajectory has to be both closed, indicating the periodic nature of the motion, and
isolated, indicating the limiting nature of the cycle (with nearby trajectories
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converging or diverging from it). Thus, while there are many closed curves in the
phase portraits of the mass-spring-damper system in Example 2.1 or the satellite
system in Example 2.5, these are not considered limit cycles in this definition, because
they are not isolated.

Depending on the motion patterns of the trajectories in the vicinity of the limit
cycle, one can distinguish three kinds of limit cycles

1. Stable Limit Cycles: all trajectories in the vicinity of the limit cycle
converge to it as t —> °° (Figure 2.10(a));

2. Unstable Limit Cycles: all trajectories in the vicinity of the limit cycle
diverge from it as t -> °° (Figure 2.10(b));

3. Semi-Stable Limit Cycles: some of the trajectories in the vicinity
converge to it, while the others diverge from it as r —» °° (Figure

2 diverging
converging diverging

(a) (b) (c)

Figure 2.10 : Stable, unstable, and semi-stable limit cycles

As seen from the phase portrait of Figure 2.8, the limit cycle of the Van der Pol
equation is clearly stable. Let us consider some additional examples of stable,
unstable, and semi-stable limit cycles.

Example 2.7: stable, unstable, and semi-stable limit cycles

Consider the following nonlinear systems

(a)

(b)

(c)

l=x2-xx(xl

X , = J

- I)2

-x2(xf

+x2(x,2

-x2(x,2

+ x 2 - -

+ x 2
2 -

+ x 2
2 -

1)

I ) 2

(2.12)

(2.13)

(2.14)



36 Phase Plane Analysis Chap. 2

Let us study system (a) first. By introducing polar coordinates

/• = (x 1
2 + x2

2)1/2 9 = tan-1(jc2/x1)

the dynamic equations (2.12) are transformed as

dr , , , . d<d

T<=-r(r-l) Tr-X

When the state starts on the unit circle, the above equation shows that r(t) = 0. Therefore, the state

will circle around the origin with a period 1/2K. When r < 1, then r > 0. This implies that the state

tends to the circle from inside. When r > 1, then /• < 0. This implies that the state tends toward

the unit circle from outside. Therefore, the unit circle is a stable limit cycle. This can also be

concluded by examining the analytical solution of (2.12)

r(t) = 1 6(0 = Qn - 1
( l+c oe- 2 ' ) 1 / 2

where

Similarly, one can find that the system (b) has an unstable limit cycle and system (c) has a semi-

stable limit cycle. Q

2.6 Existence of Limit Cycles

As mentioned in chapter 1, it is of great importance for control engineers to predict the
existence of limit cycles in control systems. In this section, we state three simple
classical theorems to that effect. These theorems are easy to understand and apply.

The first theorem to be presented reveals a simple relationship between the
existence of a limit cycle and the number of singular points it encloses. In the
statement of the theorem, we use N to represent the number of nodes, centers, and foci
enclosed by a limit cycle, and S to represent the number of enclosed saddle points.

Theorem 2.1 (Poincare) / / a limit cycle exists in the second-order autonomous
system (2.1), then N = S + 1 .

This theorem is sometimes called the index theorem. Its proof is mathematically
involved (actually, a family of such proofs led to the development of algebraic
topology) and shall be omitted here. One simple inference from this theorem is that a
limit cycle must enclose at least one equilibrium point. The theorem's result can be
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verified easily on Figures 2.8 and 2.10.

The second theorem is concerned with the asymptotic properties of the
trajectories of second-order systems.

Theorem 2.2 (Poincare-Bendixson) If a trajectory of the second-order
autonomous system remains in a finite region Q, then one of the following is true:

(a) the trajectory goes to an equilibrium point

(b) the trajectory tends to an asymptotically stable limit cycle

(c) the trajectory is itself a limit cycle

While the proof of this theorem is also omitted here, its intuitive basis is easy to see,
and can be verified on the previous phase portraits.

The third theorem provides a sufficient condition for the non-existence of limit
cycles.

Theorem 2.3 (Bendixson) For the nonlinear system (2.1), no limit cycle can exist
in a region Q. of the phase plane in which 3/j /3xj + 3/2/3.X2 does not vanish and
does not change sign.

Proof: Let us prove this theorem by contradiction. First note that, from (2.5), the equation

0 (2.15)

is satisfied for any system trajectories, including a limit cycle. Thus, along the closed curve L of

a limit cycle, we have

f (/,rfjc2-/2rfx-1> = 0 (2.16)

Using Stokes' Theorem in calculus, we have

where the integration on the right-hand side is carried out on the area enclosed by the limit cycle.

By Equation (2.16), the left-hand side must equal zero. This, however, contradicts the fact

that the right-hand side cannot equal zero because by hypothesis 3/j/3xj +3/2 /3x2 does not

vanish and does not change sign. El

Let us illustrate the result on an example.
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Example 2.8: Consider the nonlinear system

x2 =

Since

which is always strictly positive (except at the origin), the system does not have any limit cycles

anywhere in the phase plane. . \3

The above three theorems represent very powerful results. It is important to
notice, however, that they have no equivalent in higher-order systems, where exotic
asymptotic behaviors other than equilibrium points and limit cycles can occur.

2.7 Summary

Phase plane analysis is a graphical method used to study second-order dynamic
systems. The major advantage of the method is that it allows visual examination of the
global behavior of systems. The major disadvantage is that it is mainly limited to
second-order systems (although extensions to third-order systems are often achieved
with the aid of computer graphics). The phenomena of multiple equilibrium points and
of limit cycles are clearly seen in phase plane analysis. A number of useful classical
theorems for the prediction of limit cycles in second-order systems are also presented.

2.8 Notes and References

Phase plane analysis is a very classical topic which has been addressed by numerous control texts.

An extensive treatment can be found in [Graham and McRuer, 1961]. Examples 2.2 and 2.3 are

adapted from [Ogata, 1970]. Examples 2.5 and 2.6 and section 2.6 are based on [Hsu and Meyer,

1968].

2.9 Exercises

2.1 Draw the phase portrait and discuss the properties of the linear, unity feedback control system

of open-loop transfer function

1 0
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2.2 Draw the phase portraits of the following systems, using isoclines

(a) e + e + 0.5 e = o

(b) e + e + o.5 e = i
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2.3 Consider the nonlinear system

x = y + x(x* + yl- 1) sin

y = - x + y (x2 + y2 - 1) sin

Without solving the above equations explicitly, show that the system has infinite number of limit

cycles. Determine the stability of these limit cycles. (Hint: Use polar coordinates.)

2.4 The system shown in Figure 2.10 represents a satellite control system with rate feedback

provided by a gyroscope. Draw the phase portrait of the system, and determine the system's

stability.

p + a -1 '
u 1

P1

Figure 2.10 : Satellite control system with rate feedback


