Qno:6. Hydrogen gas at 1 standard atm. And  $25^{\circ}$ C flows through a pipe made of unvulcanised neoprene rubber with ID and OD of 25 and 50 mm respectively. If the concentration of hydrogen at the inner surface of the pipe is  $2.37 \times 10^{-3}$  kmol hydrogen/m<sup>3</sup> and the diffusivity of hydrogen through the rubber is  $1.8 \times 10^{-6}$  cm<sup>2</sup>/s, estimate the rate of loss of hydrogen by diffusion through a pipe of 2 m length. The outside air may be assumed to be free from hydrogen.

Qno:7. Ammonia diffuses through nitrogen gas under equimolal counter diffusion at a total pressure of  $1.013 \times 10^5$  Pa and at a temperature of 298 K. The diffusion path is 0.15m. The partial pressure of ammonia at one point is  $1.5 \times 10^4$  Pa and at the other point is  $5 \times 10^3$  Pa.Diffusivity under the given condition is  $2.3 \times 10^{-5}$  m<sup>2</sup>/s.calculate the flux of ammonia.

Qno8: An ethanol-water solution is in contact at 20°C with an organic liquid of film thickness 0.4 cm in which water is insoluble. The concentration of ethanol at the interface is 6.8 wt% and at the other side of film it is 10.8 wt%. The densities are 0.9881 g/cc and 0.9728 g/cc respectively for 6.8 wt% and 10.8 wt% ethanol solutions. Diffusivity of ethanol is 74 X 10<sup>-5</sup> cm<sup>2</sup>/s. calculate the steady state flux in kmol/m<sup>2</sup>s.

Qno:9. Calculate the rate of diffusion of acetic acid (A) across a film of non-diffusing water (B) solution 2mm thick at 17°C, when the concentration (by weight) on opposite sides of the film are 10% and 4% acid. The diffusivity of acetic acid in the solution is 0.000095 m²/s.Density of 10% and 4% acid (by weight) are 1013 kg/m³ and 1004 kg/m³ respectively.

Qno:10. Carbon dioxide and oxygen experience equimolal counter diffusion in a circular tube whose length and diameter are 1m and 50 mm respectively. The system is at a total pressure of 10 atm. And a temperature of 25°C. The ends of the tube are connected to large chambers in which the species concentrations are maintained at fixed values. The partial pressure of CO<sub>2</sub> at one end is 190 mmHg while at the other end is 95 mmHg.

(i) Estimate the rate of mass transfer.

(ii) Find the partial pressure of CO<sub>2</sub> at 0.75 m from the end where the partial pressure is 190 mmHg.
Diffusivity under given condition is 2.1 X 10<sup>-5</sup> m<sup>2</sup>/s.